USA/GLOBAL: +1-949-461-9292
EUROPE: +39-011-3052-794
CONTACT US

Category: Tribology Testing

 

Rock Tribology

ROCK TRIBOLOGY

USING NANOVEA TRIBOMETER

Prepared by

DUANJIE LI, PhD

INTRODUCTION

Rocks are composed of grains of minerals. The type and abundance of these minerals, as well as the chemical bonding strength between the mineral grains, determine the mechanical and tribological properties of the rocks. Depending on the geological rock cycles, rocks can undergo transformations and are typically classified into three major types: igneous, sedimentary, and metamorphic. These rocks exhibit different mineral and chemical compositions, permeabilities, and particle sizes, and such characteristics contribute to their varied wear resistance. Rock tribology explores the wear and friction behaviors of rocks in various geological and environmental conditions.

IMPORTANCE OF ROCK TRIBOLOGY

Various types of wear against rocks, including abrasion and friction, occur during the drilling process of wells, leading to significant direct and consequential losses attributed to the repair and replacement of drill bits and cutting tools. Therefore, the study of drillability, boreability, cuttability, and abrasivity of rocks are critical in the oil, gas, and mining industries. Rock tribology research plays a pivotal role in the selection of the most efficient and cost-effective drilling strategies, thereby enhancing overall efficiency and contributing to the conservation of materials, energy, and the environment. Additionally, minimizing surface friction is highly advantageous in reducing the interaction between the drilling bit and the rock, resulting in decreased tool wear and improved drilling/cutting efficiency.

MEASUREMENT OBJECTIVE

In this study, we simulated and compared the tribological properties of two types of rocks to showcase the capacity of the NANOVEA T50 Tribometer in measuring the coefficient of friction and wear rate of rocks in a controlled and monitored manner.

NANOVEA

T50

THE SAMPLES

TEST PROCEDURE

The coefficient of friction, COF, and the wear resistance of two rock samples were evaluated by the NANOVEA T50 Tribometer using Pin-on-Disc Wear Module. An Al2O3 ball (6 mm diameter) was used as the counter material. The wear track was examined using the NANOVEA Non-Contact Profilometer after the tests. The test parameters are summarized below. 

The wear rate, K, was evaluated using the formula K=V/(F×s)=A/(F×n), where V is the worn volume, F is the normal load, s is the sliding distance, A is the cross-sectional area of the wear track, and n is the number of revolutions. Surface roughness and wear track profiles were evaluated with the NANOVEA Optical Profilometer, and the wear track morphology was examined using an optical microscope. 

Please note that the Al2O3 ball as a counter material was used as an example in this study. Any solid material with different shapes can be applied using a custom fixture to simulate the actual application situation.

TEST PARAMETERS

STEEL SURFACE

Limestone, Marble

WEAR RING RADIUS 5 mm
NORMAL FORCE 10 N
TEST DURATION 10 min
SPEED 100 rpm

RESULTS & DISCUSSION

The hardness (H) and Elastic Modulus (E) of the limestone and marble samples are compared in FIGURE 1, utilizing the Micro Indentation module of the NANOVEA Mechanical Tester. The limestone sample exhibited lower H and E values, measuring at 0.53 and 25.9 GPa, respectively, in contrast to marble, which recorded values of 1.07 for H and 49.6 GPa for E. The relatively higher variability in the H and E values observed in the limestone sample can be attributed to its greater surface inhomogeneity, stemming from its granulated and porous characteristics.

The evolution of the COF during the wear tests of the two rock samples is depicted in FIGURE 2. The limestone initially experiences a rapid increase in COF to approximately 0.8 at the beginning of the wear test, maintaining this value throughout the duration of the test. This abrupt change in COF can be attributed to the penetration of the Al2O3 ball into the rock sample, resulting from a rapid wear and roughening process occurring at the contact face within the wear track. In contrast, the marble sample exhibits a notable increase in COF to higher values after approximately 5 meters of sliding distance, signifying its superior wear resistance when compared to the limestone.

FIGURE 1: Hardness and Young’s Modulus comparison between limestone and marble samples.

FIGURE 2: Evolution of Coefficient of Friction (COF) in limestone and marble samples during wear tests.

FIGURE 3 compares cross-sectional profiles of the limestone and marble samples after the wear tests, and Table 1 summarizes the results of the wear track analysis. FIGURE 4 shows the wear tracks of the samples under the optical microscope. The wear track evaluation aligns with the COF evolution observation: The marble sample, which maintains a low COF for a longer period, exhibits a lower wear rate of 0.0046 mm³/N m, compared to 0.0353 mm³/N m for the limestone. The superior mechanical properties of marble contribute to its better wear resistance than limestone.

FIGURE 3: Cross-section profiles of the wear tracks.

VALLEY AREA VALLEY DEPTH WEAR RATE
LIMESTONE 35.3±5.9 × 104 μm2 229±24 μm 0.0353 mm3/Nm
MARBLE 4.6±1.2 × 104 μm2 61±15 μm 0.0046 mm3/Nm

TABLE 1: Result summary of wear track analysis.

FIGURE 4: Wear tracks under optical microscope.

