USA/GLOBAL: +1-949-461-9292
EUROPE: +39-011-3052-794
CONTACT US

Category: Profilometry Testing

 

Shot Peened Surface Analysis

SHOT PEENED SURFACE ANALYSIS

USING 3D NON-CONTACT PROFILOMETER

Prepared by

CRAIG LEISING

INTRODUCTION

Shot peening is a process in which a substrate is bombarded with spherical metal, glass, or ceramic beads—commonly referred to as “shot”—at a force intended to induce plasticity on the surface. Analyzing the characteristics before and after peening provides crucial insights for enhancing process comprehension and control. The surface roughness and coverage area of dimples left by the shot are especially noteworthy aspects of interest.

Importance of 3D Non-Contact Profilometer for Shot-Peened Surface Analysis

Unlike traditional contact profilometers, which have traditionally been used for shot-peened surface analysis, 3D non-contact measurement provides a complete 3D image to offer a more comprehensive understanding of coverage area and surface topography. Without 3D capabilities, an inspection will solely rely on 2D information, which is insufficient for characterizing a surface. Understanding the topography, coverage area, and roughness in 3D is the best approach for controlling or improving the peening process. NANOVEA’s 3D Non-Contact Profilometers utilize Chromatic Light technology with a unique capability to measure steep angles found on machined and peened surfaces. Additionally, when other techniques fail to provide reliable data due to probe contact, surface variation, angle, or reflectivity, NANOVEA Profilometers succeed.

MEASUREMENT OBJECTIVE

In this application, the NANOVEA ST400 Non-Contact Profilometer is used to measure raw material and two differently peened surfaces for a comparative review. There is an endless list of surface parameters that can be automatically calculated after the 3D surface scan. Here, we will review the 3D surface and select areas of interest for further analysis, including quantifying and investigating the roughness, dimples, and surface area.

NANOVEA

ST400

THE SAMPLE

RESULTS

STEEL SURFACE

ISO 25178 3D ROUGNESS PARAMETERS

SA 0.399 μm Average Roughness
Sq 0.516 μm RMS Roughness
Sz 5.686 μm Maximum Peak-to-Valley
Sp 2.976 μm Maximum Peak Height
Sv 2.711 μm Maximum Pit Depth
Sku 3.9344 Kurtosis
Ssk -0.0113 Skewness
Sal 0.0028 mm Auto-Correlation Length
Str 0.0613 Texture Aspect Ratio
Sdar 26.539 mm² Surface Area
Svk 0.589 μm Reduced Valley Depth
 

RESULTS

PEENED SURFACE 1

SURFACE COVERAGE
98.105%

ISO 25178 3D ROUGNESS PARAMETERS

Sa 4.102 μm Average Roughness
Sq 5.153 μm RMS Roughness
Sz 44.975 μm Maximum Peak-to-Valley
Sp 24.332 μm Maximum Peak Height
Sv 20.644 μm Maximum Pit Depth
Sku 3.0187 Kurtosis
Ssk 0.0625 Skewness
Sal 0.0976 mm Auto-Correlation Length
Str 0.9278 Texture Aspect Ratio
Sdar 29.451 mm² Surface Area
Svk 5.008 μm Reduced Valley Depth

RESULTS

PEENED SURFACE 2

SURFACE COVERAGE 97.366%

ISO 25178 3D ROUGNESS PARAMETERS

Sa 4.330 μm Average Roughness
Sq 5.455 μm RMS Roughness
Sz 54.013 μm Maximum Peak-to-Valley
Sp 25.908 μm Maximum Peak Height
Sv 28.105 μm Maximum Pit Depth
Sku 3.0642 Kurtosis
Ssk 0.1108 Skewness
Sal 0.1034 mm Auto-Correlation Length
Str 0.9733 Texture Aspect Ratio
Sdar 29.623 mm² Surface Area
Svk 5.167 μm Reduced Valley Depth

CONCLUSION

In this shot-peened surface analysis application, we have demonstrated how the NANOVEA ST400 3D Non-Contact Profiler precisely characterizes both the topography and nanometer details of a peened surface. It is evident that both Surface 1 and Surface 2 have a significant impact on all the parameters reported here when compared to the raw material. A simple visual examination of the images reveals the differences between the surfaces. This is further confirmed by observing the coverage area and the listed parameters. In comparison to Surface 2, Surface 1 exhibits a lower average roughness (Sa), shallower dents (Sv), and reduced surface area (Sdar), but a slightly higher coverage area.

From these 3D surface measurements, areas of interest can be readily identified and subjected to a comprehensive array of measurements, including Roughness, Finish, Texture, Shape, Topography, Flatness, Warpage, Planarity, Volume, Step-Height, and others. A 2D cross-section can quickly be chosen for detailed analysis. This information allows for a comprehensive investigation of peened surfaces, utilizing a complete range of surface measurement resources. Specific areas of interest could be further examined with an integrated AFM module. NANOVEA 3D Profilometers offer speeds of up to 200 mm/s. They can be customized in terms of size, speeds, scanning capabilities, and can even comply with Class 1 Clean Room standards. Options like Indexing Conveyor and integration for Inline or Online usage are also available.

A special thanks to Mr. Hayden at IMF for supplying the sample shown in this note. Industrial Metal Finishing Inc. | indmetfin.com

Paint Surface Morphology

PAINT SURFACE MORPHOLOGY

AUTOMATED REAL-TIME EVOLUTION MONITORING
USING NANOVEA 3D PROFILOMETER

Prepared by

DUANJIE LI, PhD

INTRODUCTION

Protective and decorative properties of paint play a significant role in a variety of industries, including automotive, marine, military, and construction. To achieve desired properties, such as corrosion resistance, UV protection, and abrasion resistance, paint formulas and architectures are carefully analyzed, modified, and optimized.

IMPORTANCE OF 3D NON-CONTACT PROFILOMETER FOR DRYING PAINT SURFACE MORPHOLOGY ANALYSIS

Paint is usually applied in liquid form and undergoes a drying process, which involves the evaporation of solvents and the transformation of the liquid paint into a solid film. During the drying process, the paint surface progressively changes its shape and texture. Different surface finishes and textures can be developed by using additives to modify the surface tension and flow properties of the paint. However, in cases of a poorly formulated paint recipe or improper surface treatment, undesired paint surface failures may occur.

Accurate in situ monitoring of the paint surface morphology during the drying period can provide direct insight into the drying mechanism. Moreover, real-time evolution of surface morphologies is very useful information in various applications, such as 3D printing. The NANOVEA 3D Non-Contact Profilometers measure the paint surface morphology of materials without touching the sample, avoiding any shape alteration that may be caused by contact technologies such as a sliding stylus.

