COVID-19: In these troubled times, NANOVEA devotes necessary resources to maintain all of the essential services you count on. Stay safe!
CONTACT SUPPORT CONTACT US

Category: Block on Ring Tribology

 

Avoid Critical Wear Damage By Using Block-On-Ring Tests

IMPORTANCE OF BLOCK-ON-RING WEAR EVALUATION

Sliding wear is the progressive loss of material that results from two materials sliding against each other at the contact area under load. It occurs inevitably in a wide variety of industries where machines and engines are in operation, including automotive, aerospace, oil & gas and many others. Such sliding motion causes serious mechanical wear and material transfer at the surface, which may lead to reduced production efficiency, machine performance or even damage to the machine.
 
Sliding wear often involves complex wear mechanisms taking place at the contact surface, such as adhesion wear, two-body abrasion, three-body abrasion and fatigue wear. The wear behavior of materials is significantly influenced by the work environment, such as normal loading, speed, corrosion and lubrication. A versatile tribometer that can simulate the different realistic work conditions will be ideal for wear evaluation. Block-on-Ring (ASTM G77) test is a widely used technique that evaluates the sliding wear behaviors of mate-rials in different simulated conditions, allows reliable ranking of material couples for specific tribological applications.
 


MEASUREMENT OBJECTIVE

In this application, the Nanovea Mechanical Tester measures the YS and UTS of stainless steel SS304 and aluminum Al6061 metal alloy samples. The samples were chosen for their commonly recognized YS and UTS values showing the reliability of Nanovea’s indentation methods.


The sliding wear behavior of an H-30 block on an S-10 ring was evaluated by Nanovea’s tribometer using the Block-on-Ring module. The H-30 block is made of 01 tool steel of 30HRC hardness, while the S-10 ring is steel type 4620 of surface hardness 58 to 63 HRC and ring diameter of ~34.98 mm. Block-on-Ring tests were performed in dry and lubricated environments to investigate the effect on wear behavior. Lubrication tests were performed in USP heavy mineral oil. The wear track was examined using Nanovea’s 3D non-contact profilometer. Test parameters are summarized in Table 1. The wear rate (K), was evaluated using the formula K=V/(F×s), where V is the worn volume, F is the normal load, s is the sliding distance.

 


RESULTS AND DISCUSSION

Figure 2 compares the coefficient of friction (COF) of the Block-on-Ring tests in dry and lubricated environments. The block has significantly more friction in a dry environment than a lubricated environment. COF fluctuates during the run-in period in the first 50-revolution and reaches a constant COF of ~0.8 for the rest of the 200-revolution wear test. In comparison, the Block-on-Ring test performed in the USP heavy mineral oil lubrication exhibits constant low COF of 0.09 throughout the 500,000-revolution wear test. The lubricant significantly reduces the COF between the surfaces by ~90 times.


Figures 3 and 4 show the optical images and cross-section 2D profiles of the wear scars on the blocks after dry and lubricated wear tests. The wear track volumes and wear rates are listed in Table 2. The steel block after the dry wear test at a lower rotational speed of 72 rpm for 200 revolutions exhibits a large wear scar volume of 9.45 mm˙. In comparison, the wear test carried out at a higher speed of 197 rpm for 500,000 revolutions in the mineral oil lubricant creates a substantially smaller wear track volume of 0.03 mm˙.

 

The images in ÿgure 3 show severe wear takes place during tests in the dry conditions compared to the mild wear from the lubricated wear test. High heat and intense vibrations generated during the dry wear test promotes oxidation of metallic debris resulting in severe three-body abrasion. In the lubricated test the mineral oil reduces friction and cools the contact face as well as transporting abrasive debris created during wear away. This leads to signiÿcant reduction of wear rate by a factor of ~8×10ˆ. Such a substantial di˛erence in wear resistance in di˛erent environments shows the importance of proper sliding wear simulation in realistic service conditions.

 

Wear behavior can change drastically when small changes in test conditions are introduced. The versatility of Nanovea’s tribometer allows wear measurement in high temperature, lubrication, and tribocorrosion conditions. The accurate speed and position control by the advanced motor enables wear tests to be performed at speeds ranging from 0.001 to 5000 rpm, making it an ideal tool for research/testing labs to investigate the wear in di˛erent tribological conditions.


The surface condition of the samples was examined by Nanovea’s non-contact optical proÿlometer. Figure 5 shows the surface morphology of the rings after the wear tests. The cylinder form is removed to better present the surface morphology and roughness created by the sliding wear process. Signiÿcant surface roughening took place due to the three-body abrasion process during the dry wear test of 200 revolutions. The block and ring after the dry wear test exhibit a roughness Ra of 14.1 and 18.1 µm, respectively, compared to 5.7 and 9.1 µm for the long-term 500,000 – revolution lubricated wear test at a higher speed. This test demonstrates the importance of proper lubrication of piston ring-cylinder contact. Severe wear quickly damages the contact surface without lubrication and leads to irreversible deterioration of the service quality and even breakage of the engine.

 

 



 


CONCLUSION


In this study we showcase how Nanovea’s Tribometer is used to evaluate the sliding wear behavior of a steel metal couple using the Block-on-Ring module following the ASTM G77 Standard. The lubricant plays a critical role in the wear properties of the material couple. The mineral oil reduces the wear rate of the H-30 block by a factor of ~8×10ˆ and the COF by ~90 times. The versatility of Nanovea’s Tribometer makes it an ideal tool for measuring wear behavior under various lubrication, high temperature, and tribocorrosion conditions. Nanovea’s Tribometer o˛ers precise and repeatable wear and friction testing using ISO and ASTM compliant rotative and linear modes, with optional high-temperature wear, lubrication, and tribo-corrosion modules available in one pre-integrated system. Nanovea’s unmatched range is an ideal solution for determining the full range of tribological properties of thin or thick, soft, or hard coatings, ÿlms, and substrates.