CONCLUSION

In this study, we showcased the capacity of the NANOVEA Tribometer in evaluating the coefficient of friction and wear resistance of two rock samples, namely marble and limestone, in a controlled and monitored manner. The superior mechanical properties of marble contribute to its exceptional wear resistance. This property makes it challenging to drill or cut in the oil and gas industry. Conversely, it significantly extends its lifetime when used as a high-quality building material, such as floor tiles.

NANOVEA Tribometers offer precise and repeatable wear and friction testing capabilities, adhering to ISO and ASTM standards in both rotative and linear modes. Additionally, it provides optional modules for high-temperature wear, lubrication, and tribocorrosion, all seamlessly integrated into one system. NANOVEA’s unmatched range is an ideal solution for determining the full range of tribological properties of thin or thick, soft or hard coatings, films, substrates, and rock tribology.

PTFE Coating Wear Test

PTFE COATING WEAR TEST

USING TRIBOMETER AND MECHANICAL TESTER

Prepared by

DUANJIE LI, PhD

INTRODUCTION

Polytetrafluoroethylene (PTFE), commonly known as Teflon, is a polymer with an exceptionally low coefficient of friction (COF) and excellent wear resistance, depending on the applied loads. PTFE exhibits superior chemical inertness, high melting point of 327°C (620°F), and maintains high strength, toughness, and self-lubrication at low temperatures. The exceptional wear resistance of  PTFE coatings makes them highly sought-after in a wide range of industrial applications, such as automotive, aerospace, medical, and, notably, cookware.

IMPORTANCE OF QUANTITATIVE EVALUATION OF PTFE COATINGS

The combination of a super low coefficient of friction (COF), excellent wear resistance, and exceptional chemical inert- ness at high temperatures makes PTFE an ideal choice for non-stick pan coatings. To further enhance its mechanical processes during R&D, as well as ensure optimal control over malfunction prevention and safety measures in the Quality Control process, it is crucial to have a reliable technique for quantity evaluating the tribomechanical processes of PTFE coatings. Precise control over surface friction, wear, and adhesion of the coatings is essential to ensure their intended performance.

MEASUREMENT OBJECTIVE

In this application, the wear process of a PTFE coating for a non-stick pan is simulated using NANOVEA Tribometer in linear reciprocating mode.

NANOVEA T50

Compact Free Weight Tribometer

In addition, the NANOVEA Mechanical Tester was used to perform a micro scratch adhesion test to determine the critical load of the PTFE coating adhesion failure.

NANOVEA PB1000

Large Platform Mechanical Tester

TEST PROCEDURE

WEAR TEST

LINEAR RECIPROCATING WEAR USING A TRIBOMETER

The tribological behavior of the PTFE coating sample, including the coefficient of friction (COF) and wear resistance, was evaluated using the NANOVEA Tribometer in linear reciprocating mode. A Stainless Steel 440 ball tip with a diameter of 3 mm (Grade 100) was used against the coating. The COF was continuously monitored during the PTFE coating wear test.

 

The wear rate, K, was calculated using the formula K=V/(F×s)=A/(F×n), where V represents the worn volume, F is the normal load, s is the sliding distance, A is the cross-sectional area of the wear track, and n is the number of strokes. The wear track profiles were evaluated using the NANOVEA Optical Profilometer, and the wear track morphology was examined using an optical microscope.

WEAR TEST PARAMETERS

LOAD 30 N
TEST DURATION 5 min
SLIDING RATE 80 rpm
AMPLITUDE OF TRACK 8 mm
REVOLUTIONS 300
BALL DIAMETER 3 mm
BALL MATERIAL Stainless Steel 440
LUBRICANT None
ATMOSPHERE Air
TEMPERATURE 230C (RT)
HUMIDITY 43%

TEST PROCEDURE

SCRATCH TEST

MICRO SCRATCH ADHESION TEST USING MECHANICAL TESTER

The PTFE scratch adhesion measurement was conducted using the NANOVEA Mechanical Tester with a 1200 Rockwell C diamond stylus (200 μm radius) in the Micro Scratch Tester Mode.

 

To ensure the reproducibility of the results, three tests were performed under identical testing conditions.

SCRATCH TEST PARAMETERS

LOAD TYPE Progressive
INITIAL LOAD 0.01 mN
FINAL LOAD 20 mN
LOADING RATE 40 mN/min
SCRATCH LENGTH 3 mm
SCRATCHING SPEED, dx/dt 6.0 mm/min
INDENTER GEOMETRY 120o Rockwell C
INDENTER MATERIAL (tip) Diamond
INDENTER TIP RADIUS 200 μm

RESULTS & DISCUSSION

LINEAR RECIPROCATING WEAR USING A TRIBOMETER

The COF recorded in situ is shown in FIGURE 1. The test sample exhibited a COF of ~0.18 during the first 130 revolutions, due to the low stickiness of PTFE. However, there was a sudden increase in COF to ~1 once the coating broke through, revealing the substrate underneath. Following the linear reciprocating tests, the wear track profile was measured using the NANOVEA Non-Contact Optical Profilometer, as shown in FIGURE 2. From the data obtained, the corresponding wear rate was calculated to be ~2.78 × 10-3 mm3/Nm, while the depth of the wear track was determined to be 44.94 µm.

PTFE coating wear test setup on the NANOVEA T50 Tribometer.