MEASUREMENT OBJECTIVE

In this application, the NANOVEA ST500 Non-Contact Profilometer, equipped with a high-speed line optical sensor, is used to monitor the paint surface morphology during its 1-hour drying period. We showcase the NANOVEA Non-Contact Profilometer’s capability in providing automated real-time 3D profile measurement of materials with continuous shape change.

NANOVEA

ST500

RESULTS & DISCUSSION

The paint was applied on the surface of a metal sheet, followed immediately by automated measurements of the morphology evolution of the drying paint in situ using the NANOVEA ST500 Non-Contact Profilometer equipped with a high-speed line sensor. A macro had been programmed to automatically measure and record the 3D surface morphology at specific time intervals: 0, 5, 10, 20, 30, 40, 50, and 60 min. This automated scanning procedure enables users to perform scanning tasks automatically by running set procedures in sequence, significantly reducing effort, time, and possible user errors compared to manual testing or repeated scans. This automation proves to be extremely useful for long-term measurements involving multiple scans at different time intervals.

The optical line sensor generates a bright line consisting of 192 points, as shown in FIGURE 1. These 192 light points scan the sample surface simultaneously, significantly increasing the scanning speed. This ensures that each 3D scan is completed quickly to avoid substantial surface changes during each individual scan.

FIGURE 1: Optical line sensor scanning the surface of the drying paint.

The false color view, 3D view, and 2D profile of the drying paint topography at representative times are shown in FIGURE 2, FIGURE 3, and FIGURE 4, respectively. The false color in the images facilitates the detection of features that are not readily discernible. Different colors represent height variations across different areas of the sample surface. The 3D view provides an ideal tool for users to observe the paint surface from different angles. During the first 30 minutes of the test, the false colors on the paint surface gradually change from warmer tones to cooler ones, indicating a progressive decrease in height over time in this period. This process slows down, as shown by the mild color change when comparing the paint at 30 and 60 minutes.

The average sample height and roughness Sa values as a function of the paint drying time are plotted in FIGURE 5. The full roughness analysis of the paint after 0, 30, and 60 min drying time are listed in TABLE 1. It can be observed that the average height of the paint surface rapidly decreases from 471 to 329 µm in the first 30 min of drying time. The surface texture develops at the same time as the solvent vaporizes, leading to an increased roughness Sa value from 7.19 to 22.6 µm. The paint drying process slows down thereafter, resulting in a gradual decrease of the sample height and Sa value to 317 µm and 19.6 µm, respectively, at 60 min.

This study highlights the capabilities of the NANOVEA 3D Non-Contact Profilometer in monitoring the 3D surface changes of the drying paint in real-time, providing valuable insights into the paint drying process. By measuring the surface morphology without touching the sample, the profilometer avoids introducing shape alterations to the undried paint, which can occur with contact technologies like sliding stylus. This non-contact approach ensures accurate and reliable analysis of drying paint surface morphology.

FIGURE 2: Evolution of the drying paint surface morphology at different times.

FIGURE 3: 3D view of the paint surface evolution at different drying times.

FIGURE 4: 2D profile across the paint sample after different drying times.

FIGURE 5: Evolution of the average sample height and roughness value Sa as a function of the paint drying time.

ISO 25178

Drying time (min) 0 5 10 20 30 40 50 60
Sq (µm) 7.91 9.4 10.8 20.9 22.6 20.6 19.9 19.6
Sku 26.3 19.8 14.6 11.9 10.5 9.87 9.83 9.82
Sp (µm) 97.4 105 108 116 125 118 114 112
Sv (µm) 127 70.2 116 164 168 138 130 128
Sz (µm) 224 175 224 280 294 256 244 241
Sa (µm) 4.4 5.44 6.42 12.2 13.3 12.2 11.9 11.8

Sq – Root-mean-square height | Sku – Kurtosis | Sp – Maximum peak height | Sv – Maximum pit height | Sz – Maximum height | Sv – Arithmetic mean height

TABLE 1: Paint roughness at different drying times.

CONCLUSION

In this application, we have showcased the capabilities of the NANOVEA ST500 3D Non-Contact Profilometer in monitoring the evolution of paint surface morphology during the drying process. The high-speed optical line sensor, generating a line with 192 light spots that scan the sample surface simultaneously, has made the study time-efficient while ensuring unmatched accuracy.

The macro function of the acquisition software allows for programming automated measurements of the 3D surface morphology in situ, making it particularly useful for long-term measurement involving multiple scans at specific target time intervals. It significantly reduces the time, effort, and potential for user errors. The progressive changes in surface morphology are continuously monitored and recorded in real-time as the paint dries, providing valuable insights into the paint drying mechanism.

The data shown here represents only a fraction of the calculations available in the analysis software. NANOVEA Profilometers are capable of measuring virtually any surface, whether it’s transparent, dark, reflective, or opaque.

 

NOW, LET'S TALK ABOUT YOUR APPLICATION

Progressive Wear Mapping of Flooring using Tribometer

Progressive Wear Mapping of Flooring

Using Tribometer with integrated Profilometer

Prepared by

FRANK LIU

INTRODUCTION

Flooring materials are designed to be durable, but they often suffer wear and tear from everyday activities such as movement and furniture use. To ensure their longevity, most types of flooring have a protective wear layer that resists damage. However, the thickness and durability of the wear layer vary depending on the flooring type and level of foot traffic. In addition, different layers within the flooring structure, such as UV coatings, decorative layers, and glaze, have varying wear rates. That’s where progressive wear mapping comes in. Using the NANOVEA T2000 Tribometer with an integrated 3D Non-Contact Profilometer, precise monitoring, and analysis of the performance and longevity of flooring materials can be done. By providing detailed insight into the wear behavior of various flooring materials, scientists and technical professionals can make more informed decisions when selecting and designing new flooring systems.

IMPORTANCE OF PROGRESSIVE WEAR MAPPING FOR FLOOR PANELS

Flooring testing has traditionally centered on the wear rate of a sample to determine its durability against wear. However, progressive wear mapping allows analyzing the sample’s wear rate throughout the test, providing valuable insights into its wear behavior. This in-depth analysis allows for correlations between friction data and wear rate, which can identify the root causes of wear. It should be noted that wear rates are not constant throughout wear tests. Thus, observing the progression of wear gives a more accurate assessment of the sample’s wear. Progressing beyond traditional testing methods, the adoption of progressive wear mapping has contributed to significant advancements in the field of flooring testing.

