美国/全球:+1-949-461-9292
欧洲。+39-011-3052-794
联系我们

Progressive Wear Mapping of Flooring using Tribometer

Progressive Wear Mapping of Flooring

Using Tribometer with integrated Profilometer

编写者

刘志强

简介

Flooring materials are designed to be durable, but they often suffer wear and tear from everyday activities such as movement and furniture use. To ensure their longevity, most types of flooring have a protective wear layer that resists damage. However, the thickness and durability of the wear layer vary depending on the flooring type and level of foot traffic. In addition, different layers within the flooring structure, such as UV coatings, decorative layers, and glaze, have varying wear rates. That’s where progressive wear mapping comes in. Using the NANOVEA T2000 Tribometer with an integrated 3D Non-Contact Profilometer, precise monitoring, and analysis of the performance and longevity of flooring materials can be done. By providing detailed insight into the wear behavior of various flooring materials, scientists and technical professionals can make more informed decisions when selecting and designing new flooring systems.

IMPORTANCE OF PROGRESSIVE WEAR MAPPING FOR FLOOR PANELS

Flooring testing has traditionally centered on the wear rate of a sample to determine its durability against wear. However, progressive wear mapping allows analyzing the sample’s wear rate throughout the test, providing valuable insights into its wear behavior. This in-depth analysis allows for correlations between friction data and wear rate, which can identify the root causes of wear. It should be noted that wear rates are not constant throughout wear tests. Thus, observing the progression of wear gives a more accurate assessment of the sample’s wear. Progressing beyond traditional testing methods, the adoption of progressive wear mapping has contributed to significant advancements in the field of flooring testing.

The NANOVEA T2000 Tribometer with an integrated 3D Non-Contact Profilometer is a groundbreaking solution for wear testing and volume loss measurements. Its ability to move with precision between the pin and the profilometer guarantees the reliability of results by eliminating any deviation in wear track radius or location. But that’s not all – the 3D Non-Contact Profilometer’s advanced capabilities allow for high-speed surface measurements, reducing scanning time to mere seconds. With the capability of applying loads of up to 2,000 N and achieving spinning speeds of up to 5,000 rpm, the NANOVEA T2000 Tribometer offers versatility and precision in the evaluation process. It’s clear that this equipment holds a vital role in progressive wear mapping.

 

图1: Sample set-up prior to wear testing (left) and post-wear test profilometry of the wear track (right).

测量目标

Progressive wear mapping testing was performed on two types of flooring materials: stone and wood. Each sample underwent a total of 7 test cycles, with increasing test durations of 2, 4, 8, 20, 40, 60, and 120 s, allowing for a comparison of wear over time. After each test cycle, the wear track was profiled using the NANOVEA 3D Non-Contact Profilometer. From the data collected by the profiler, the volume of the hole and wear rate can be analyzed using the integrated features in the NANOVEA Tribometer software or our surface analysis software, Mountains.

NANOVEA

T2000

wear mapping test samples wood and stone

 THE SAMPLES 

WEAR MAPPING TEST PARAMETERS

负载40 N
测试时间varies
速度200 rpm
RADIUS10毫米
DISTANCEvaries
BALL MATERIALTungsten Carbide
BALL DIAMETER10毫米

Test duration used over the 7 cycles were 2, 4, 8, 20, 40, 60, and 120 seconds, respectively. The distances traveled were 0.40, 0.81, 1.66, 4.16, 8.36, 12.55, and 25.11 meters.

WEAR MAPPING RESULTS

WOOD FLOORING

Test CycleMax COFMin COFAvg. COF
10.3350.1240.275
20.3370.2070.295
30.3800.2290.329
40.3930.2650.354
50.3520.2050.314
60.3450.1990.312
70.3150.2110.293

 

辐射方向

Test CycleTotal Volume Loss (µm3Total Distance
Traveled (m)
磨损率
(mm/Nm) x10-5
Instantaneous Wear Rate
(mm/Nm) x10-5
12962476870.401833.7461833.746
23552452271.221093.260181.5637
35963713262.88898.242363.1791
48837477677.04530.629172.5496
5120717995115.40360.88996.69074
6147274531827.95293.32952.89311
7185131921053.06184.34337.69599
wood progressive wear rate vs total distance

图2: Wear rate vs total distance traveled (left)
and instantaneous wear rate vs test cycle (right) for wood flooring.

progressive wear mapping of wood floor

图3: COF graph and 3D view of wear track from test #7 on wood flooring.

wear mapping extracted profile

图4: Cross-Sectional Analysis of Wood Wear Track from Test #7

progressive wear mapping volume and area analysis

图5: Volume and Area Analysis of Wear Track on Wood Sample Test #7.

WEAR MAPPING RESULTS

STONE FLOORING

Test CycleMax COFMin COFAvg. COF
10.2490.0350.186
20.3490.1970.275
30.2940.1540.221
40.5030.1240.273
50.5480.1060.390
60.5100.1290.434
70.5270.1810.472

 

辐射方向

Test CycleTotal Volume Loss (µm3Total Distance
Traveled (m)
磨损率
(mm/Nm) x10-5
Instantaneous Wear Rate
(mm/Nm) x10-5
1962788460.40595.957595.9573
28042897311.222475.1852178.889
313161478552.881982.355770.9501
431365302157.041883.2691093.013
51082173218015.403235.1802297.508
62017496034327.954018.2821862.899
74251206342053.064233.0812224.187
stone flooring wear rate vs distance
stone flooring instantaneous wear rate chart

图6: Wear rate vs total distance travelled (left)
and instantaneous wear rate vs test cycle (right) for stone flooring.

stone floor 3d profile of wear track

图7: COF graph and 3D view of wear track from test #7 on stone flooring.

stone floor progressive wear mapping extracted profile
stone flooring extracted profile maximum depth and height area of the hole and peak

图8: Cross-Sectional Analysis of Stone Wear Track from Test #7.

wood floor progressive wear mapping volume analysis

FIGURE 9: Volume and Area Analysis of Wear Track on Stone Sample Test #7.

DISCUSSION

The instantaneous wear rate is calculated with the following equation:
progressive wear mapping of flooring formula

Where V is the volume of a hole, N is the load, and X is the total distance, this equation describes the wear rate between test cycles. The instantaneous wear rate can be used to better identify changes in wear rate throughout the test.

