Evaluating Brake Pads with Tribology

Brake pads are composites., material made up of multiple ingredients, that must be able to
satisfy a large number of safety requirements. Ideal brake pads have high coecient of friction
(COF), low wear rate, minimal noise, and remain reliable under varying environments. To
ensure the quality of brake pads are able to satisfy their requirements, tribology testing can be
used to identify critical specications.

Click to Read!

Quality Analysis on Electrical Discharge Machined Metals

Electrical discharge machining, or EDM, is a manufacturing process that removes material via electrical
discharges [1]. This machining process is generally used with conductive metals that would be dicult
to machine with conventional methods.

As with all machining processes, precision and accuracy must be high in order to meet acceptable
tolerance levels. In this application note, the quality of the machined metals will be assessed with a
Nanovea 3D non-contact prolometer.

Click to read!

Viscoelastic Analysis of Rubber

Viscoelasticity is referred to as the property of materials that exhibit both viscous and elastic characteristics
when undergoing deformation.

A viscous material resists shear ow and strains linearly with time when a stress is applied, unlike an elastic
material that strains immediately when stressed and returns to original state once the stress is removed. A
viscoelastic material exhibits elements of both properties and therefore has a complex modulus.

Click to read the full Application Note!


Tribology on Piston Operations

Friction loss accounts for approximately 10% of total energy in fuel for a diesel engine [1]. 40-55% of the
friction loss comes from the power cylinder system. The loss of energy from friction can be diminished
with better understanding of the tribological interactions occurring in the power cylinder system.

A significant portion of the friction loss in the power cylinder system stems from the contact between
the piston skirt and the cylinder liner. The interaction between the piston skirt, lubricant, and cylinder
interfaces is quite complex due to the constant changes in force, temperature, and speed in a real life
engine. Optimizing each factor is key to obtaining optimal engine performance. This study will focus on
replicating the mechanisms causing friction forces and wear at the piston skirt-lubricant-cylinder liner
(P-L-C) interfaces.

Click to Learn about Piston Tribology!

A Better Look at Paper

Paper has played a large role in information distribution since its invention in the 2nd century [1]. Paper consists of intertwined fibers, typically obtained from trees, that have been dried into thin sheets. As a medium for information storage, paper has allowed the spread of ideas, art, and history over long distances and through passing time.

Today, paper is commonly used for currency, books, toiletries, packaging, and more. Paper is processed in different ways to obtain properties to match their application. For example, the visually appealing, glossy paper from a magazine is different compared to rough, cold-pressed watercolor paper. The method in which paper is produced will affect the surface properties of the paper. This influences how ink (or other medium) will settle onto and appear on the paper. To inspect how different paper processes affect surface properties, Nanovea inspected the roughness and texture of various types of paper by conducting a large area scan with our 3D Non-Contact Profilometer.

Click to learn about the Surface Roughness of Paper!

A BETTER Look at Polycarbonate Lens

Polycarbonate lenses are commonly used in many optical applications. Their high impact resistance, low weight, and cheap cost of high-volume production makes them more practical than traditional glass in various applications [1].

Some of these applications require safety (e.g. safety eyewear), complexity (e.g. Fresnel lens) or durability (e.g. traffic light lens) criteria that are difficult to meet without the use of plastics. Its ability to cheaply meet many requirements while maintaining sufficient optical qualities makes plastic lenses stand out in its field. Polycarbonate lenses also have limitations. The main concern for consumers is the ease at which they can be scratched. To compensate for this, extra processes can be carried out to apply an anti-scratch coating.

Nanovea takes a look into some important properties of plastic lens by utilizing our three metrology instruments: Profilometer, Tribometer, and Mechanical Tester.


Click to Read More!

Identifying Cohesive Failure of Screen Protectors with Acoustic Emission

In today’s age of information, handheld electronic devices are extremely common amongst consumers.  These portable multifunctional devices, however, can be quite expensive. To protect the fragile components, such as the glass interface, screen protectors can be used. How effective are the screen protectors? Using Nanovea’s Mechanical Tester’s Micro Module with an acoustic emission attachment, we can clearly identify critical loads at which the screen protector fails.

Identifying Cohesive Failure of Screen Protectors with Acoustic Emission

1000°C Brinell Hardness w/ T2000 Tribometer

Material properties, such as reactivity and strength, can drastically change at higher temperatures. This makes high temperature applications, (e.g. jet engines, fabrication chamber material, and even cookware) require careful material selection. Thus, it is important to understand how materials behave in different temperature conditions. The strength of a material can be measured by using the Nanovea T2000 Tribometer. To demonstrate this, a steel sample was used to conduct Brinell hardness testing from temperatures ranging from 25°C to 925°C.

1000°C Brinell Hardness w/ T2000 Tribometer

500nm Glass Step Height: Extreme Accuracy with Non-Contact Profilometry

Surface characterization are current topics undergoing intense study. The surfaces of materials are important since they are the regions where physical and chemical interactions between the material and environment occur. Thus, being able to image the surface with high resolution has been desirable, since it allows scientists to visually observe the smallest surface details. Common surface imaging data includes topography, roughness, lateral dimensions, and vertical dimensions. Identifying the load bearing surface, spacing and step height of fabricated microstructures, and defects on the surface are some applications that can be obtained from surface imaging. All surface imaging techniques, however, are not created equal.

500nm Glass Step Height: Extreme Accuracy with Non-Contact Profilometry

Progressive Tribology Mapping of Flooring

The traffic of human movement, movement of furniture, and other daily activities imposes constant degradation onto flooring. Flooring, usually comprised of wood, ceramic, or stone, must be able to handle the wear and tear they are designed for, whether residential or commercial applications. For this reason, most flooring have a layer that is supposed to be resistant to wear called a wear layer. The thickness and durability of the wear layer will depend on the type of flooring and the amount of foot traffic it will be receiving. Since flooring can have multiple layers (e.g. UV-coating, wear layer, decorative layer, glaze, and etc.), the wear rate through each layer can be very different. With Nanovea T2000 Tribometer with a 3D Non-Contact Line Sensor attachment, the progression of wear on a stone and wood flooring is closely observed.

Progressive Tribology Mapping of Flooring

Looking for a solution?