The NANOVEA T2000 Tribometer with an integrated 3D Non-Contact Profilometer is a groundbreaking solution for wear testing and volume loss measurements. Its ability to move with precision between the pin and the profilometer guarantees the reliability of results by eliminating any deviation in wear track radius or location. But that’s not all – the 3D Non-Contact Profilometer’s advanced capabilities allow for high-speed surface measurements, reducing scanning time to mere seconds. With the capability of applying loads of up to 2,000 N and achieving spinning speeds of up to 5,000 rpm, the NANOVEA T2000 Tribometer offers versatility and precision in the evaluation process. It’s clear that this equipment holds a vital role in progressive wear mapping.

 

FIGURE 1: Sample set-up prior to wear testing (left) and post-wear test profilometry of the wear track (right).

MEASUREMENT OBJECTIVE

Progressive wear mapping testing was performed on two types of flooring materials: stone and wood. Each sample underwent a total of 7 test cycles, with increasing test durations of 2, 4, 8, 20, 40, 60, and 120 s, allowing for a comparison of wear over time. After each test cycle, the wear track was profiled using the NANOVEA 3D Non-Contact Profilometer. From the data collected by the profiler, the volume of the hole and wear rate can be analyzed using the integrated features in the NANOVEA Tribometer software or our surface analysis software, Mountains.

NANOVEA

T2000

wear mapping test samples wood and stone

 THE SAMPLES 

WEAR MAPPING TEST PARAMETERS

LOAD40 N
TEST DURATIONvaries
SPEED200 rpm
RADIUS10 mm
DISTANCEvaries
BALL MATERIALTungsten Carbide
BALL DIAMETER10 mm

Test duration used over the 7 cycles were 2, 4, 8, 20, 40, 60, and 120 seconds, respectively. The distances traveled were 0.40, 0.81, 1.66, 4.16, 8.36, 12.55, and 25.11 meters.

WEAR MAPPING RESULTS

WOOD FLOORING

Test CycleMax COFMin COFAvg. COF
10.3350.1240.275
20.3370.2070.295
30.3800.2290.329
40.3930.2650.354
50.3520.2050.314
60.3450.1990.312
70.3150.2110.293

 

RADIAL ORIENTATION

Test CycleTotal Volume Loss (µm3Total Distance
Traveled (m)
Wear Rate
(mm/Nm) x10-5
Instantaneous Wear Rate
(mm/Nm) x10-5
12962476870.401833.7461833.746
23552452271.221093.260181.5637
35963713262.88898.242363.1791
48837477677.04530.629172.5496
5120717995115.40360.88996.69074
6147274531827.95293.32952.89311
7185131921053.06184.34337.69599
wood progressive wear rate vs total distance

FIGURE 2: Wear rate vs total distance traveled (left)
and instantaneous wear rate vs test cycle (right) for wood flooring.

progressive wear mapping of wood floor

FIGURE 3: COF graph and 3D view of wear track from test #7 on wood flooring.

wear mapping extracted profile

FIGURE 4: Cross-Sectional Analysis of Wood Wear Track from Test #7

progressive wear mapping volume and area analysis

FIGURE 5: Volume and Area Analysis of Wear Track on Wood Sample Test #7.

WEAR MAPPING RESULTS

STONE FLOORING

Test CycleMax COFMin COFAvg. COF
10.2490.0350.186
20.3490.1970.275
30.2940.1540.221
40.5030.1240.273
50.5480.1060.390
60.5100.1290.434
70.5270.1810.472

 

RADIAL ORIENTATION

Test CycleTotal Volume Loss (µm3Total Distance
Traveled (m)
Wear Rate
(mm/Nm) x10-5
Instantaneous Wear Rate
(mm/Nm) x10-5
1962788460.40595.957595.9573
28042897311.222475.1852178.889
313161478552.881982.355770.9501
431365302157.041883.2691093.013
51082173218015.403235.1802297.508
62017496034327.954018.2821862.899
74251206342053.064233.0812224.187
stone flooring wear rate vs distance
stone flooring instantaneous wear rate chart

FIGURE 6: Wear rate vs total distance travelled (left)
and instantaneous wear rate vs test cycle (right) for stone flooring.

stone floor 3d profile of wear track

FIGURE 7: COF graph and 3D view of wear track from test #7 on stone flooring.

stone floor progressive wear mapping extracted profile
stone flooring extracted profile maximum depth and height area of the hole and peak

FIGURE 8: Cross-Sectional Analysis of Stone Wear Track from Test #7.

wood floor progressive wear mapping volume analysis

FIGURE 9: Volume and Area Analysis of Wear Track on Stone Sample Test #7.

DISCUSSION

The instantaneous wear rate is calculated with the following equation:
progressive wear mapping of flooring formula

Where V is the volume of a hole, N is the load, and X is the total distance, this equation describes the wear rate between test cycles. The instantaneous wear rate can be used to better identify changes in wear rate throughout the test.

Both samples have very different wear behaviors. Over time, the wood flooring starts with a high wear rate but quickly drops to a smaller, steady value. For the stone flooring, the wear rate appears to start at a low value and trends to a higher value over cycles. The instantaneous wear rate also shows little consistency. The specific reason for the difference is not certain but may be due to the structure of the samples. The stone flooring seems to consist of loose grain-like particles, which would wear differently compared to the wood’s compact structure. Additional testing and research would be needed to ascertain the cause of this wear behavior.

The data from the coefficient of friction (COF) seems to agree with the observed wear behavior. The COF graph for the wood flooring appears consistent throughout the cycles, complementing its steady wear rate. For the stone flooring, the average COF increases throughout the cycles, similar to how the wear rate also increases with cycles. There are also apparent changes in the shape of the friction graphs, suggesting changes in how the ball is interacting with the stone sample. This is most apparent in cycle 2 and cycle 4.

CONCLUSION

The NANOVEA T2000 Tribometer showcases its ability to perform progressive wear mapping by analyzing the wear rate between two different flooring samples. Pausing the continuous wear test and scanning the surface with the NANOVEA 3D Non-Contact Profilometer provides valuable insights into the material’s wear behavior over time.

The NANOVEA T2000 Tribometer with the integrated 3D Non-Contact Profilometer provides a wide variety of data, including COF (Coefficient of Friction) data, surface measurements, depth readings, surface visualization, volume loss, wear rate, and more. This comprehensive set of information allows users to gain a deeper understanding of the interactions between the system and the sample. With its controlled loading, high precision, ease of use, high loading, wide speed range, and additional environmental modules, the NANOVEA T2000 Tribometer takes tribology to the next level.