Both samples have very different wear behaviors. Over time, the wood flooring starts with a high wear rate but quickly drops to a smaller, steady value. For the stone flooring, the wear rate appears to start at a low value and trends to a higher value over cycles. The instantaneous wear rate also shows little consistency. The specific reason for the difference is not certain but may be due to the structure of the samples. The stone flooring seems to consist of loose grain-like particles, which would wear differently compared to the wood’s compact structure. Additional testing and research would be needed to ascertain the cause of this wear behavior.

The data from the coefficient of friction (COF) seems to agree with the observed wear behavior. The COF graph for the wood flooring appears consistent throughout the cycles, complementing its steady wear rate. For the stone flooring, the average COF increases throughout the cycles, similar to how the wear rate also increases with cycles. There are also apparent changes in the shape of the friction graphs, suggesting changes in how the ball is interacting with the stone sample. This is most apparent in cycle 2 and cycle 4.

结论

The NANOVEA T2000 Tribometer showcases its ability to perform progressive wear mapping by analyzing the wear rate between two different flooring samples. Pausing the continuous wear test and scanning the surface with the NANOVEA 3D Non-Contact Profilometer provides valuable insights into the material’s wear behavior over time.

The NANOVEA T2000 Tribometer with the integrated 3D Non-Contact Profilometer provides a wide variety of data, including COF (Coefficient of Friction) data, surface measurements, depth readings, surface visualization, volume loss, wear rate, and more. This comprehensive set of information allows users to gain a deeper understanding of the interactions between the system and the sample. With its controlled loading, high precision, ease of use, high loading, wide speed range, and additional environmental modules, the NANOVEA T2000 Tribometer takes tribology to the next level.

现在,让我们来谈谈你的申请

使用纳米压痕对软木进行动态机械分析

动态机械分析

使用纳米压痕法对软木进行检测

编写者

刘志强

简介

动态机械分析(DMA)是一种强大的技术,用于研究材料的机械性能。在这个应用中,我们重点分析了软木,一种广泛用于葡萄酒密封和老化过程的材料。软木,从亚栎树的树皮中获得,表现出独特的细胞结构,提供类似于合成聚合物的机械性能。在一个轴上,软木具有蜂窝状结构。其他两个轴的结构是多个类似矩形的棱镜。这使软木具有不同的机械性能,取决于被测试的方向。

动态机械分析(DMA)测试在评估软木机械性能方面的重要性

软木塞的质量在很大程度上取决于其机械和物理特性,这对其在葡萄酒密封方面的有效性至关重要。决定软木塞质量的关键因素包括弹性、绝缘性、回弹力以及对气体和液体的不渗透性。通过利用动态机械分析(DMA)测试,我们可以定量评估软木塞的弹性和回弹特性,提供一个可靠的评估方法。

NANOVEA PB1000机械测试仪在纳米压痕模式下可以对这些特性进行表征,特别是杨氏模量、存储模量、损失模量和tan delta(tan (δ))。DMA测试还允许收集关于软木材料的相移、硬度、应力和应变的宝贵数据。通过这些综合分析,我们对软木塞的机械行为及其在葡萄酒密封应用中的适用性有了更深入的了解。

测量目标

在这项研究中,使用NANOVEA PB1000机械测试仪在纳米压痕模式下对四个软木塞进行动态机械分析(DMA)。软木塞的质量被标示为:1 - Flor, 2 - First, 3 - Colmated, 4 - Synthetic rubber.对每个软木塞在轴向和径向都进行了DMA压痕测试。通过分析软木塞的机械反应,我们旨在深入了解其动态行为,并评估其在不同方向上的性能。

NANOVEA

PB1000

测试参数

最大力气75 mN
装载率150 mN/min
卸载率150 mN/min
AMPLITUDE5 mN
频度1赫兹
CREEP60 s

压头类型

球类

51200钢

3毫米直径

结果

在下面的表格和图表中,杨氏模量、储存模量、损失模量和tan delta在每个样品和方向之间进行了比较。

杨氏模量: Stiffness;高值表示stiff,低值表示flexible。

储存模数: 弹性反应;储存在材料中的能量。

损失模量: 粘性反应;由于热而损失的能量。

谭(δ): 阻尼;高值表示更多的阻尼。

轴向

塞子杨氏模量存储模量亏损模式TAN
#(MPa)(MPa)(MPa)(δ)
122.567522.272093.6249470.162964
218.5466418.271533.1623490.17409
323.7538123.472673.6178190.154592
423.697223.580642.3470080.099539



辐射方向

塞子杨氏模量存储模量亏损模式TAN
#(MPa)(MPa)(MPa)(δ)
124.7886324.565423.3082240.134865
226.6661426.317394.2862160.163006
344.0786743.614266.3659790.146033
428.0475127.941482.4359780.087173

杨氏模量

存储模量

亏损模式

TAN DELTA

在软木塞之间,在轴向测试时,杨氏模量差别不大。只有塞子#2和#3在径向和轴向之间的杨氏模量有明显差异。因此,储能模量和损耗模量在径向方向上也将高于轴向方向。塞子#4显示出与天然软木塞类似的特性,除了损失模量。这相当有趣,因为这意味着天然软木塞比合成橡胶材料具有更高的粘性。

结论

NANOVEA机械测试仪在纳米划痕测试模式下可以模拟许多真实的油漆涂层和硬涂层的故障。通过以控制和密切监测的方式施加越来越大的负载,该仪器可以确定在什么负载下会发生故障。这可以作为确定耐刮擦性的定量值的一种方法。所测试的涂层,在没有风化的情况下,已知在大约22 mN的时候会出现第一道裂纹。如果数值接近5 mN,很明显,7年的搭接已经使涂料退化了。

对原始轮廓进行补偿,可以获得划痕期间的修正深度,也可以测量划痕后的残留深度。这就提供了关于涂层在增加载荷下的塑性与弹性行为的额外信息。裂纹和变形的信息对改善硬涂层都有很大的作用。非常小的标准偏差也显示了该仪器技术的可重复性,这可以帮助制造商提高他们的硬涂层/涂料的质量,并研究风化的影响。