FIGURE 1: Evolution of COF during the PTFE coating wear test.

FIGURE 2: Profile extraction of wear track PTFE.

PTFE Before breakthrough

Max COF 0.217
Min COF 0.125
Average COF 0.177

PTFE After breakthrough

Max COF 0.217
Min COF 0.125
Average COF 0.177

TABLE 1: COF before and after breakthrough during the wear test.

RESULTS & DISCUSSION

MICRO SCRATCH ADHESION TEST USING MECHANICAL TESTER

The adhesion of the PTFE coating to the substrate is measured using scratch tests with a 200 µm diamond stylus. The micrograph is shown in FIGURE 3 and FIGURE 4, Evolution of COF, and penetration depth in FIGURE 5. The PTFE coating scratch test results are summarized in TABLE 4. As the load on the diamond stylus increased, it progressively penetrated into the coating, resulting in an increase in the COF. When a load of ~8.5 N was reached, the breakthrough of the coating and exposure of the substrate occurred under high pressure, leading to a high COF of ~0.3. The low St Dev shown in TABLE 2 demonstrates the repeatability of the PTFE coating scratch test conducted using the NANOVEA Mechanical Tester.

FIGURE 3: Micrograph of the full scratch on PTFE (10X).

FIGURE 4: Micrograph of the full scratch on PTFE (10X).

FIGURE 5: Friction graph showing the line of the critical point of failure for PTFE.

Scratch Point of Failure [N] Frictional Force [N] COF
1 0.335 0.124 0.285
2 0.337 0.207 0.310
3 0.380 0.229 0.295
Average 8.52 2.47 0.297
St dev 0.17 0.16 0.012

TABLE 2: Summary of Critical Load, Frictional Force, and COF during the scratch test.

CONCLUSION

In this study, we conducted a simulation of the wear process of a PTFE coating for non-stick pans using the NANOVEA T50 Tribometer in linear reciprocating mode. The PTFE coating exhibited a low COF of ~0.18 the coating experienced a breakthrough at around 130 revolutions. The quantitative evaluation of the PTFE coating adhesion to the metal substrate was performed using the NANOVEA Mechanical Tester which determined the critical load of the coating adhesion failure to be ~8.5 N in this test.

 

The NANOVEA Tribometers offer precise and repeatable wear and friction testing capabilities using ISO and ASTM-compliant rotary and linear modes. They provide optional modules for high-temperature wear, lubrication, and tribocorrosion, all integrated into a single system. This versatility allows users to simulate real-world application environments more accurately and gain a beer understanding of the wear mechanisms and tribological properties of different materials.

 

The NANOVEA Mechanical Testers offer Nano, Micro, and Macro modules, each of which includes ISO and ASTM compliant indentation, scratch, and wear testing modes, providing the widest and most user-friendly range of testing capabilities available in a single system.

NOW, LET'S TALK ABOUT YOUR APPLICATION

Progressive Wear Mapping of Flooring using Tribometer

Progressive Wear Mapping of Flooring

Using Tribometer with integrated Profilometer

Prepared by

FRANK LIU

INTRODUCTION

Flooring materials are designed to be durable, but they often suffer wear and tear from everyday activities such as movement and furniture use. To ensure their longevity, most types of flooring have a protective wear layer that resists damage. However, the thickness and durability of the wear layer vary depending on the flooring type and level of foot traffic. In addition, different layers within the flooring structure, such as UV coatings, decorative layers, and glaze, have varying wear rates. That’s where progressive wear mapping comes in. Using the NANOVEA T2000 Tribometer with an integrated 3D Non-Contact Profilometer, precise monitoring, and analysis of the performance and longevity of flooring materials can be done. By providing detailed insight into the wear behavior of various flooring materials, scientists and technical professionals can make more informed decisions when selecting and designing new flooring systems.

IMPORTANCE OF PROGRESSIVE WEAR MAPPING FOR FLOOR PANELS

Flooring testing has traditionally centered on the wear rate of a sample to determine its durability against wear. However, progressive wear mapping allows analyzing the sample’s wear rate throughout the test, providing valuable insights into its wear behavior. This in-depth analysis allows for correlations between friction data and wear rate, which can identify the root causes of wear. It should be noted that wear rates are not constant throughout wear tests. Thus, observing the progression of wear gives a more accurate assessment of the sample’s wear. Progressing beyond traditional testing methods, the adoption of progressive wear mapping has contributed to significant advancements in the field of flooring testing.

The NANOVEA T2000 Tribometer with an integrated 3D Non-Contact Profilometer is a groundbreaking solution for wear testing and volume loss measurements. Its ability to move with precision between the pin and the profilometer guarantees the reliability of results by eliminating any deviation in wear track radius or location. But that’s not all – the 3D Non-Contact Profilometer’s advanced capabilities allow for high-speed surface measurements, reducing scanning time to mere seconds. With the capability of applying loads of up to 2,000 N and achieving spinning speeds of up to 5,000 rpm, the NANOVEA T2000 Tribometer offers versatility and precision in the evaluation process. It’s clear that this equipment holds a vital role in progressive wear mapping.

 

FIGURE 1: Sample set-up prior to wear testing (left) and post-wear test profilometry of the wear track (right).