NOW, LET'S TALK ABOUT YOUR APPLICATION

Roughness Mapping Inspection using 3D Profilometry

ROUGHNESS MAPPING INSPECTION

USING 3D PROFILOMETRY

Prepared by

DUANJIE, PhD

INTRODUCTION

Surface roughness and texture are critical factors that impact the final quality and performance of a product. A thorough understanding of surface roughness, texture, and consistency is essential for selecting the best processing and control measures. Fast, quantifiable, and reliable inline inspection of product surfaces is in need to identify the defective products in time and optimize production line conditions.

IMPORTANCE OF 3D NON-CONTACT PROFILOMETER FOR IN-LINE SURFACE INSPECTION

Surface defects in products result from materials processing and product manufacturing. Inline surface quality inspection ensures the tightest quality control of the end products. NANOVEA 3D Non-Contact Optical Profilers utilize Chromatic Light technology with unique capability to determine the roughness of a sample without contact. The line sensor enables scanning of the 3D profile of a large surface at a high speed. The roughness threshold, calculated in real-time by the analysis software, serves as a fast and reliable pass/fail tool.

MEASUREMENT OBJECTIVE

In this study, the NANOVEA ST400 equipped with a high-speed sensor is used to inspect the surface of a Teflon sample with defect to showcase the capability of NANOVEA

Non-Contact Profilometers in providing fast and reliable surface inspection in a production line.

NANOVEA

ST400

RESULTS & DISCUSSION

3D Surface Analysis of the Roughness Standard Sample

The surface of a Roughness Standard was scanned using a NANOVEA ST400 equipped with a high-speed sensor that generates a bright line of 192 points, as shown in FIGURE 1. These 192 points scan the sample surface at the same time, leading to significantly increased scan speed.

FIGURE 2 shows false color views of the Surface Height Map and Roughness Distribution Map of the Roughness Standard Sample. In FIGURE 2a, the Roughness Standard exhibits a slightly slanted surface as represented by the varied color gradient in each of the standard roughness blocks. In FIGURE 2b, homogeneous roughness distribution is shown in different roughness blocks, the color of which represents the roughness in the blocks.

FIGURE 3 shows the examples of the Pass/Fail Maps generated by the Analysis Software based on different Roughness Thresholds. The roughness blocks are highlighted in red when their surface roughness is above a certain set threshold value. This provides a tool for the user to set up a roughness threshold to determine the quality of a sample surface finish.

FIGURE 1: Optical line sensor scanning on the Roughness Standard sample

a. Surface Height Map:

b. Roughness Map:

FIGURE 2: False color views of the Surface Height Map and Roughness Distribution Map of the Roughness Standard Sample.

FIGURE 3: Pass/Fail Map based on the Roughness Threshold.

Surface Inspection of a Teflon Sample with Defects

Surface Height Map, Roughness Distribution Map and Pass/Fail Roughness Threshold Map of the Teflon sample surface are shown in FIGURE 4. The Teflon Sample has a ridge form at the right center of the sample as shown in the Surface Height Map.

a. Surface Height Map:

The different colors in the pallet of FIGURE 4b represents the roughness value on the local surface. The Roughness Map exhibits a homogeneous roughness in the intact area of the Teflon sample. However, the defects, in the forms of an indented ring and a wear scar are highlighted in bright color. The user can easily set up a Pass/Fail roughness threshold to locate the surface defects as shown in FIGURE 4c. Such a tool allows users to monitor in situ the product surface quality in the production line and discover defective products in time. The real-time roughness value is calculated and recorded as the products pass by the in-line optical sensor, which can serve as a fast but reliable tool for quality control.

b. Roughness Map:

c. Pass/Fail Roughness Threshold Map:

FIGURE 4: Surface Height Map, Roughness Distribution Map and Pass/Fail Roughness Threshold Map of the Teflon sample surface.

CONCLUSION

In this application, we have shown how the NANOVEA ST400 3D Non-Contact Optical Profiler equipped with an optical line sensor works as a reliable quality control tool in an effective and efficient manner.

The optical line sensor generates a bright line of 192 points that scan the sample surface at the same time, leading to significantly increased scan speed. It can be installed in the production line to monitor the surface roughness of the products in situ. The roughness threshold works as a dependable criteria to determine the surface quality of the products, allowing users to notice the defective products in time.

The data shown here represents only a portion of the calculations available in the analysis software. NANOVEA Profilometers measure virtually any surface in fields including Semiconductor, Microelectronics, Solar, Fiber Optics, Automotive, Aerospace, Metallurgy, Machining, Coatings, Pharmaceutical, Biomedical, Environmental and many others.

NOW, LET'S TALK ABOUT YOUR APPLICATION

Weld Surface Inspection Using a Portable 3D Profilometer

WELd surface inspection

using a portable 3d profilometer

Prepared by

CRAIG LEISING

INTRODUCTION

It may become critical for a particular weld, typically done by visual inspection, to be investigated with an extreme level of precision. Specific areas of interest for precise analysis include surface cracks, porosity and unfilled craters, regardless of subsequent inspection procedures. Weld characteristics such as dimension/shape, volume, roughness, size etc. can all be measured for critical evaluation.

IMPORTANCE OF 3D NON-CONTACT PROFILOMETER FOR WELD SURFACE INSPECTION

Unlike other techniques such as touch probes or interferometry, the NANOVEA 3D Non-Contact Profilometer, using axial chromatism, can measure nearly any surface, sample sizes can vary widely due to open staging and there is no sample preparation needed. Nano through macro range is obtained during surface profile measurement with zero influence from sample reflectivity or absorption, has advanced ability to measure high surface angles and there is no software manipulation of results. Easily measure any material: transparent, opaque, specular, diffusive, polished, rough etc. The 2D and 2D capabilities of the NANOVEA Portable Profilometers make them ideal instruments for full complete weld surface inspection both in the lab and in the field.

MEASUREMENT OBJECTIVE

In this application, the NANOVEA JR25 Portable Profiler is used to measure the surface roughness, shape and volume of a weld, as well as the surrounding area. This information can provide critical information to properly investigate the quality of the weld and weld process.

NANOVEA

JR25

TEST RESULTS

The image below shows the full 3D view of the weld and the surrounding area along with the surface parameters of the weld only. The 2D cross section profile is shown below.

the sample

With the above 2D cross section profile removed from the 3D, dimensional information of the weld is calculated below. Surface area and volume of material calculated for the weld only below.