现在,让我们来谈谈你的申请

金属基材上涂料的纳米划痕和磨损测试

纳米划痕和痕量测试

金属基材上的油漆

编写者

苏珊娜-卡贝罗

简介

带或不带硬涂层的油漆是最常用的涂料之一。我们在汽车上、墙壁上、电器上以及几乎任何需要一些保护性涂层或只是为了美观的东西上都能看到它。用于保护底层基材的油漆通常含有防止油漆起火的化学品,或者仅仅是防止其失色或开裂。通常情况下,用于审美目的的油漆有各种颜色,但不一定是为了保护其底层,也不一定是为了延长使用寿命。

然而,所有的油漆都会随着时间的推移发生一些风化。涂料的风化往往会改变其属性,使之与制造者的意图不符。它可以更快断裂,受热后剥落,颜色变淡或开裂。随着时间的推移,油漆的不同属性的变化是为什么制造商off了如此广泛的选择。油漆是为满足个别客户的不同要求而定制的。

纳米划痕测试对质量控制的重要性

涂料制造商的一个主要关注点是他们的产品是否能够承受开裂。一旦油漆开始开裂,它就不能保护它所应用的基材;因此,不能满足他们的客户。例如,如果一根树枝碰巧划过一辆汽车的侧面,紧接着油漆就开始开裂,油漆的制造商就会因为油漆质量差而失去业务。油漆的质量是非常重要的,因为如果油漆下的金属暴露出来,它可能会因为新的暴露而开始生锈或腐蚀。

 

像这样的原因适用于其他几个光谱,如家庭和办公用品和电子产品,玩具,研究工具等。虽然当他们第一次将油漆涂在金属涂层上时,油漆可能是抗裂的,但随着时间的推移,当样品上发生了一些风化后,其性能可能会发生变化。这就是为什么让油漆样品在其风化阶段进行测试非常重要。虽然在高负荷的压力下开裂可能是不可避免的,但制造商必须预测随着时间的推移,这种变化可能会有多大的削弱,以及affecting scratch必须有多深,以便为他们的消费者提供最好的产品。

测量目标

我们必须以控制和监测的方式来模拟划痕的过程,以观察样品的行为effects。在这个应用中,NANOVEA PB1000机械测试仪在纳米划痕测试模式下被用来测量导致金属基体上约7年的30-50微米厚的油漆样品失效所需的负载。

一支2 μm的钻石头测针在0.015 mN到20.00 mN的渐进负荷下,对涂层进行划痕。我们用0.2 mN的载荷对涂料进行了前后扫描,以确定划痕的真实深度值。真实深度分析了测试期间样品的塑性和弹性变形;而后扫描只分析了划痕的塑性变形。涂层因开裂而失效的点被当作是失效点。我们以ASTMD7187为指导来确定我们的测试参数。

 

我们可以得出结论,使用风化的样品;因此,在较弱的阶段测试油漆样品,为我们提供了较低的故障点。

 

对这个样本进行了五次测试,以便

确定准确的失效临界载荷。

NANOVEA

PB1000

测试参数

以下 ASTM D7027

使用配备了高速传感器的NANOVEA ST400扫描粗糙度标准件的表面,该传感器产生了192个点的亮线,如图1所示。这192个点同时扫描样品表面,导致扫描速度大大增加。

装载类型 渐进的
初始负载 0.015 mN
终极装载 20 mN
装载率 20 mN/min
划痕长度 1.6毫米
刮擦速度,dx/dt 1.601毫米/分钟
预扫描加载 0.2 mN
扫瞄后加载 0.2 mN
锥形压头90°锥体2µm尖端半径

压头类型

锥形

钻石90°锥体

2微米的尖端半径

锥形压头 钻石90°锥体 2微米尖端半径

结果

本节介绍了在划痕试验中收集的故障数据。第一部分描述了在划痕中观察到的故障,并定义了所报告的临界载荷。下一部分包含了所有样品的临界载荷的汇总表,以及一个图形表示。最后一部分介绍了每个样品的详细结果:每个划痕的临界载荷,每个故障的显微照片,以及测试的图表。

观察到的故障和关键负载的定义

关键的失败:

初始损害

这是沿划痕轨道观察到的第一个损伤点。

纳米级划痕 临界故障 初始损坏

关键的失败:

完全损坏

在这一点上,损坏比较严重的地方是油漆沿着刮痕裂开了。

纳米级划痕 关键故障 完全损坏

详细结果

* 失效值取自于基材开裂点。

重要负载
划痕模块 初始伤害[mN] 。 完全损坏 [µm]
1 14.513 4.932
2 3.895 4.838
3 3.917 4.930
平均数 3.988 4.900
STD DEV 0.143 0.054
从纳米划痕测试中得到的完整划痕的显微照片(1000倍放大)。

图2: 完整划痕的显微照片(1000倍放大)。

纳米划痕测试的初始损伤显微照片(1000倍放大)。

图3: 初始损伤的显微照片(1000倍放大)。

纳米划痕测试的完全损坏的显微照片(1000倍放大)。

图4: 完全损坏的显微照片(1000倍放大)。

线性纳米划痕测试的摩擦力和摩擦系数

图5: 摩擦力和摩擦系数。

线性纳米划痕表面轮廓

图6: 表面轮廓。

线性纳米划痕测试的真实深度和残余深度

图7: 真实深度和残余深度。

结论

NANOVEA机械测试仪在纳米划痕测试模式下可以模拟许多真实的油漆涂层和硬涂层的故障。通过以控制和密切监测的方式施加越来越大的负载,该仪器可以确定在什么负载下会发生故障。这可以作为确定耐刮擦性的定量值的一种方法。所测试的涂层,在没有风化的情况下,已知在大约22 mN的时候会出现第一道裂纹。如果数值接近5 mN,很明显,7年的搭接已经使涂料退化了。

对原始轮廓进行补偿,可以获得划痕期间的修正深度,也可以测量划痕后的残留深度。这就提供了关于涂层在增加载荷下的塑性与弹性行为的额外信息。裂纹和变形的信息对改善硬涂层都有很大的作用。非常小的标准偏差也显示了该仪器技术的可重复性,这可以帮助制造商提高他们的硬涂层/涂料的质量,并研究风化的影响。

现在,让我们来谈谈你的申请

使用三维轮廓仪进行粗糙度测绘检测

粗糙度测绘检查

使用三维轮廓仪测量

编写者

杜安杰,博士

简介

表面粗糙度和纹理是影响产品最终质量和性能的关键因素。对表面粗糙度、质地和一致性的全面了解对于选择最佳的加工和控制措施至关重要。需要对产品表面进行快速、可量化和可靠的在线检测,以便及时发现有缺陷的产品并优化生产线条件。