MEASUREMENT OBJECTIVE

Progressive wear mapping testing was performed on two types of flooring materials: stone and wood. Each sample underwent a total of 7 test cycles, with increasing test durations of 2, 4, 8, 20, 40, 60, and 120 s, allowing for a comparison of wear over time. After each test cycle, the wear track was profiled using the NANOVEA 3D Non-Contact Profilometer. From the data collected by the profiler, the volume of the hole and wear rate can be analyzed using the integrated features in the NANOVEA Tribometer software or our surface analysis software, Mountains.

NANOVEA

T2000

wear mapping test samples wood and stone

 THE SAMPLES 

WEAR MAPPING TEST PARAMETERS

LOAD40 N
TEST DURATIONvaries
SPEED200 rpm
RADIUS10 mm
DISTANCEvaries
BALL MATERIALTungsten Carbide
BALL DIAMETER10 mm

Test duration used over the 7 cycles were 2, 4, 8, 20, 40, 60, and 120 seconds, respectively. The distances traveled were 0.40, 0.81, 1.66, 4.16, 8.36, 12.55, and 25.11 meters.

WEAR MAPPING RESULTS

WOOD FLOORING

Test CycleMax COFMin COFAvg. COF
10.3350.1240.275
20.3370.2070.295
30.3800.2290.329
40.3930.2650.354
50.3520.2050.314
60.3450.1990.312
70.3150.2110.293

 

RADIAL ORIENTATION

Test CycleTotal Volume Loss (µm3Total Distance
Traveled (m)
Wear Rate
(mm/Nm) x10-5
Instantaneous Wear Rate
(mm/Nm) x10-5
12962476870.401833.7461833.746
23552452271.221093.260181.5637
35963713262.88898.242363.1791
48837477677.04530.629172.5496
5120717995115.40360.88996.69074
6147274531827.95293.32952.89311
7185131921053.06184.34337.69599
wood progressive wear rate vs total distance

FIGURE 2: Wear rate vs total distance traveled (left)
and instantaneous wear rate vs test cycle (right) for wood flooring.

progressive wear mapping of wood floor

FIGURE 3: COF graph and 3D view of wear track from test #7 on wood flooring.

wear mapping extracted profile

FIGURE 4: Cross-Sectional Analysis of Wood Wear Track from Test #7

progressive wear mapping volume and area analysis

FIGURE 5: Volume and Area Analysis of Wear Track on Wood Sample Test #7.

WEAR MAPPING RESULTS

STONE FLOORING

Test CycleMax COFMin COFAvg. COF
10.2490.0350.186
20.3490.1970.275
30.2940.1540.221
40.5030.1240.273
50.5480.1060.390
60.5100.1290.434
70.5270.1810.472

 

RADIAL ORIENTATION

Test CycleTotal Volume Loss (µm3Total Distance
Traveled (m)
Wear Rate
(mm/Nm) x10-5
Instantaneous Wear Rate
(mm/Nm) x10-5
1962788460.40595.957595.9573
28042897311.222475.1852178.889
313161478552.881982.355770.9501
431365302157.041883.2691093.013
51082173218015.403235.1802297.508
62017496034327.954018.2821862.899
74251206342053.064233.0812224.187
stone flooring wear rate vs distance
stone flooring instantaneous wear rate chart

FIGURE 6: Wear rate vs total distance travelled (left)
and instantaneous wear rate vs test cycle (right) for stone flooring.

stone floor 3d profile of wear track

FIGURE 7: COF graph and 3D view of wear track from test #7 on stone flooring.

stone floor progressive wear mapping extracted profile
stone flooring extracted profile maximum depth and height area of the hole and peak

FIGURE 8: Cross-Sectional Analysis of Stone Wear Track from Test #7.

wood floor progressive wear mapping volume analysis

FIGURE 9: Volume and Area Analysis of Wear Track on Stone Sample Test #7.

DISCUSSION

The instantaneous wear rate is calculated with the following equation:
progressive wear mapping of flooring formula

Where V is the volume of a hole, N is the load, and X is the total distance, this equation describes the wear rate between test cycles. The instantaneous wear rate can be used to better identify changes in wear rate throughout the test.

Both samples have very different wear behaviors. Over time, the wood flooring starts with a high wear rate but quickly drops to a smaller, steady value. For the stone flooring, the wear rate appears to start at a low value and trends to a higher value over cycles. The instantaneous wear rate also shows little consistency. The specific reason for the difference is not certain but may be due to the structure of the samples. The stone flooring seems to consist of loose grain-like particles, which would wear differently compared to the wood’s compact structure. Additional testing and research would be needed to ascertain the cause of this wear behavior.

The data from the coefficient of friction (COF) seems to agree with the observed wear behavior. The COF graph for the wood flooring appears consistent throughout the cycles, complementing its steady wear rate. For the stone flooring, the average COF increases throughout the cycles, similar to how the wear rate also increases with cycles. There are also apparent changes in the shape of the friction graphs, suggesting changes in how the ball is interacting with the stone sample. This is most apparent in cycle 2 and cycle 4.

CONCLUSION

The NANOVEA T2000 Tribometer showcases its ability to perform progressive wear mapping by analyzing the wear rate between two different flooring samples. Pausing the continuous wear test and scanning the surface with the NANOVEA 3D Non-Contact Profilometer provides valuable insights into the material’s wear behavior over time.