 HOLEPEAK
SURFACE1.01 mm214.0 mm2
VOLUME8.799e-5 mm323.27 mm3
MAX DEPTH/HEIGHT0.0276 mm0.6195 mm
MEAN DEPTH/HEIGHT 0.004024 mm 0.2298 mm

CONCLUSION

In this application, we have shown how the NANOVEA 3D Non-Contact Profiler can precisely characterize critical characteristics of a weld and the surrounding surface area. From the roughness, dimensions and volume, a quantitative method for quality and repeatability can be determined and or further investigated. Sample welds, such as the example in this app note, can be easily analyzed, with a standard tabletop or portable NANOVEA Profiler for in-house or field testing

NOW, LET'S TALK ABOUT YOUR APPLICATION

Industrial Coatings Scratch and Wear Evaluation

INDUSTRIAL COATING

SCRATCH AND WEAR EVALUATION USING A TRIBOMETER

Prepared by

DUANJIE LI, PhD & ANDREA HERRMANN

INTRODUCTION

Acrylic urethane paint is a type of fast-dry protective coating widely used in a variety of industrial applications, such as floor paint, auto paint, and others. When used as floor paint, it can serve areas with heavy foot and rubber-wheel traffic, such as walkways, curbs and parking lots.

IMPORTANCE OF SCRATCH AND WEAR TESTING FOR QUALITY CONTROL

Traditionally, Taber abrasion tests were carried out to evaluate the wear resistance of acrylic urethane floor paint according to the ASTM D4060 standard. However, as mentioned in the standard, “For some materials, abrasion tests utilizing the Taber Abraser may be subject to variation due to changes in the abrasive characteristics of the wheel during testing.”1 This may result in poor reproducibility of test results and create difficulty in comparing values reported from different laboratories. Moreover, in Taber abrasion tests, abrasion resistance is calculated as loss in weight at a specified number of abrasion cycles. However, acrylic urethane floor paints have a recommended dry film thickness of 37.5-50 μm2.

The aggressive abrasion process by Taber Abraser can quickly wear through the acrylic urethane coating and create mass loss to the substrate leading to substantial errors in the calculation of the paint weight loss. The implant of abrasive particles in the paint during the abrasion test also contributes to errors. Therefore, a well-controlled quantifiable and reliable measurement is crucial to ensure reproducible wear evaluation of the paint. In addition, the scratch test allows users to detect premature adhesive/cohesive failures in real-life applications.

MEASUREMENT OBJECTIVE

In this study, we showcase that NANOVEA Tribometers and Mechanical Testers are ideal for evaluation and quality control of industrial coatings.

The wear process of acrylic urethane floor paints with different topcoats is simulated in a controlled and monitored manner using the NANOVEA Tribometer. Micro scratch testing is used to measure the load required to cause cohesive or adhesive failure to the paint.

NANOVEA T100

The Compact Pneumatic Tribometer

NANOVEA PB1000

The Large Platform Mechanical Tester

TEST PROCEDURE

This study evaluates four commercially available water-based acrylic floor coatings that have the same primer (basecoat) and different topcoats of the same formula with a small alternation in the additive blends for the purpose of enhancing durability. These four coatings are identified as Samples A, B, C and D.

WEAR TEST

The NANOVEA Tribometer was applied to evaluate the tribological behavior, e.g. coefficient of friction, COF, and wear resistance. A SS440 ball tip (6 mm dia., Grade 100) was applied against the tested paints. The COF was recorded in situ. The wear rate, K, was evaluated using the formula K=V/(F×s)=A/(F×n), where V is the worn volume, F is the normal load, s is the sliding distance, A is the cross-sectional area of the wear track, and n is the number of revolution. Surface roughness and wear track profiles were evaluated by the NANOVEA Optical Profilometer, and the wear track morphology was examined using optical microscope.

WEAR TEST PARAMETERS

NORMAL FORCE

20 N

SPEED

15 m/min

DURATION OF TEST

100, 150, 300 & 800 cycles

SCRATCH TEST

The NANOVEA Mechanical Tester equipped with a Rockwell C diamond stylus (200 μm radius) was used to perform progressive load scratch tests on the paint samples using the Micro Scratch Tester Mode. Two final loads were used: 5 N final load for investigating paint delamination from the primer, and 35 N for investigating primer delamination from the metal substrates. Three tests were repeated at the same testing conditions on each sample to ensure reproducibility of the results.

Panoramic images of the whole scratch lengths were automatically generated and their critical failure locations were correlated with the applied loads by the system software. This software feature facilitates users to perform analysis on the scratch tracks any time, rather than having to determine the critical load under the microscope immediately after the scratch tests.

SCRATCH TEST PARAMETERS

LOAD TYPEProgressive
INITIAL LOAD0.01 mN
FINAL LOAD5 N / 35 N
LOADING RATE10 / 70 N/min
SCRATCH LENGTH3 mm
SCRATCHING SPEED, dx/dt6.0 mm/min
INDENTER GEOMETRY120º cone
INDENTER MATERIAL (tip)Diamond
INDENTER TIP RADIUS200 μm

WEAR TEST RESULTS

Four pin-on-disk wear tests at different number of revolutions (100, 150, 300 and 800 cycles) were performed on each sample in order to monitor the evolution of wear. The surface morphology of the samples were measured with a NANOVEA 3D Non-Contact Profiler to quantify the surface roughness prior to conducting wear testing. All samples had a comparable surface roughness of approximately 1 μm as displayed in FIGURE 1. The COF was recorded in situ during the wear tests as shown in FIGURE 2. FIGURE 4 presents the evolution of wear tracks after 100, 150, 300 and 800 cycles, and FIGURE 3 summarized the average wear rate of different samples at different stages of the wear process.

 

Compared with a COF value of ~0.07 for the other three samples, Sample A exhibits a much higher COF of ~0.15 at the beginning, which gradually increases and gets stable at ~0.3 after 300 wear cycles. Such a high COF accelerates the wear process and creates a substantial amount of paint debris as indicated in FIGURE 4 – the topcoat of Sample A has started to be removed in the first 100 revolutions. As shown in FIGURE 3, Sample A exhibits the highest wear rate of ~5 μm2/N in the first 300 cycles, which slightly decreases to ~3.5 μm2/N due to the better wear resistance of the metal substrate. The topcoat of Sample C starts to fail after 150 wear cycles as shown in FIGURE 4, which is also indicated by the increase of COF in FIGURE 2.

 

In comparison, Sample B and Sample D show enhanced tribological properties. Sample B maintains a low COF throughout the whole test – the COF slightly increases from~0.05 to ~0.1. Such a lubricating effect substantially enhances its wear resistance – the topcoat still provides superior protection to the primer underneath after 800 wear cycles. The lowest average wear rate of only ~0.77 μm2/N is measured for Sample B at 800 cycles. The topcoat of Sample D starts to delaminate after 375 cycles, as reflected by the abrupt increase of COF in FIGURE 2. The average wear rate of Sample D is ~1.1 μm2/N at 800 cycles.