3D非接触式轮廓仪对在线表面检测的重要性

产品的表面缺陷是由材料加工和产品制造造成的。在线表面质量检测确保对最终产品进行最严格的质量控制。NANOVEA 3D非接触式光学轮廓仪利用色光技术,具有独特的能力,可以在不接触的情况下确定样品的粗糙度。线路传感器可以高速扫描大面积表面的三维轮廓。由分析软件实时计算出的粗糙度阈值,可作为快速和可靠的通过/失败工具。

测量目标

在这项研究中,NANOVEA ST400配备了一个高速传感器,用于检测有缺陷的Teflon样品的表面,以展示NANOVEA的能力。

非接触式测厚仪在生产线上提供快速和可靠的表面检测。

NANOVEA

ST400

结果与讨论

三维表面分析 粗糙度标准样品

使用配备了高速传感器的NANOVEA ST400扫描粗糙度标准件的表面,该传感器产生了192个点的亮线,如图1所示。这192个点同时扫描样品表面,导致扫描速度大大增加。

图2显示了粗糙度标准样品的表面高度图和粗糙度分布图的假彩色视图。在图2a中,粗糙度标准样品表现出略微倾斜的表面,如每个标准粗糙度块中不同的颜色梯度所代表的那样。在图2b中,均匀的粗糙度分布显示在不同的粗糙度块中,其颜色代表了块中的粗糙度。

图3显示了分析软件根据不同的粗糙度阈值生成的合格/不合格图的例子。当表面粗糙度高于某个设定的阈值时,粗糙度区块会以红色显示。这为用户提供了一个工具,可以设置一个粗糙度阈值来确定样品的表面质量。

图1: 粗糙度标准样品上的光学线传感器扫描

a. 地表高度图:

b. 粗糙度图:

图2: 粗糙度标准样品的表面高度图和粗糙度分布图的假彩色视图。

图3: 基于粗糙度阈值的通过/失败图。

有缺陷的天线样品的表面检查

Teflon样品表面的表面高度图、粗糙度分布图和合格/不合格粗糙度阈值图显示在图4。如表面高度图所示,Teflon样品在样品的右侧中心有一个山脊的形式。

a. 地表高度图:

图4b的调色板上的不同颜色代表了局部表面的粗糙度值。粗糙度图显示了Teflon样品完整区域内的均匀粗糙度。然而,缺陷,以缩进环和磨损疤痕的形式,以明亮的颜色突出。用户可以很容易地设置一个通过/失败的粗糙度阈值来定位表面缺陷,如图4c所示。这样的工具允许用户在生产线上现场监测产品的表面质量,及时发现有缺陷的产品。当产品经过在线光学传感器时,实时的粗糙度值被计算和记录下来,这可以作为一个快速而可靠的质量控制工具。

b. 粗糙度图:

c. 通过/失败 粗糙度阈值图:

图4: 表面高度图、粗糙度分布图和 Teflon样品表面的通过/失败粗糙度阈值图。

结论

在这个应用中,我们展示了NANOVEA ST400 3D非接触式光学轮廓仪配备的光学线传感器是如何以一种有效和高效的方式作为可靠的质量控制工具。

光学线传感器产生一条由192个点组成的亮线,同时扫描样品表面,导致扫描速度显著提高。它可以安装在生产线上,就地监测产品的表面粗糙度。粗糙度阈值作为确定产品表面质量的可靠标准,使用户能够及时发现有缺陷的产品。

这里显示的数据只代表了分析软件中的一部分计算结果。NANOVEA轮廓仪几乎可以测量任何领域的表面,包括半导体、微电子、太阳能、光纤、汽车、航空航天、冶金、加工、涂层、制药、生物医学、环境和许多其他领域。

现在,让我们来谈谈你的申请

摩擦试验机测高温下划痕硬度

高温划痕硬度

使用摩擦仪

编写者

杜安杰,博士

简介

硬度衡量的是材料对永久或塑性变形的抵抗力。划痕硬度测试最初是由德国矿物学家弗里德里希-莫尔斯在1820年开发的,它确定了材料对尖锐物体的摩擦造成的划痕和磨损的硬度。1.莫氏标度是一个比较指数,而不是一个线性标度,因此,ASTM标准G171-03所述,开发了一个更准确和定性的划痕硬度测量方法。2.它测量金刚石测针产生的划痕的平均宽度并计算出划痕硬度数(HSP)。

高温下测量划痕硬度的重要性

材料是根据服务要求来选择的。对于涉及重大温度变化和热梯度的应用,测试材料在高温下的机械性能以充分了解其机械极限是至关重要的。材料,特别是聚合物,通常在高温下会软化。很多机械故障是由蠕变变形和热疲劳引起的,只有在高温下才会发生。因此,需要一种可靠的技术来测量高温下的硬度,以确保为高温应用正确选择材料。

测量目标

在这项研究中,NANOVEA T50摩擦试验机在室温到300ºC的不同温度下测量特氟隆样品的划痕硬度。高温划痕硬度测量,使NANOVEA摩擦试验机成为一个多用途的系统,用于高温应用的材料进行摩擦学和机械评估。

NANOVEA

T50

测试条件

NANOVEA T50摩擦试验机可用于室温(RT)到300℃的温度范围内对特氟隆样品进行划痕硬度测试。特富龙的熔点为326.8°C。使用顶角为120°、尖端半径为200 µm的锥形金刚石测针。特氟隆样品被固定在旋转式样品台上,与平台中心的距离为10毫米。样品被烤箱加热,在RT、50°C、100°C、150°C、200°C、250°C和300°C的温度下进行测试。

测试参数

高温划痕硬度的测量

常态力 2 N
滑动速度 1毫米/秒
划痕长度 每个温度8毫米
气体环境 空气
温度 RT, 50°C, 100°C, 150°C, 200°C, 250°C, 300°C。

结果与讨论

为了比较不同温度下的划痕硬度,图1显示了特氟龙样品在不同温度下的划痕轮廓。当测针以2N的恒定载荷行进时,在划痕边缘形成材料堆积,并刺入特氟隆样品,将划痕中的材料推向一侧并使之变形。

