Facebook LinkedIn YouTube

Rotative or Linear Wear & COF? (A Comprehensive Study Using the Nanovea Tribometer)

Wear is the process of removal and deformation of material on a surface as a result of mechanical action of the opposite surface1. It is influenced by a variety of factors, including unidirectional sliding, rolling, speed, temperature, and many others. The study of wear, tribology, spans many disciplines, from physics and chemistry to mechanical engineering and material science. The complex nature of wear requires isolated studies towards specific wear mechanisms or processes, such as adhesive wear, abrasive wear, surface fatigue, fretting wear and erosive wear2. However, “Industrial Wear” commonly involves multiple wear mechanisms occurring in synergy.

Linear reciprocating and Rotative (Pin on Disk) wear tests are two widely used ASTM compliant setups34for measuring sliding wear behaviors of materials. Since the wear rate value of any wear test method is often used to predict the relative ranking of material combinations, it is extremely important to conrm the repeatability of the wear rate measured using different test setups. This enables users to carefully consider the wear rate value reported in the literature, which is critical in understanding the tribological characteristics of materials.

Read More!

Nano Mechanical Characterization of Spring Constants

A spring’s ability to store mechanical energy has a long history of use. From bows for hunting to locks for doors, spring technology has been around for many centuries. Nowadays we rely on springs, be it from mattresses, pens, or automotive suspension, as they play a vital role in our daily lives. With such a wide variety of use and designs, the ability to quantify their mechanical properties is necessary.

Read More

High Speed Characterization of an Oyster Shell

Large samples with complex geometries can prove difficult to work with due to sample preparation, size, sharp angles, and curvature. In this study an oyster shell will be scanned to demonstrate the Nanovea HS2000 Line Sensor’s capability to scan a large, biological sample with complex geometry. While a biological sample was used in this study, the same concepts can be applied to other samples.

Read More











Mechanical Broadview Map Selection Tool

We’ve all heard the term, time is money. Which is why many companies constantly seek methods of expediting and improving various processes, it saves time. When it comes to indentation testing, speed, efficiency and precision can be integrated into a quality control or R&D process when using one of our Nanovea Mechanical Testers. In this application note, we will be showcasing an easy way of saving time with our Nanovea Mechanical Tester and Broad View Map and Selection Tool software features.

Click to read the full application note!

Wood Wear Testing with Nanovea Tribometer

Wood has been used for thousands of years as a building material for homes, furniture and flooring. It has a combination of natural beauty, durability and restorability, making it an ideal candidate for flooring. Unlike carpet, hardwood floors keep their color for a long time and can be easily cleaned and maintained, however, being a natural material, most wood flooring requires the application of a surface finish to protect the wood from various kinds of damage such as scuffing and chipping over time. In this study, a Nanovea Tribometer was used to measure the wear rate and coefficient of friction (COF) to better under-stand the comparative performance of three wood finishes.

Click to read our application note!

Surface Finish Inspection of Wood Flooring

In various industries, the purpose of a wood finish is to protect the wooden surface from various types of damage such as chemical, mechanical or biological and/or provide a specific visual aesthetic. For manufacturers and buyers alike, quantifying surface characteristics of their wood finishes can be vital to the quality control or optimization of finishing processes for wood. In this application, we will explore the various surface features that can be quantified using a Nanovea 3D Non-Contact Profilometer.

Watch our Application Note Video!


Click to read the full application note!

Precise Localized Glass Transition with Nanoindentation DMA

Imagine a scenario where a bulk sample is uniformly heated at a constant rate. As a bulk material heats up and approaches its melting point, it will start to lose its rigidity. If periodic indentations (hardness tests) are conducted at the same target force, the depth of each indent should be constantly increasing since the sample is becoming softer (see figure 1). This continues until the sample begins to melt. At this point, a large increase in the depth per indent will be observed. Using this concept, phase change in a material can be observed by using dynamic oscillations with a fixed force amplitude and measuring its displacement, i.e. Dynamic Mechanical Analysis (DMA).   Read about Precise Localized Glass Transition!

Portability and Flexibility of the Jr25 3D Non-contact Profilometer

Understanding and quantifying a sample’s surface is crucial for many applications including quality control and research. To study surfaces, profilometers are often used to scan and image samples. A large problem with conventional profilometry instruments is the inability to accommodate for non conventional samples. Difficulties in measuring non conventional samples can occur due to sample size, geometry, inability to move the sample, or other inconvenient sample preparations. Nanovea’s portable 3D non-contact profilometers, the JR series, is able to solve most of these problems with its ability to scan sample surfaces from varying angles and its portability.

Read about the Jr25 Non-contact Profilometer!

Compression on Soft, Flexible Materials

In the microelectromechanical systems (MEMS) industry, there is a strong need for a mechanical tester
capable of applying controlled high-resolution forces and has a wide range of travel for exible devices
sensitive to force. To showcase its high resolution and large travel distance capabilities, the Nanovea
Mechanical Tester conducted at-punch compression tests on very soft and exible samples at very low
loads and displacement ranges exceeding 1mm.

Click to Read!

Evaluating Brake Pads with Tribology

Brake pads are composites., material made up of multiple ingredients, that must be able to
satisfy a large number of safety requirements. Ideal brake pads have high coecient of friction
(COF), low wear rate, minimal noise, and remain reliable under varying environments. To
ensure the quality of brake pads are able to satisfy their requirements, tribology testing can be
used to identify critical specications.

Click to Read!


Please fill up our form and we will reach out to you soon!