 

Compared to the conventional Taber abrasion measurements, NANOVEA Tribometer provides well-controlled quantifiable and reliable wear assessments that ensure reproducible evaluations and quality control of commercial floor/auto paints. Moreover, the capacity of in situ COF measurements allow users to correlate the different stages of a wear process with the evolution of COF, which is critical in improving fundamental understanding of the wear mechanism and tribological characteristics of various paint coatings.

FIGURE 1: 3D morphology and roughness of the paint samples.

FIGURE 2: COF during pin-on-disk tests.

FIGURE 3: Evolution of wear rate of different paints.

FIGURE 4: Evolution of wear tracks during the pin-on-disk tests.

SCRATCH TEST RESULTS

FIGURE 5 shows the plot of normal force, frictional force and true depth as a function of scratch length for Sample A as an example. An optional acoustic emission module can be installed to provide more information. As the normal load linearly increases, the indentation tip gradually sinks into the tested sample as reflected by the progressive increase of true depth. The variation in the slopes of frictional force and true depth curves can be used as one of the implications that coating failures start to occur.

FIGURE 5: Normal force, frictional force and true depth as a function of scratch length for scratch test of Sample A with a maximum load of 5 N.

FIGURE 6 and FIGURE 7 show the full scratches of all four paint samples tested with a maximum load of 5 N and 35 N, respectively. Sample D required a higher load of 50 N to delaminate the primer. Scratch tests at 5 N final load (FIGURE 6) evaluate the cohesive/adhesive failure of the top paint, while the ones at 35 N (FIGURE 7) assess the delamination of the primer. The arrows in the micrographs indicate the point at which the top coating or the primer start to be completely removed from the primer or the substrate. The load at this point, so called Critical Load, Lc, is used to compare the cohesive or adhesive properties of the paint as summarized in Table 1.

 

It is evident that the paint Sample D has the best interfacial adhesion – exhibiting the highest Lc values of 4.04 N at paint delamination and 36.61 N at primer delamination. Sample B shows the second best scratch resistance. From the scratch analysis, we show that optimization of the paint formula is critical to the mechanical behaviors, or more specifically, scratch resistance and adhesion property of acrylic floor paints.

Table 1: Summary of critical loads.

FIGURE 6: Micrographs of full scratch with 5 N maximum load.

FIGURE 7: Micrographs of full scratch with 35 N maximum load.

CONCLUSION

Compared to the conventional Taber abrasion measurements, the NANOVEA Mechanical Tester and Tribometer are superior tools for evaluation and quality control of commercial floor and automotive coatings. The NANOVEA Mechanical Tester in Scratch mode can detect adhesion/cohesion problems in a coating system. The NANOVEA Tribometer provides well-controlled quantifiable and repeatable tribological analysis on wear resistance and coefficient of friction of the paints.

 

Based on the comprehensive tribological and mechanical analyses on the water based acrylic floor coatings tested in this study, we show that Sample B possesses the lowest COF and wear rate and the second best scratch resistance, while Sample D exhibits the best scratch resistance and second best wear resistance. This assessment allows us to evaluate and select the best candidate targeting the needs in different application environments.

 

The Nano and Micro modules of the NANOVEA Mechanical Tester all include ISO and ASTM compliant indentation, scratch and wear tester modes, providing the widest range of testing available for paint evaluation on a single module. The NANOVEA Tribometer offers precise and repeatable wear and friction testing using ISO and ASTM compliant rotative and linear modes, with optional high temperature wear, lubrication and tribo-corrosion modules available in one pre-integrated system. NANOVEA’s unmatched range is an ideal solution for determining the full range of mechanical/tribological properties of thin or thick, soft or hard coatings, films and substrates, including hardness, Young’s modulus, fracture toughness, adhesion, wear resistance and many others. Optional NANOVEA Non-Contact Optical Profilers are available for high resolution 3D imaging of scratchs and wear tracks in addition to other surface measurements such as roughness.

NOW, LET'S TALK ABOUT YOUR APPLICATION

Fractography Analysis Using 3D Profilometry

FRACTOGRAPHY ANALYSIS

USING 3D PROFILOMETRY

Prepared by

CRAIG LEISING

INTRODUCTION

Fractography is the study of features on fractured surfaces and has historically been investigated via Microscope or SEM. Depending on the size of the feature, a microscope (macro features) or SEM (nano and micro features) are selected for the surface analysis. Both ultimately allowing for the identification of the fracture mechanism type. Although effective, the Microscope has clear limitations and the SEM in most cases, other than atomic-level analysis, is unpractical for fracture surface measurement and lacks broader use capability. With advances in optical measurement technology, the NANOVEA 3D Non-Contact Profilometer is now considered the instrument of choice, with its ability to provide nano through macro-scale 2D & 3D surface measurements

IMPORTANCE OF 3D NON-CONTACT PROFILOMETER FOR FRACTURE INSPECTION

Unlike an SEM, a 3D Non-Contact Profilometer can measure nearly any surface, sample size, with minimal sample prep, all while offering superior vertical/horizontal dimensions to that of an SEM. With a profiler, nano through macro range features are captured in a single measurement with zero influence from sample reflectivity. Easily measure any material: transparent, opaque, specular, diffusive, polished, rough etc. The 3D Non-Contact Profilometer provides broad and user-friendly capability to maximize surface fracture studies at a fraction of the cost of an SEM.

MEASUREMENT OBJECTIVE

In this application, the NANOVEA ST400 is used to measure the fractured surface of a steel sample. In this study, we will showcase a 3D area, 2D profile extraction and surface directional map of the surface.

NANOVEA

ST400

RESULTS

TOP SURFACE

3D Surface Texture Direction

Isotropy51.26%
First Direction123.2º
Second Direction116.3º
Third Direction0.1725º

Surface Area, Volume, Roughness and many others can be automatically calculated from this extraction.

2D Profile Extraction

RESULTS

SIDE SURFACE

3D Surface Texture Direction

Isotropy15.55%
First Direction0.1617º
Second Direction110.5º
Third Direction171.5º

Surface Area, Volume, Roughness and many others can be automatically calculated from this extraction.