Wear Testing Glass With Acoustic Emissions Monitoring

The wear behavior of three types of glass (Regular glass, Galaxy S3 glass and Sapphire coated glass) is compared in a controlled and monitored manner using the Nanovea Tribometer equipped with an AE detector. In this study, we would like to show the application of AE detection during wear and its correlation with the evolution of coefficient of friction (COF).

Wear Testing Glass With Acoustic Emissions Monitoring

Please fill out the form below and
we will send the brochure to your email

Мелитэк | Melytec LLC

RUSSIA | BELARUS

34/63 Obrucheva st. bld.26
Moscow, 117342, Russia
+7 (495) 781-07-85

СВЯЖИТЕСЬ С НАМИ / CONTACT US

Nanovea Inc

HEADQUARTERS

6 Morgan Ste 156
Irvine, CA 92618
Phone: (949) 461-9292

CONTACT US

Please fill out our form and we will reach out to you as soon as possible!

Nanovea SRL

EUROPEAN OFFICE

Via Balegno 1
Rivalta di Torino
10040 TO (IT)
Phone: +39 011 3052 794

CONTACT US / CONTATTACI

Nanovea SRL

EUROPEAN OFFICE

Via Balegno 1
Rivalta di Torino
10040 TO (IT)
Phone: +39 011 3052 794

CONTACT US / CONTATTACI

Nanovea S.A. de C.V.

LATIN AMERICA

1952 Hidalgo
Colonia Ladron de Guevara
Guadalajara, Jalisco
Mexico 44600
Phone: +52 1 33 10 31 52 27

CONTACT US / CONTÁCTENOS

MICRO-NANO Technology Co. Ltd

CHINA | TAIWAN | HONG KONG

• BEIJING
Room 081-082,2/F,Dongqu, Yiqing Building
No 38 Guangqulu
Chaoyang District
Beijing China/100022
+86 10 51649103
Mobile: 15321352298

• SHANGHAI
Room 703, No. 578 Tianbao Road,
Shanghai China
Mobile: 15801657153

CONTACT US / 联系我们

Tribotron AG

SWITZERLAND | AUSTRIA

Lerchenfeldstrasse 3
CH-9014 St.Gallen
+41 71 511 24 65

CONTACT US / KONTAKTIERE UNS

Mi-Net Technology Ltd. UNITED KINGDOM | IRELAND 30 Summerleaze Road Maidenhead Berks SL6 8EN United Kingdom +44(0) 1628 783576

CONTACT US

Please fill out our form and we will reach out to you as soon as possible!

160-0023

株式会社日本サーマル・コンサルティング

東京都新宿区西新宿1-5-11新宿三葉ビル5F

 

+81(0) 3 5339-1470

問い合わせ / CONTACT US

Nanovea Inc

HEADQUARTERS

6 Morgan Ste 156
Irvine, CA 92618

Phone: (949) 461-9292

CONTACT SUPPORT

Please fill out the form below. We will reach out to you as soon as possible. If it is urgent, feel free to call (949) 461-9292

Nanovea Inc

HEADQUARTERS

6 Morgan Ste 156
Irvine, CA 92618
Phone: (949) 461-9292

CONTACT US

Please fill out our form and we will reach out to you as soon as possible!

Please fill out the form below and
we will send the brochure to your email

Nanovea S.A. de C.V.

LATIN AMERICA

1952 Hidalgo
Colonia Ladron de Guevara
Guadalajara, Jalisco
Mexico 44600
Phone: +52 1 33 10 31 52 27

CONTACT US / CONTÁCTENOS

Nanovea SRL

EUROPEAN OFFICE

Via Balegno 1
Rivalta di Torino
10040 TO (IT)
Phone: +39 011 3052 794

CONTACT US / CONTATTACI

Nanovea S.A. de C.V.

LATIN AMERICA

1952 Hidalgo
Colonia Ladron de Guevara
Guadalajara, Jalisco
Mexico 44600
Phone: +52 1 33 10 31 52 27

CONTACT US / CONTÁCTENOS

Altmann S.A. Importação e Comércio

BRAZIL

Av. Dr. Chucri Zaidan, 1550 Edifício Capital Corporate 17º andar- conjunto 1701
04711-130 – São Paulo – SP – Brazil
+55(11) 2198-7198
P: +55(11) 5507-3302

CONTATE-NOS / CONTACT US

Nanovea Inc

HEADQUARTERS

6 Morgan Ste 156
Irvine, CA 92618
Phone: (949) 461-9292

Send us a request!

Please fill out our form and we will reach out to you as soon as possible!

Nanovea India Private Limited

INDIA

#1112, 2nd Stage,
17th Cross, Banashankari
Bangalore, Pin: 560 060

CONTACT US

Nanovea India Private Limited

INDIA

#1112, 2nd Stage,
17th Cross, Banashankari
Bangalore, Pin: 560 060

CONTACT US

Nanovea India Private Limited

INDIA

#1112, 2nd Stage,
17th Cross, Banashankari
Bangalore, Pin: 560 060

CONTACT US

Please fill out the form below and
we will send the brochure to your email

Please fill out the form below and
we will send the brochure to your email

Want us to test your samples?

Please fill up our form and we will reach out to you soon!