COVID-19: In these troubled times, NANOVEA devotes necessary resources to maintain all of the essential services you count on. Stay safe!
CONTACT SUPPORT CONTACT US

Category: Profilometry Testing

 

Industrial Coating Scratch & Wear Evaluation

The wear process of the acrylic urethane floor paints with different topcoats is simulated in a controlled and monitored manner using the Nanovea Tribometer as shown in Fig. 1. Micro scratch testing is used to measure the load required to cause cohesive or adhesive failure to the paint. In this study, we would like to showcase that Nanovea Mechanical Tester and Tribometer are ideal tools for evaluation and quality control of commercial floor and automotive coatings.

Industrial Coating Scratch & Wear Evaluation

Textile Abrasion Wear By Tribometer

The measurement of textile abrasion resistance of fabrics is very challenging. Many factors play a role during the test, including the mechanical properties of the fibers, the structure of the yarns and the weave of the fabrics. This may result in poor reproducibility of test results and create difficulty in comparing values reported from different laboratories. Wear performance of the fabrics is critical to the manufacturers, distributors, and retailers in the textile production chain. A well-controlled quantifiable and reproducible Tribometer wear resistance measurement is crucial to ensure reliable quality control of the fabric production.

Textile Abrasion Wear By Tribometer

Textile Texture Measurement Using 3D Profilometry

Understanding textile texture, consistency and patterns of the fabrics allows the best selection of processing and control measures. Traditional stylus-based profilometers determine the surface morphology of the coatings by sliding in contact across the measured surface, which may deform the soft fabric and induce inaccurate measurement. The Nanovea 3D Non-Contact Profilometer utilize chromatic confocal technology with unmatched capability to provide a comprehensive analysis of the surface feature of fabrics, making it an ideal tool for reliable product inspection and quality control.

Textile Texture Measurement Using 3D Profilometry

Drywall Texture & Pitting Using 3D Profilometry

Drywall texture and roughness is critical in the final products quality and appearance. A better understanding of the effect of surface texture and consistency on the moisture resistance of the coated drywall allows selecting the finest product and optimizing the painting technique to obtain the best result. Quantifiable, fast and reliable surface inspection of the coating surface is in need for quantitative evaluation of the surface quality. The Nanovea 3D Non-Contact Profilometers utilizes chromatic confocal technology with unique capability to precisely measure the sample surface. The line-sensor technique can finish scanning a large drywall surface in minutes.

Drywall Texture & Pitting Using 3D Profilometry

Roughness Mapping Inspection Using 3D Profilometry

Surface defects of products derive from materials processing and product manufacturing. In-line surface quality inspection ensures the tightest quality control of the end products. The Nanovea 3D Non-Contact Profilometers utilize chromatic confocal technology with unique capability to determine roughness mapping of a sample without contact. The line sensor enables scanning the 3D profile of a large surface at a high speed. The roughness threshold calculated real-time by the analysis software serves as a fast and reliable pass/fail tool.

Roughness Mapping Inspection Using 3D Profilometry

Humidity Effect On Paper Flatness

Paper flatness is critical to the proper performance of printing paper. It communicates functional characteristics and makes an impression of the paper quality. A better understanding of the effect of humidity on paper flatness, texture and consistency allows optimizing the processing and control measures to obtain the best product. Quantifiable, precise and reliable surface inspection of the paper in different humid environments is in need to simulate the use of paper in the realistic application. The Nanovea 3D Non-Contact Profilometers utilizes chromatic confocal technology with unique capability to precisely measure the paper surface. A humidity controller provides precise control of the humidity in a sealed chamber where the test sample is exposed to the moisture.

Humidity Effect On Paper Flatness

Replica Molding of Inner Pipe Corrosion

Surface finish of the metal pipe is critical for its product quality and performance. Rust progressively builds up and pits initiate and grow on the metal surface as corrosion process takes place, resulting in roughening of the pipe surface. The differential galvanic properties between metals, the ionic influences of solutions as well as the solution pH may all play roles in the pipe corrosion process, leading to corroded metal with different surface features. An accurate surface roughness and texture measurement of the corroded surface provides insight in the mechanisms involved in a specific corrosion process. Conventional profilometers have difficulty in reaching in and measuring the corroded inner pipe wall. Replica molding provides a solution by replicating the inner surface features in a non-destructive way. It can easily be applied on the inner wall of the corroded pipe and sets in 15 min. We scan the replicated surface of the replica molding to obtain the surface morphology of the inner pipe wall.

Replica Molding of Inner Pipe Corrosion

Surface Analysis of Carbon & Zeolite Catalysts Using 3D Profilometry

In this application the Nanovea ST400 Profilometer is used to measure the surface of carbon and zeolite catalysts. The area measured was selected at random, and assumed large enough in that it could be extrapolated to make assumptions about a much larger surface. Surface roughness and developed area will be used to characterize the available surface area.

Surface Analysis of Carbon & Zeolite Catalysts Using 3D Profilometry

Pitting Corrosion density, area, volume, size and shape

In this application the Nanovea ST400 Profilometer is used to measure the surface of a corrosion pitted stainless steel coupon. The area measured was selected at random, and assumed large enough in that it could be extrapolated to make assumptions
about a much larger surface. Density, area, volume, size and shape will be used here to quantify the level of corrosion.

Pitting Corrosion Measurement Using 3D Profilometry

Transparent Film on Transparent Substrate Measurement

The Nanovea PS50 Profilometer is used for roughness measurement, step height thickness and optical thickness of a thin transparent film on a transparent glass substrate. Step height will be obtained by measuring an area of the film and an area where the substrate is exposed for relative height difference, while optical thickness will be measured by using the Profilometer capability of measuring through the transparent film and detecting a reflecting both from the top surface of the film and the substrate simultaneously.

Transparent Film on Transparent Substrate Measurement Using 3D Profilometry

Want us to test your samples?

Please fill up our form and we will reach out to you soon!