如图2所示,在光学显微镜下检查划痕。显微镜测量的划痕宽度和计算出的划痕硬度值(HSP)在图3中进行了总结和比较。 显微镜测量的划痕宽度与使用NANOVEA轮廓仪测量的划痕宽度一致,特氟隆样品在较高温度下表现出更宽的划痕宽度。当温度从RT上升到300℃时,它的划痕宽度从281微米增加到539微米,HSP从65MPa下降到18MPa。

使用NANOVEA T50摩擦磨损仪可以高精度、高重复性地测量高温下的划痕硬度。它提供了一个不同于其他硬度测量的解决方案,并使NANOVEA摩擦仪成为一个更完整的系统,用于全面的高温三坐标机械评估。

图1: 在不同温度下进行划痕硬度测试后的划痕轮廓。

图2: 在不同温度下测量后,显微镜下的划痕痕迹。

图3: 刮痕宽度和刮痕硬度与温度的变化。

结论

在这项研究中,我们展示了NANOVEA摩擦仪如何在高温下测量符合ASTM G171-03标准的划痕硬度。恒定载荷下的划痕硬度测试为使用摩擦仪比较材料的硬度提供了另一种简单的解决方案。在高温下进行划痕硬度测量的能力使NANOVEA摩擦仪成为评估材料高温三相力学性能的理想工具。

NANOVEA摩擦仪还提供精确和可重复的磨损和摩擦测试,使用符合ISO和ASTM标准的旋转和线性模式,在一个预集成的系统中可选择高温磨损、润滑和三相腐蚀模块。可选的3D非接触式轮廓仪,除了用于其他表面测量(如粗糙度)外,还可以对磨损轨迹进行高分辨率的3D成像。

1 Wredenberg, Fredrik; PL Larsson (2009)."金属和聚合物的划痕测试。实验和数值"。磨损266(1-2)。76
2 ASTM G171-03 (2009), "使用金刚石测针测试材料的划痕硬度的标准测试方法"

现在,让我们来谈谈你的申请

便携式三维轮廓仪测量焊缝表面

焊接表面检查

使用便携式三维轮廓仪

编写者

CRAIG LEISING

简介

对于通常通过目视检查完成的特定焊缝,以极高的精度进行调查可能变得至关重要。焊缝精确分析包括表面裂纹、孔隙和未填充的凹坑。焊缝特征,如尺寸/形状、体积、粗糙度、尺寸等,都可以进行测量,都是焊缝评估的关键参数。

3D非接触式轮廓仪在焊接表面检测中的重要性

与其他技术如触摸探头或干涉测量法不同,NANOVEA 3D非接触式轮廓仪使用轴向色色差技术,几乎可以测量任何表面,由于是开放式分期,样品尺寸可以变化很大,而且不需要样品制备。在表面轮廓测量过程中,可以获得纳米级到宏观级的范围,样品反射率或吸收率的影响为零,具有先进的测量高表面角度的能力,而且不需要对结果进行软件操作。可以轻松地测量任何材料:透明的、不透明的、镜面的、扩散的、抛光的、粗糙的样品。NANOVEA便携式轮廓仪的二维和三维功能使其成为在实验室和现场进行全面完整焊接表面检测的理想仪器。

测量目标

在这个应用中,NANOVEA JR25便携式轮廓仪被用来测量焊缝的表面粗糙度、形状和体积,以及周围区域。这些信息可以提供关键的信息,以正确评估焊接和焊接过程的质量。

NANOVEA

JR25

测试结果

下面的图片显示了焊缝和周围区域的完整的三维视图,以及只显示焊缝的表面参数。下面显示的是二维截面剖面图。

样本

从三维图中提取二维剖面,焊缝的尺寸信息计算如下。下面只计算焊缝的表面积和材料的体积。

 洞口PEAK
表面1.01毫米214.0毫米2
体积8.799e-5 mm323.27毫米3
最大深度/高度0.0276毫米0.6195毫米
平均深度/高度 0.004024毫米 0.2298毫米

结论

在这个应用中,我们展示了NANOVEA 3D非接触式轮廓仪如何精确地表征焊缝和周围表面区域的关键特性。从粗糙度、尺寸和体积,可以确定质量和可重复性的定量方法,或进一步研究。样品焊缝,如本应用说明中的例子,可以很容易地进行分析,用标准的台式或便携式NANOVEA轮廓仪进行内部或现场测试。

现在,让我们来谈谈你的申请

工业涂料的划痕和磨损评估

工业涂料

使用摩擦试验机进行划痕和磨损评估

编写者

李端杰博士和安德烈亚-赫尔曼博士

简介

丙烯酸聚氨酯漆是一种快干保护涂料,广泛用于各种工业应用,如地板漆、汽车漆等。当作为地坪漆使用时,它可以服务于人流和胶轮车流量大的地方,如人行道、路边和停车场。

划痕和磨损测试对质量控制的重要性

传统上,根据ASTM D4060标准,采用Taber磨损试验来评估丙烯酸聚氨酯地坪漆的耐磨性。然而,正如标准中所提到的,"对于某些材料,由于测试过程中车轮的磨料特性发生变化,使用Taber磨料磨具进行的磨损测试可能会发生变化。“1这可能导致检测结果的可重复性差,并造成比较不同实验室报告的值的困难。此外,在Taber磨损试验中,耐磨性计算为在指定次数的磨损循环下的重量损失。而丙烯酸聚氨酯地坪漆的推荐干膜厚度为37.5 ~ 50 μm2。

Taber Abraser的侵蚀性磨蚀过程可以迅速磨穿丙烯酸聚氨酯涂层,并造成基材的质量损失,从而导致涂料重量损失计算的巨大误差。在磨蚀试验过程中,磨料颗粒植入涂料中也会造成误差。因此,一个控制良好的可量化和可靠的测量对于确保涂料的可重复性磨损评估至关重要。此外,划痕测试允许用户在实际应用中检测到过早的粘合剂/胶粘剂失效。

测量目标

在这项研究中,我们展示了NANOVEA摩擦试验机和机械测试仪是工业涂料评估和质量控制的理想选择。

使用NANOVEA摩擦仪,以控制和监测的方式模拟不同面漆的丙烯酸聚氨酯地板漆的磨损过程。微量划痕测试被用来测量导致涂料内聚或粘合失效所需的负荷。

NANOVEA T100

紧凑型气动摩擦仪

NANOVEA PB1000

大型平台机械测试仪

测试程序

本研究评估了四种市售的水性丙烯酸地板涂料,它们具有相同的底漆(基底漆)和相同配方的不同面漆,为了提高耐久性,在添加剂的混合上有小的变化。这四种涂料被确定为样品A、B、C和D。