2D Profile Extraction

CONCLUSION

In this application, we have shown how the NANOVEA ST400 3D Non-Contact Profilometer can precisely characterize the full topography (nano, micro and macro features) of a fractured surface. From the 3D area, the surface can be clearly identified and subareas or profiles/cross-sections can be quickly extracted and analyzed with an endless list of surface calculations. Sub nanometer surface features can be further analyzed with an integrated AFM module.

Additionally, NANOVEA has included a portable version to their Profilometer line-up, especially critical for field studies where a fracture surface is immovable. With this broad list of surface measurement capabilities, fracture surface analysis has never been easier and more convenient with a single instrument.

NOW, LET'S TALK ABOUT YOUR APPLICATION

Fiberglass Surface Topography Using 3D Profilometry

FIBERGLASS SURFACE TOPOGRAPHY

USING 3D PROFILOMETRY

Prepared by

CRAIG LEISING

INTRODUCTION

Fiberglass is a material made from extremely fine fibers of glass. It is used as a reinforcing agent for many polymer products; the resulting composite material, properly known as fiber-reinforced polymer (FRP) or glass-reinforced plastic (GRP), is called “fiberglass” in popular usage.

IMPORTANCE OF SURFACE METROLOGY INSPECTION FOR QUALITY CONTROL

Although there are many uses for Fiberglass reinforcement, in most applications it is crucial that they are as strong as possible. Fiberglass composites have one of the highest strength to weight ratios available and in some cases, pound for pound it is stronger than steel. Aside from high strength, it is also important to have the smallest possible exposed surface area. Large fiberglass surfaces can make the structure more vulnerable to chemical attack and possibly material expansion. Therefore, surface inspection is critical to quality control production.

MEASUREMENT OBJECTIVE

In this application, the NANOVEA ST400 is used to measure a Fiberglass Composite surface for roughness and flatness. By quantifying these surface features it is possible to create or optimize a stronger, longer lasting fiberglass composite material.

NANOVEA

ST400

MEASUREMENT PARAMETERS

PROBE 1 mm
ACQUISITION RATE300 Hz
AVERAGING1
MEASURED SURFACE5 mm x 2 mm
STEP SIZE5 µm x 5 µm
SCANNING MODEConstant speed

PROBE SPECIFICATIONS

MEASUREMENT RANGE1 mm
Z RESOLUTION 25 nm
Z ACCURACY200 nm
LATERAL RESOLUTION 2 μm

RESULTS

FALSE COLOR VIEW

3D Surface Flatness

3D Surface Roughness

Sa15.716 μmArithmetical Mean Height
Sq19.905 μmRoot Mean Square Height
Sp116.74 μmMaximum Peak Height
Sv136.09 μmMaximum Pit Height
Sz252.83 μmMaximum Height
Ssk0.556Skewness
Ssu3.654Kurtosis

CONCLUSION

As shown in the results, the NANOVEA ST400 Optical Profiler was able to accurately measure the roughness and flatness of the fiberglass composite surface. Data can be measured over multiple batches of fiber composites and or a given time period to provide crucial information about different fiberglass manufacturing processes and how they react over time. Thus, the ST400 is a viable option for strengthening the quality control process of fiberglass composite materials.

NOW, LET'S TALK ABOUT YOUR APPLICATION

Polymer Belt Wear and Friction using a Tribometer

POLYMER BELTS

WEAR AND FRICTION USING a TRIBOMETER

Prepared by

DUANJIE LI, PhD

INTRODUCTION

Belt drive transmits power and tracks relative movement between two or more rotating shafts. As a simple and inexpensive solution with minimal maintenance, belt drives are widely used in a variety of applications, such as bucksaws, sawmills, threshers, silo blowers and conveyors. Belt drives can protect the machinery from overload as well as damp and isolate vibration.

IMPORTANCE OF WEAR EVALUATION FOR BELT DRIVES

Friction and wear are inevitable for the belts in a belt-driven machine. Sufficient friction ensures effective power transmission without slipping, but excessive friction may rapidly wear the belt. Different types of wear such as fatigue, abrasion and friction take place during the belt drive operation. In order to extend the lifetime of the belt and to cut the cost and time on belt repairing and replacement, reliable evaluation of the wear performance of the belts is desirable in improving belt lifespan, production efficiency and application performance. Accurate measurement of the coefficient of friction and wear rate of the belt facilitates R&D and quality control of belt production.

MEASUREMENT OBJECTIVE

In this study, we simulated and compared the wear behaviors of belts with different surface textures to showcase the capacity of the NANOVEA T2000 Tribometer in simulating the wear process of the belt in a controlled and monitored manner.

NANOVEA

T2000

TEST PROCEDURES

The coefficient of friction, COF, and the wear resistance of two belts with different surface roughness and texture were evaluated by the NANOVEA High-Load Tribometer using Linear Reciprocating Wear Module. A Steel 440 ball (10 mm diameter) was used as the counter material. The surface roughness and wear track were examined using an integrated 3D Non-Contact profilometer. The wear rate, K, was evaluated using the formula K=Vl(Fxs), where V is the worn volume, F is the normal load and s is the sliding distance.

 

Please note that a smooth Steel 440 ball counterpart was used as an example in this study, any solid material with different shapes and surface finish can be applied using custom fixtures to simulate the actual application situation.

RESULTS & DISCUSSION

The Textured Belt and Smooth Belt have a surface roughness Ra of 33.5 and 8.7 um, respectively, according to the analyzed surface profiles taken with a NANOVEA 3D Non-Contact Optical profiler. The COF and wear rate of the two tested belts were measured at 10 N and 100 N, respectively, to compare the wear behavior of the belts at different loads.

FIGURE 1 shows the evolution of COF of the belts during the wear tests. The belts with different textures exhibit substantially different wear behaviors. It is interesting that after the run-in period during which the COF progressively increases, the Textured Belt reaches a lower COF of ~0.5 in both the tests conducted using loads of 10 N and 100 N. In comparison, the Smooth Belt tested under the load of 10 N exhibits a significantly higher COF of~ 1.4 when the COF gets stable and maintains above this value for the rest of the test. The Smooth Belt tested under the load of 100 N rapidly was worn out by the steel 440 ball and formed a large wear track. The test was therefore stopped at 220 revolutions.

FIGURE 1: Evolution of COF of the belts at different loads.

FIGURE 2 compares the 3D wear track images after the tests at 100 N. The NANOVEA 3D non-contact profilometer offers a tool to analyze the detailed morphology of the wear tracks, providing more insight in fundamental understanding of wear mechanism.

TABLE 1: Result of wear track analysis.

FIGURE 2:  3D view of the two belts
after the tests at 100 N.