The NANOVEA T2000 Tribometer with the integrated 3D Non-Contact Profilometer provides a wide variety of data, including COF (Coefficient of Friction) data, surface measurements, depth readings, surface visualization, volume loss, wear rate, and more. This comprehensive set of information allows users to gain a deeper understanding of the interactions between the system and the sample. With its controlled loading, high precision, ease of use, high loading, wide speed range, and additional environmental modules, the NANOVEA T2000 Tribometer takes tribology to the next level.

NOW, LET'S TALK ABOUT YOUR APPLICATION

High Temperature Scratch Hardness using a Tribometer

HIGH TEMPERATURE SCRATCH HARDNESS

USING A TRIBOMETER

Prepared by

DUANJIE, PhD

INTRODUCTION

Hardness measures the resistance of materials to permanent or plastic deformation. Originally developed by a German mineralogist Friedrich Mohs in 1820, scratch hardness test determines the hardness of a material to scratches and abrasion due to friction from a sharp object1. The Mohs’ scale is a comparative index rather than a linear scale, therefore a more accurate and qualitative scratch hardness measurement was developed as described in ASTM standard G171-032. It measures the average width of the scratch created by a diamond stylus and calculates the scratch hardness number (HSP).

IMPORTANCE OF SCRATCH HARDNESS MEASUREMENT AT HIGH TEMPERATURES

Materials are selected based on the service requirements. For applications involving significant temperature changes and thermal gradients, it is critical to investigate the mechanical properties of materials at high temperatures to be fully aware of the mechanical limits. Materials, especially polymers, usually soften at high temperatures. A lot of mechanical failures are caused by creep deformation and thermal fatigue taking place only at elevated temperatures. Therefore, a reliable technique for measuring hardness at high temperatures is in need to ensure proper selection of the materials for high temperature applications.

MEASUREMENT OBJECTIVE

In this study, the NANOVEA T50 Tribometer measures scratch hardness of a Teflon sample at different temperatures from room temperature to 300ºC. The capability of performing high temperature scratch hardness measurement makes the NANOVEA Tribometer a versatile system for tribological and mechanical evaluations of materials for high temperature applications.

NANOVEA

T50

TEST CONDITIONS

The NANOVEA T50 Free Weight Standard Tribometer was used to perform the scratch hardness tests on a Teflon sample at temperatures ranging from room temperature (RT) to 300°C. Teflon has a melting point of 326.8°C. A conical diamond stylus of apex angle 120° with tip radius of 200 µm was used. The Teflon sample was fixed on the rotative sample stage with a distance of 10 mm to the stage center. The sample was heated up by an oven and tested at temperatures of RT, 50°C, 100°C, 150°C, 200°C, 250°C and 300°C.

TEST PARAMETERS

of the high temperature scratch hardness measurement

NORMAL FORCE 2 N
SLIDING SPEED 1 mm/s
SLIDING DISTANCE 8mm per temp
ATMOSPHERE Air
TEMPERATURE RT, 50°C, 100°C, 150°C, 200°C, 250°C, 300°C.

RESULTS & DISCUSSION

The scratch track profiles of the Teflon sample at different temperatures are shown in FIGURE 1 in order to compare the scratch hardness at different elevated temperatures. The material pile-up on the scratch track edges forms as the stylus travels at a constant load of 2 N and ploughs into the Teflon sample, pushing and deforming the material in the scratch track to the side.

The scratch tracks were examined under the optical microscope as shown in FIGURE 2. The measured scratch track widths and calculated scratch hardness numbers (HSP) are summarized and compared in FIGURE 3. The scratch track width measured by the microscope is in agreement with that measured using the NANOVEA Profiler – the Teflon sample exhibits a wider scratch width at higher temperatures. Its scratch track width increases from 281 to 539 µm as the temperature elevates from RT to 300oC, resulting in decreased HSP from 65 to 18 MPa.

The scratch hardness at elevated temperatures can be measured with high precision and repeatability using the NANOVEA T50 Tribometer. It provides an alternative solution from other hardness measurements and makes NANOVEA Tribometers a more complete system for comprehensive high-temperature tribo-mechanical evaluations.

FIGURE 1: Scratch track profiles after the scratch hardness tests at different temperatures.

FIGURE 2: Scratch tracks under the microscope after the measurements at different temperatures.

FIGURE 3: Evolution of the scratch track width and scratch hardness vs. the temperature.

CONCLUSION

In this study, we showcase how the NANOVEA Tribometer measures the scratch hardness at elevated temperatures in compliance to ASTM G171-03. The scratch hardness test at a constant load provides an alternative simple solution for comparing the hardness of materials using the tribometer. The capacity of performing scratch hardness measurements at elevated temperatures makes the NANOVEA Tribometer an ideal tool for evaluating the high temperature tribo-mechanical properties of materials.

The NANOVEA Tribometer also offers precise and repeatable wear and friction testing using ISO and ASTM compliant rotative and linear modes, with optional high temperature wear, lubrication and tribo-corrosion modules available in one pre-integrated system. Optional 3D non-contact profiler is available for high resolution 3D imaging of wear tracks in addition to other surface measurements such as roughness.