磨损测试

NANOVEA摩擦仪被用于评估摩擦学行为,如摩擦系数、COF和耐磨性。一个SS440球头(6毫米直径,100级)被应用在被测试的油漆上。COF是在现场记录的。磨损率K是用公式K=V/(F×s)=A/(F×n)来评估的,其中V是磨损体积,F是法向载荷,s是滑动距离,A是磨损轨迹的横截面积,n是旋转次数。用NANOVEA光学轮廓仪评估了表面粗糙度和磨损轨迹轮廓,用光学显微镜检查了磨损轨迹的形态。

磨损测试参数

常态力

20 N

速度

15米/分钟

测试时间

100、150、300和800周期

划痕测试

配备了罗克韦尔C金刚石触控笔(200 μm半径)的NANOVEA机械测试仪使用微刮擦测试模式对油漆样品进行渐进负载刮擦测试。使用了两种最终负载:5 N的最终负载用于研究底漆上的油漆分层,35 N的最终负载用于研究金属基材上的底漆分层。对每个样品在相同的测试条件下重复进行三次测试,以确保结果的可重复性。

整个划痕长度的全景图像被自动生成,它们的临界失效位置被系统软件与施加的载荷相关联。这一软件功能便于用户随时对划痕进行分析,而不是在划痕测试后立即在显微镜下确定临界载荷。

划痕测试参数

装载类型渐进的
初始负载0.01 mN
终极装载5 N / 35 N
装载率10 / 70 N/min
划痕长度3毫米
刮擦速度,dx/dt6.0毫米/分钟
压头的几何形状120º锥体
压印材料(尖端)钻石
压头半径200 μm

磨损测试结果

在不同转数(100、150、300和800循环)下,对每个样品进行了四次针对盘磨损试验,以监测磨损的演变。在进行磨损测试之前,用NANOVEA 3D非接触剖面仪测量样品的表面形貌,以量化表面粗糙度。所有样品的表面粗糙度均约为1 μm,如图1所示。COF在磨损试验中原地记录,如图2所示。图4为100、150、300和800循环后的磨损轨迹演变,图3为不同样品在磨损过程不同阶段的平均磨损率。

 

与其他三种样品的COF值~0.07相比,样品a的COF值在开始时要高得多,为~0.15,经过300次磨损循环后,COF值逐渐增加,稳定在~0.3。如此高的COF加速了磨损过程,并产生了大量的油漆碎片,如图4所示——样品a的面漆在前100转中已经开始被去除。如图3所示,样品A在前300个循环中磨损率最高,为~5 μm2/N,由于金属基体的耐磨性较好,磨损率略微下降到~3.5 μm2/N。样品C的面漆在150次磨损后开始失效,如图4所示,图2中COF的增加也说明了这一点。

 

相比之下,样品B和样品D表现出增强的摩擦学性能。样品B在整个测试过程中保持较低的COF - COF从~0.05轻微增加到~0.1。这样的润滑效果大大提高了它的耐磨性-面漆在800次磨损循环后仍然对底漆提供优越的保护。样品B在800次循环时的最低平均磨损率仅为~0.77 μm2/N。样品D的面漆在375次循环后开始分层,从图2中COF的突然增加可以看出。样品D在800次循环时的平均磨损率约为1.1 μm2/N。

 

与传统的Taber磨损测量相比,NANOVEA摩擦仪提供了良好控制的可量化和可靠的磨损评估,确保了商业地板/汽车涂料的可重复性评估和质量控制。此外,原位COF测量的能力使用户能够将磨损过程的不同阶段与COF的演变联系起来,这对于提高对各种油漆涂层的磨损机制和摩擦学特性的基本认识至关重要。

图1: 涂料样品的三维形态和粗糙度。

图2: 在引脚磁盘测试期间,COF。

图3: 不同涂料的磨损率的演变。

图4: 钉盘试验期间磨损痕迹的演变。

磨损测试结果

图5显示了以样品A为例,法向力、摩擦力和真实深度与划痕长度的关系图。可以安装一个可选的声发射模块来提供更多信息。随着法向载荷的线性增加,压痕尖端逐渐下沉到被测样品中,这反映在真实深度的逐渐增加上。摩擦力和真实深度曲线的斜率变化可以作为涂层开始出现故障的含义之一。

图5: 法向力、摩擦力和真实深度与划痕长度的关系。 最大载荷为5N的样品A的划痕测试。

图6和图7显示了在最大载荷为5N和35N的情况下测试的所有四个油漆样品的全部划痕。样品D需要更高的负荷,即50N才能使底漆脱层。在5N的最终载荷下的划痕测试(图6)评估了面漆的内聚/粘附失效,而在35N的测试(图7)评估了底漆的分层。显微照片中的箭头表示顶层涂料或底层涂料开始从底层或基材上完全脱落的点。在这一点上的载荷,即所谓的临界载荷,Lc,是用来比较涂料的内聚力或粘合力的,如表1所总结的。

 

很明显,油漆样品D具有最好的界面附着力——在油漆分层处显示出最高的Lc值4.04 N,在底漆分层处显示出36.61 N。样品B显示出第二好的耐刮性。从划痕分析中,我们发现涂料配方的优化对丙烯酸地板涂料的力学性能,或更具体地说,耐划痕性和粘附性至关重要。

表1: 关键负荷的总结。

图6: 最大负荷为5N的完全划痕的显微照片。

图7: 最大负荷为35N的完全划痕的显微照片。

结论

与传统的Taber磨蚀测量相比,NANOVEA机械测试仪和摩擦仪是商业地板和汽车涂料评估和质量控制的卓越工具。NANOVEA机械测试仪在划痕模式下可以检测涂层系统中的附着力/内聚力问题。NANOVEA摩擦仪对涂料的耐磨性和摩擦系数提供了良好控制的可量化和可重复的摩擦学分析。

 

基于对本研究中测试的水基丙烯酸地板涂料的综合摩擦学和机械分析,我们表明样品B拥有最低的COF和磨损率,以及第二好的耐刮擦性,而样品D表现出最好的耐刮擦性和第二好的耐磨性。这一评估使我们能够评估和选择针对不同应用环境需求的最佳候选人。