The 3D wear track profile allows direct and accurate determination of the wear track volume calculated by the advanced analysis software as shown in TABLE 1. In a wear test for 220 revolutions, the Smooth Belt has a much larger and deeper wear track with a volume of 75.7 mm3, compared to a wear volume of 14.0 mm3 for the Textured Belt after a 600-revolution wear test. The significantly higher friction of the Smooth Belt against the steel ball leads to a 15 fold higher wear rate compared to the Textured Belt.

 

Such a drastic difference of COF between the Textured Belt and Smooth Belt is possibly related to the size of the contact area between the belt and the steel ball, which also leads to their different wear performance. FIGURE 3 shows the wear tracks of the two belts under the optical microscope. The wear track examination is in agreement with the observation on COF evolution: The Textured Belt, which maintains a low COF of ~0.5, exhibits no sign of wear after the wear test under a load of 10 N. The Smooth Belt shows a small wear track at 10 N. The wear tests carried out at 100 N create substantially larger wear tracks on both the Textured and Smooth Belts, and the wear rate will be calculated using 3D profiles as will be discussed in the following paragraph.

FIGURE 3:  Wear tracks under optical microscope.

CONCLUSION

In this study, we showcased the capacity of the NANOVEA T2000 Tribometer in evaluating the coefficient of friction and wear rate of belts in a well-controlled and quantitative manner. The surface texture plays a critical role in the friction and wear resistance of the belts during their service performance. The textured belt exhibits a stable coefficient of friction of ~0.5 and possesses a long lifetime, which results in reduced time and cost on tool repairing or replacement. In comparison, the excessive friction of the smooth belt against the steel ball rapidly wears the belt. Further, the loading on the belt is a vital factor of its service lifetime. Overload creates very high friction, leading to accelerated wear to the belt.

The NANOVEA T2000 Tribometer offers precise and repeatable wear and friction testing using ISO and ASTM compliant rotative and linear modes, with optional high temperature wear, lubrication and tribocorrosion modules available in one pre-integrated system. NANOVEA’s unmatched range is an ideal solution for determining the full range of tribological properties of thin or thick, soft or hard coatings, films and substrates.

NOW, LET'S TALK ABOUT YOUR APPLICATION

Fossil Microstructure Using 3D Profilometry

FOSSIL MICROSTRUCTURE

USING 3D PROFILOMETRY

Prepared by

DUANJIE LI, PhD

INTRODUCTION

Fossils are the preserved remains of traces of plants, animals and other organisms buried in sediment under ancient seas, lakes and rivers. The soft body tissue usually decays after death, but the hard shells, bones and teeth fossilize. Microstructure surface features are often preserved when mineral replacement of the original shells and bones takes place, which provides an insight into the evolution of weather and the formation mechanism of fossils.

IMPORTANCE OF A 3D NON-CONTACT PROFILOMETER FOR FOSSIL EXAMINATION

3D profiles of the fossil enable us to observe the detailed surface features of the fossil sample from a closer angle. The high resolution and accuracy of the NANOVEA profilometer may not be discernible by the naked eye. The profilometer’s analysis software offers a wide range of studies applicable to these unique surfaces. Unlike other techniques such as touch probes, the NANOVEA 3D Non-Contact Profilometer measures the surface features without touching the sample. This allows for the preservation of the true surface features of certain delicate fossil samples. Moreover, the portable model Jr25 profilometer enables 3D measurement on fossil sites, which substantially facilitates fossil analysis and protection after excavation.

MEASUREMENT OBJECTIVE

In this study, the NANOVEA Jr25 Profilometer is used to measure the surface of two representative fossil samples. The entire surface of each fossil was scanned and analyzed in order to characterize its surface features which include roughness, contour and texture direction.

NANOVEA

Jr25

BRACHIOPOD FOSSIL

The first fossil sample presented in this report is a Brachiopod fossil, which came from a marine animal that has hard “valves” (shells) on its upper and lower surfaces. They first appeared in the Cambrian period, which is more than 550 million years ago.

The 3D View of the scan is shown in FIGURE 1 and False Color View is shown in FIGURE 2. 

FIGURE 1: 3D View of the Brachiopod fossil sample.

FIGURE 2: False Color View of the Brachiopod fossil sample.

The overall form was then removed from the surface in order to investigate the local surface morphology and contour of the Brachiopod fossil as shown in FIGURE 3. A peculiar divergent groove texture can now be observed on the Brachiopod fossil sample.

FIGURE 3: False Color View and Contour Lines View after form removal.

A line profile is extracted from the textured area to show a crossectional view of the fossil surface in FIGURE 4. The Step Height study measures precise dimensions of the surface features. The grooves possess an average width of ~0.38 mm and depth of ~0.25 mm.

FIGURE 4: Line profile and Step Height studies of the textured surface.

CRINOID STEM FOSSIL

The second fossil sample is a Crinoid stem fossil. Crinoids first appeared in the seas of the Middle Cambrian Period, about 300 million years before dinosaurs. 

 

The 3D View of the scan is shown in FIGURE 5 and False Color View is shown in FIGURE 6. 

FIGURE 5: 3D View of the Crinoid fossil sample.

The surface texture isotropy and roughness of the Crinoid stem fossil are analyzed in FIGURE 7. 

 This fossil has a preferential texture direction in the angle close to 90°, leading to texture isotropy of 69%.

FIGURE 6: False Color View of the Crinoid stem sample.

 

FIGURE 7: Surface texture isotropy and roughness of the Crinoid stem fossil.

The 2D profile along the axial direction of the Crinoid stem fossil is shown in FIGURE 8. 

The size of the peaks of the surface texture is fairly uniform.

FIGURE 8: 2D profile analysis of the Crinoid stem fossil.

CONCLUSION

In this application, we comprehensively studied the 3D surface features of a Brachiopod and Crinoid stem fossil using the NANOVEA Jr25 Portable Non-Contact Profilometer. We showcase that the instrument can precisely characterize the 3D morphology of the fossil samples. The interesting surface features and texture of the samples are then further analyzed. The Brachiopod sample possesses a divergent groove texture, while the Crinoid stem fossil shows  preferential texture isotropy. The detailed and precise 3D surface scans prove to be ideal tools for palaeontologists and geologists to study the evolution of lives and the formation of fossils.

The data shown here represent only a portion of the calculations available in the analysis software. NANOVEA Profilometers measure virtually any surface in fields including Semiconductor, Microelectronics, Solar, Fiber Optics, Automotive, Aerospace, Metallurgy, Machining, Coatings, Pharmaceutical, Biomedical, Environmental and many others.

NOW, LET'S TALK ABOUT YOUR APPLICATION