1 Wredenberg, Fredrik; PL Larsson (2009). “Scratch testing of metals and polymers: Experiments and numerics”. Wear 266 (1–2): 76
2 ASTM G171-03 (2009), “Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus”

NOW, LET'S TALK ABOUT YOUR APPLICATION

Industrial Coatings Scratch and Wear Evaluation

INDUSTRIAL COATING

SCRATCH AND WEAR EVALUATION USING A TRIBOMETER

Prepared by

DUANJIE LI, PhD & ANDREA HERRMANN

INTRODUCTION

Acrylic urethane paint is a type of fast-dry protective coating widely used in a variety of industrial applications, such as floor paint, auto paint, and others. When used as floor paint, it can serve areas with heavy foot and rubber-wheel traffic, such as walkways, curbs and parking lots.

IMPORTANCE OF SCRATCH AND WEAR TESTING FOR QUALITY CONTROL

Traditionally, Taber abrasion tests were carried out to evaluate the wear resistance of acrylic urethane floor paint according to the ASTM D4060 standard. However, as mentioned in the standard, “For some materials, abrasion tests utilizing the Taber Abraser may be subject to variation due to changes in the abrasive characteristics of the wheel during testing.”1 This may result in poor reproducibility of test results and create difficulty in comparing values reported from different laboratories. Moreover, in Taber abrasion tests, abrasion resistance is calculated as loss in weight at a specified number of abrasion cycles. However, acrylic urethane floor paints have a recommended dry film thickness of 37.5-50 μm2.

The aggressive abrasion process by Taber Abraser can quickly wear through the acrylic urethane coating and create mass loss to the substrate leading to substantial errors in the calculation of the paint weight loss. The implant of abrasive particles in the paint during the abrasion test also contributes to errors. Therefore, a well-controlled quantifiable and reliable measurement is crucial to ensure reproducible wear evaluation of the paint. In addition, the scratch test allows users to detect premature adhesive/cohesive failures in real-life applications.

MEASUREMENT OBJECTIVE

In this study, we showcase that NANOVEA Tribometers and Mechanical Testers are ideal for evaluation and quality control of industrial coatings.

The wear process of acrylic urethane floor paints with different topcoats is simulated in a controlled and monitored manner using the NANOVEA Tribometer. Micro scratch testing is used to measure the load required to cause cohesive or adhesive failure to the paint.

NANOVEA T100

The Compact Pneumatic Tribometer

NANOVEA PB1000

The Large Platform Mechanical Tester

TEST PROCEDURE

This study evaluates four commercially available water-based acrylic floor coatings that have the same primer (basecoat) and different topcoats of the same formula with a small alternation in the additive blends for the purpose of enhancing durability. These four coatings are identified as Samples A, B, C and D.

WEAR TEST

The NANOVEA Tribometer was applied to evaluate the tribological behavior, e.g. coefficient of friction, COF, and wear resistance. A SS440 ball tip (6 mm dia., Grade 100) was applied against the tested paints. The COF was recorded in situ. The wear rate, K, was evaluated using the formula K=V/(F×s)=A/(F×n), where V is the worn volume, F is the normal load, s is the sliding distance, A is the cross-sectional area of the wear track, and n is the number of revolution. Surface roughness and wear track profiles were evaluated by the NANOVEA Optical Profilometer, and the wear track morphology was examined using optical microscope.

WEAR TEST PARAMETERS

NORMAL FORCE

20 N

SPEED

15 m/min

DURATION OF TEST

100, 150, 300 & 800 cycles

SCRATCH TEST

The NANOVEA Mechanical Tester equipped with a Rockwell C diamond stylus (200 μm radius) was used to perform progressive load scratch tests on the paint samples using the Micro Scratch Tester Mode. Two final loads were used: 5 N final load for investigating paint delamination from the primer, and 35 N for investigating primer delamination from the metal substrates. Three tests were repeated at the same testing conditions on each sample to ensure reproducibility of the results.

Panoramic images of the whole scratch lengths were automatically generated and their critical failure locations were correlated with the applied loads by the system software. This software feature facilitates users to perform analysis on the scratch tracks any time, rather than having to determine the critical load under the microscope immediately after the scratch tests.

SCRATCH TEST PARAMETERS

LOAD TYPEProgressive
INITIAL LOAD0.01 mN
FINAL LOAD5 N / 35 N
LOADING RATE10 / 70 N/min
SCRATCH LENGTH3 mm
SCRATCHING SPEED, dx/dt6.0 mm/min
INDENTER GEOMETRY120º cone
INDENTER MATERIAL (tip)Diamond
INDENTER TIP RADIUS200 μm

WEAR TEST RESULTS

Four pin-on-disk wear tests at different number of revolutions (100, 150, 300 and 800 cycles) were performed on each sample in order to monitor the evolution of wear. The surface morphology of the samples were measured with a NANOVEA 3D Non-Contact Profiler to quantify the surface roughness prior to conducting wear testing. All samples had a comparable surface roughness of approximately 1 μm as displayed in FIGURE 1. The COF was recorded in situ during the wear tests as shown in FIGURE 2. FIGURE 4 presents the evolution of wear tracks after 100, 150, 300 and 800 cycles, and FIGURE 3 summarized the average wear rate of different samples at different stages of the wear process.