 

NANOVEA机械测试仪的纳米和微模块都包括ISO和ASTM兼容的压痕,划痕和磨损测试模式,提供了最广泛的测试范围,可在单个模块上进行油漆评估。NANOVEA摩擦计使用符合ISO和ASTM标准的旋转和线性模式提供精确和可重复的磨损和摩擦测试,并可在一个预先集成的系统中提供可选的高温磨损、润滑和摩擦腐蚀模块。NANOVEA无与伦比的范围是确定薄或厚、软或硬涂层、薄膜和基材的全套机械/摩擦学性能的理想解决方案,包括硬度、杨氏模量、断裂韧性、附着力、耐磨性和许多其他性能。可选NANOVEA非接触式光学剖面仪可用于划痕和磨损轨迹的高分辨率三维成像,以及其他表面测量,如粗糙度。

现在,让我们来谈谈你的申请

摩擦试验机测量划痕硬度

划痕硬度测量

使用力学测试系统

编写者

李端杰,博士

简介

一般来说,硬度测试是测量材料对永久变形或塑性变形的抵抗能力。硬度测量有三种类型:划痕硬度、压痕硬度和回弹硬度。划痕硬度测试的是材料对锋利物体摩擦产生的划痕和磨损的抵抗能力。它最初是由德国矿物学家弗里德里希·莫赫在1820年发明的,至今仍被广泛用于评定矿物的物理性质2。这种测试方法也适用于金属、陶瓷、聚合物和涂层表面

在划痕硬度测量过程中,用指定几何形状的金刚石触头在恒定的法向力和恒定的速度下沿线性路径划入材料表面。测量划痕的平均宽度,并用于计算划痕硬度数(HSP)。这种技术为不同材料的硬度缩放提供了一个简单的解决方案。

测量目标

在这项研究中,NANOVEA PB1000机械测试仪被用来测量不同金属的划痕硬度,符合ASTM G171-03标准。

同时,这项研究展示了NANOVEA机械测试仪在进行高精度和高重复性的划痕硬度测量方面的能力。

NANOVEA

PB1000

测试条件

NANOVEA PB1000机械测试仪对三种抛光金属(Cu110、Al6061和SS304)进行了划痕硬度测试。使用了一个顶角为120°、尖端半径为200 µm的锥形金刚石测针。每个样品以相同的测试参数进行了三次划痕,以确保结果的可重复性。测试参数总结如下。在划痕测试前后,在10mN的低法向载荷下进行轮廓扫描,以测量划痕表面轮廓的变化。

测试参数

常态力

10 N

温度

24°C (RT)

滑动速度

20毫米/分钟

划痕长度

10毫米

气体环境

空气

结果与讨论

三种金属(Cu110、Al6061和SS304)测试后的划痕图像显示在图1中,以便比较不同材料的划痕硬度。NANOVEA机械软件的绘图功能被用来创建三个在相同条件下测试的平行划痕的自动协议。表1中总结和比较了测量的划痕宽度和计算的划痕硬度数(HSP)。金属显示出不同的磨损轨迹宽度,Al6061、Cu110和SS304分别为174、220和89微米,从而计算出的HSP为0.84、0.52和3.2GPa。

除了根据划痕宽度计算出的划痕硬度外,在划痕硬度测试期间还现场记录了摩擦系数(COF)、真实深度和声发射的变化。这里,真实深度是指划痕测试中测针的穿透深度与预扫描中测得的表面轮廓之间的深度差。Cu110的COF、真实深度和声发射作为一个例子显示在图2中。这些信息提供了对划痕过程中发生的机械故障的洞察力,使用户能够检测机械缺陷并进一步研究被测材料的划痕行为。

划痕硬度测试可以在几分钟内完成,具有很高的精度和可重复性。与传统的压痕程序相比,本研究中的划痕硬度测试为硬度测量提供了另一种解决方案,这对于质量控制和新材料的开发非常有用。

Al6061

Cu110

SS304

图1: 测试后划痕的显微镜图像(100倍放大)。

 刮痕宽度(μm)HSp (GPa)
Al6061174±110.84
Cu110220±10.52
SS30489±53.20

表1: 划痕宽度和划痕硬度数的总结。

图2: 在对Cu110进行划痕硬度测试时,摩擦系数、真实深度和声发射的演变。

结论

在这项研究中,我们展示了NANOVEA机械测试仪在进行符合ASTM G171-03标准的划痕硬度测试方面的能力。除了涂层附着力和耐刮擦性之外,恒定负载下的刮擦测试为比较材料的硬度提供了另一种简单的解决方案。与传统的划痕硬度测试机相比,NANOVEA机械测试机提供了可选模块,用于监测摩擦系数、声发射和真实深度的原地演变。

NANOVEA机械测试仪的纳米和微模块包括ISO和ASTM兼容的压痕、划痕和磨损测试模式,在单个系统中提供最广泛和最用户友好的测试范围。NANOVEA无与伦比的范围是确定薄或厚,软或硬涂层,薄膜和基材的全部机械性能的理想解决方案,包括硬度,杨氏模量,断裂韧性,附着力,耐磨性和许多其他。

现在,让我们来谈谈你的申请

氮化钛涂层划痕测试

氮化钛涂层划痕测试

质量控制检查

编写者

李端杰,博士

简介

高硬度、优异的耐磨性、耐腐蚀性和惰性的结合使氮化钛(TiN)成为各行业金属部件的理想保护涂层。例如,氮化钛涂层的边缘保持性和耐腐蚀性可以大幅提高工作效率,延长剃须刀、金属切割机、注塑模具和锯床等机械工具的使用寿命。它的高硬度、惰性和无毒性使TiN成为医疗设备(包括植入物和手术器械)应用的最佳选择。

TiN涂层刮擦测试的重要性

保护性PVD/CVD涂层中的残余应力对涂层部件的性能和机械完整性起着关键作用。残余应力来自几个主要来源,包括生长应力、热梯度、几何约束和使用应力¹。在高温下涂层沉积过程中,涂层和基体之间产生的热膨胀不匹配导致了高热残余应力。此外,TiN涂层工具经常在非常高的集中应力下使用,例如钻头和轴承。开发一个可靠的质量控制程序来定量检测保护性功能涂层的内聚力和粘合力是至关重要的。

[1] V. Teixeira, Vacuum 64 (2002) 393-399.

测量目标

在这项研究中,我们展示了NANOVEA机械测试器在划痕模式下是以可控和定量的方式评估保护性TiN涂层的内聚/粘附强度的理想选择。

NANOVEA

PB1000

测试条件

NANOVEA PB1000机械测试仪被用来对三种TiN涂层进行涂层划痕测试,测试参数相同,总结如下。

装载模式。 渐进式线性

初始负载

0.02 N

终极装载

10 N

装载率

20 N/min

划痕长度

5毫米

缩略语类型

球状体-锥形体

钻石,半径为20微米

结果与讨论

图1显示了测试过程中穿透深度、摩擦系数(COF)和声发射的演变记录。图2显示了TiN样品上的全部微划痕。不同临界载荷下的失效行为显示在图3中,其中临界载荷Lc1被定义为划痕中出现第一条粘性裂纹的载荷,Lc2是发生反复剥落的载荷,Lc3是涂层从基体上完全去除的载荷。图4中总结了TiN涂层的临界载荷(Lc)值。

渗透深度、COF和声发射的演变提供了对不同阶段涂层失效机制的深入了解,这些阶段在本研究中由临界载荷代表。可以观察到,样品A和样品B在划痕测试中表现出类似的行为。测针逐渐深入样品,深度为~0.06毫米,在涂层划痕试验开始时,随着法向载荷的线性增加,COF逐渐增加到~0.3。当达到~3.3 N的Lc1时,出现了崩裂失效的第一个迹象。这也反映在穿透深度、COF和声发射图中的第一个大峰值。当载荷继续增加到Lc2的~3.8 N时,穿透深度、COF和声发射的进一步波动发生了。我们可以观察到在划痕的两边都存在连续的剥落故障。在Lc3,涂层在测针施加的高压下从金属基体上完全剥离,使基体暴露在外面,没有受到保护。

相比之下,样品C在涂层划痕试验的不同阶段表现出较低的临界载荷,这也反映在涂层划痕试验期间的穿透深度、摩擦系数(COF)和声发射的演变上。与样品A和样品B相比,样品C在顶部TiN涂层和金属基材之间的界面上拥有一个硬度较低、应力较高的粘附夹层。

这项研究证明了适当的基材支撑和涂层结构对涂层系统质量的重要性。更强的夹层可以在高的外部负荷和集中应力下更好地抵抗变形,从而提高涂层/基体系统的内聚力和粘合力。

图1: TiN样品的渗透深度、COF和声发射的演变。

图2: 测试后的TiN涂层的全部划痕。

图3: 不同临界载荷下的TiN涂层失效,Lc。

图4: TiN涂层的临界载荷(Lc)值摘要。

结论

在这项研究中,我们展示了NANOVEA PB1000机械测试仪在受控和密切监测的情况下对TiN涂层的样品进行可靠和准确的划痕测试。划痕测量使用户能够快速确定典型的内聚性和粘合性涂层失效的临界负荷。我们的仪器是卓越的质量控制工具,可以定量地检查和比较涂层的内在质量和涂层/基体系统的界面完整性。具有适当夹层的涂层可以在高的外部负荷和集中应力下抵抗大的变形,并提高涂层/基体系统的内聚力和粘合力。

NANOVEA机械测试仪的纳米和微米模块都包括符合ISO和ASTM标准的压痕、划痕和磨损测试仪模式,在一个系统中提供了最广泛和最方便的测试范围。NANOVEA无与伦比的范围是确定薄或厚、软或硬的涂层、薄膜和基材的全部机械性能的理想解决方案,包括硬度、杨氏模量、断裂韧性、附着力、耐磨性和许多其他性能。

现在,让我们来谈谈你的申请

使用三维轮廓仪分析断裂样品

裂缝分析

使用三维轮廓仪测量

编写者

CRAIG LEISING

简介

断裂学是对断裂表面特征的研究,历来是通过显微镜或扫描电镜进行研究。根据特征的大小,选择显微镜(宏观特征)或SEM(纳米和微观特征)来进行表面分析。两者最终都可以确定断裂机制的类型。虽然有效,但显微镜有明显的局限性,而SEM在大多数情况下,除了原子级的分析外,对于断裂表面的测量是不切实际的,缺乏更广泛的使用能力。随着光学测量技术的进步,NANOVEA 3D非接触式轮廓仪现在被认为是首选仪器,它能够提供纳米级到宏观级的二维和三维表面测量。

3D非接触式轮廓仪在断裂检测中的重要性

与SEM不同,3D非接触式轮廓仪几乎可以测量任何表面和样品尺寸,只需最少的样品准备,同时提供优于SEM的垂直/水平尺寸。使用轮廓仪,从纳米到宏观范围的特征都可以在一次测量中捕捉到,而样品反射率的影响为零。可以轻松地测量任何材料:透明的、不透明的、镜面的、扩散的、抛光的、粗糙的等等。三维非接触式轮廓仪提供了广泛和用户友好的能力,以SEM的一小部分成本,最大限度地提高表面断裂研究。

测量目标

在这个应用中,NANOVEA ST400被用来测量一个钢铁样品的断裂表面。在这项研究中,我们将展示表面的三维区域、二维轮廓提取和表面方向图。

NANOVEA

ST400

结果

顶部表面

三维表面纹理方向

同向性51.26%
第一方向123.2º
第二方向116.3º
第三方向0.1725º

表面积、体积、粗糙度和许多其他方面都可以从这个提取中自动计算。

二维轮廓提取

结果

侧面

三维表面纹理方向

同向性15.55%
第一方向0.1617º
第二方向110.5º
第三方向171.5º

表面积、体积、粗糙度和许多其他方面都可以从这个提取中自动计算。

二维轮廓提取

结论

在这个应用中,我们展示了NANOVEA ST400 3D非接触式轮廓仪是如何精确表征断裂表面的全部地形(纳米、微观和宏观特征)的。从三维区域中,可以清楚地识别出表面,并且可以快速提取子区域或剖面/横截面,并通过无尽的表面计算列表进行分析。亚纳米级的表面特征可以通过集成的AFM模块进一步分析。

此外,NANOVEA还在其Profilometer阵容中加入了一个便携式版本,这对于不可移动的裂缝表面现场研究来说尤其重要。有了这些广泛的表面测量能力,使用一台仪器进行断裂表面分析从未如此简单和方便。

现在,让我们来谈谈你的申请