 

Compared with a COF value of ~0.07 for the other three samples, Sample A exhibits a much higher COF of ~0.15 at the beginning, which gradually increases and gets stable at ~0.3 after 300 wear cycles. Such a high COF accelerates the wear process and creates a substantial amount of paint debris as indicated in FIGURE 4 – the topcoat of Sample A has started to be removed in the first 100 revolutions. As shown in FIGURE 3, Sample A exhibits the highest wear rate of ~5 μm2/N in the first 300 cycles, which slightly decreases to ~3.5 μm2/N due to the better wear resistance of the metal substrate. The topcoat of Sample C starts to fail after 150 wear cycles as shown in FIGURE 4, which is also indicated by the increase of COF in FIGURE 2.

 

In comparison, Sample B and Sample D show enhanced tribological properties. Sample B maintains a low COF throughout the whole test – the COF slightly increases from~0.05 to ~0.1. Such a lubricating effect substantially enhances its wear resistance – the topcoat still provides superior protection to the primer underneath after 800 wear cycles. The lowest average wear rate of only ~0.77 μm2/N is measured for Sample B at 800 cycles. The topcoat of Sample D starts to delaminate after 375 cycles, as reflected by the abrupt increase of COF in FIGURE 2. The average wear rate of Sample D is ~1.1 μm2/N at 800 cycles.

 

Compared to the conventional Taber abrasion measurements, NANOVEA Tribometer provides well-controlled quantifiable and reliable wear assessments that ensure reproducible evaluations and quality control of commercial floor/auto paints. Moreover, the capacity of in situ COF measurements allow users to correlate the different stages of a wear process with the evolution of COF, which is critical in improving fundamental understanding of the wear mechanism and tribological characteristics of various paint coatings.

FIGURE 1: 3D morphology and roughness of the paint samples.

FIGURE 2: COF during pin-on-disk tests.

FIGURE 3: Evolution of wear rate of different paints.

FIGURE 4: Evolution of wear tracks during the pin-on-disk tests.

SCRATCH TEST RESULTS

FIGURE 5 shows the plot of normal force, frictional force and true depth as a function of scratch length for Sample A as an example. An optional acoustic emission module can be installed to provide more information. As the normal load linearly increases, the indentation tip gradually sinks into the tested sample as reflected by the progressive increase of true depth. The variation in the slopes of frictional force and true depth curves can be used as one of the implications that coating failures start to occur.

FIGURE 5: Normal force, frictional force and true depth as a function of scratch length for scratch test of Sample A with a maximum load of 5 N.

FIGURE 6 and FIGURE 7 show the full scratches of all four paint samples tested with a maximum load of 5 N and 35 N, respectively. Sample D required a higher load of 50 N to delaminate the primer. Scratch tests at 5 N final load (FIGURE 6) evaluate the cohesive/adhesive failure of the top paint, while the ones at 35 N (FIGURE 7) assess the delamination of the primer. The arrows in the micrographs indicate the point at which the top coating or the primer start to be completely removed from the primer or the substrate. The load at this point, so called Critical Load, Lc, is used to compare the cohesive or adhesive properties of the paint as summarized in Table 1.

 

It is evident that the paint Sample D has the best interfacial adhesion – exhibiting the highest Lc values of 4.04 N at paint delamination and 36.61 N at primer delamination. Sample B shows the second best scratch resistance. From the scratch analysis, we show that optimization of the paint formula is critical to the mechanical behaviors, or more specifically, scratch resistance and adhesion property of acrylic floor paints.

Table 1: Summary of critical loads.

FIGURE 6: Micrographs of full scratch with 5 N maximum load.

FIGURE 7: Micrographs of full scratch with 35 N maximum load.

CONCLUSION

Compared to the conventional Taber abrasion measurements, the NANOVEA Mechanical Tester and Tribometer are superior tools for evaluation and quality control of commercial floor and automotive coatings. The NANOVEA Mechanical Tester in Scratch mode can detect adhesion/cohesion problems in a coating system. The NANOVEA Tribometer provides well-controlled quantifiable and repeatable tribological analysis on wear resistance and coefficient of friction of the paints.

 

Based on the comprehensive tribological and mechanical analyses on the water based acrylic floor coatings tested in this study, we show that Sample B possesses the lowest COF and wear rate and the second best scratch resistance, while Sample D exhibits the best scratch resistance and second best wear resistance. This assessment allows us to evaluate and select the best candidate targeting the needs in different application environments.

 

The Nano and Micro modules of the NANOVEA Mechanical Tester all include ISO and ASTM compliant indentation, scratch and wear tester modes, providing the widest range of testing available for paint evaluation on a single module. The NANOVEA Tribometer offers precise and repeatable wear and friction testing using ISO and ASTM compliant rotative and linear modes, with optional high temperature wear, lubrication and tribo-corrosion modules available in one pre-integrated system. NANOVEA’s unmatched range is an ideal solution for determining the full range of mechanical/tribological properties of thin or thick, soft or hard coatings, films and substrates, including hardness, Young’s modulus, fracture toughness, adhesion, wear resistance and many others. Optional NANOVEA Non-Contact Optical Profilers are available for high resolution 3D imaging of scratchs and wear tracks in addition to other surface measurements such as roughness.

NOW, LET'S TALK ABOUT YOUR APPLICATION

Polymer Belt Wear and Friction using a Tribometer

POLYMER BELTS

WEAR AND FRICTION USING a TRIBOMETER

Prepared by

DUANJIE LI, PhD

INTRODUCTION

Belt drive transmits power and tracks relative movement between two or more rotating shafts. As a simple and inexpensive solution with minimal maintenance, belt drives are widely used in a variety of applications, such as bucksaws, sawmills, threshers, silo blowers and conveyors. Belt drives can protect the machinery from overload as well as damp and isolate vibration.

IMPORTANCE OF WEAR EVALUATION FOR BELT DRIVES

Friction and wear are inevitable for the belts in a belt-driven machine. Sufficient friction ensures effective power transmission without slipping, but excessive friction may rapidly wear the belt. Different types of wear such as fatigue, abrasion and friction take place during the belt drive operation. In order to extend the lifetime of the belt and to cut the cost and time on belt repairing and replacement, reliable evaluation of the wear performance of the belts is desirable in improving belt lifespan, production efficiency and application performance. Accurate measurement of the coefficient of friction and wear rate of the belt facilitates R&D and quality control of belt production.

MEASUREMENT OBJECTIVE

In this study, we simulated and compared the wear behaviors of belts with different surface textures to showcase the capacity of the NANOVEA T2000 Tribometer in simulating the wear process of the belt in a controlled and monitored manner.

NANOVEA

T2000

TEST PROCEDURES

The coefficient of friction, COF, and the wear resistance of two belts with different surface roughness and texture were evaluated by the NANOVEA High-Load Tribometer using Linear Reciprocating Wear Module. A Steel 440 ball (10 mm diameter) was used as the counter material. The surface roughness and wear track were examined using an integrated 3D Non-Contact profilometer. The wear rate, K, was evaluated using the formula K=Vl(Fxs), where V is the worn volume, F is the normal load and s is the sliding distance.

 

Please note that a smooth Steel 440 ball counterpart was used as an example in this study, any solid material with different shapes and surface finish can be applied using custom fixtures to simulate the actual application situation.

RESULTS & DISCUSSION

The Textured Belt and Smooth Belt have a surface roughness Ra of 33.5 and 8.7 um, respectively, according to the analyzed surface profiles taken with a NANOVEA 3D Non-Contact Optical profiler. The COF and wear rate of the two tested belts were measured at 10 N and 100 N, respectively, to compare the wear behavior of the belts at different loads.

FIGURE 1 shows the evolution of COF of the belts during the wear tests. The belts with different textures exhibit substantially different wear behaviors. It is interesting that after the run-in period during which the COF progressively increases, the Textured Belt reaches a lower COF of ~0.5 in both the tests conducted using loads of 10 N and 100 N. In comparison, the Smooth Belt tested under the load of 10 N exhibits a significantly higher COF of~ 1.4 when the COF gets stable and maintains above this value for the rest of the test. The Smooth Belt tested under the load of 100 N rapidly was worn out by the steel 440 ball and formed a large wear track. The test was therefore stopped at 220 revolutions.

FIGURE 1: Evolution of COF of the belts at different loads.

FIGURE 2 compares the 3D wear track images after the tests at 100 N. The NANOVEA 3D non-contact profilometer offers a tool to analyze the detailed morphology of the wear tracks, providing more insight in fundamental understanding of wear mechanism.

TABLE 1: Result of wear track analysis.

FIGURE 2:  3D view of the two belts
after the tests at 100 N.

The 3D wear track profile allows direct and accurate determination of the wear track volume calculated by the advanced analysis software as shown in TABLE 1. In a wear test for 220 revolutions, the Smooth Belt has a much larger and deeper wear track with a volume of 75.7 mm3, compared to a wear volume of 14.0 mm3 for the Textured Belt after a 600-revolution wear test. The significantly higher friction of the Smooth Belt against the steel ball leads to a 15 fold higher wear rate compared to the Textured Belt.

 

Such a drastic difference of COF between the Textured Belt and Smooth Belt is possibly related to the size of the contact area between the belt and the steel ball, which also leads to their different wear performance. FIGURE 3 shows the wear tracks of the two belts under the optical microscope. The wear track examination is in agreement with the observation on COF evolution: The Textured Belt, which maintains a low COF of ~0.5, exhibits no sign of wear after the wear test under a load of 10 N. The Smooth Belt shows a small wear track at 10 N. The wear tests carried out at 100 N create substantially larger wear tracks on both the Textured and Smooth Belts, and the wear rate will be calculated using 3D profiles as will be discussed in the following paragraph.

FIGURE 3:  Wear tracks under optical microscope.

CONCLUSION

In this study, we showcased the capacity of the NANOVEA T2000 Tribometer in evaluating the coefficient of friction and wear rate of belts in a well-controlled and quantitative manner. The surface texture plays a critical role in the friction and wear resistance of the belts during their service performance. The textured belt exhibits a stable coefficient of friction of ~0.5 and possesses a long lifetime, which results in reduced time and cost on tool repairing or replacement. In comparison, the excessive friction of the smooth belt against the steel ball rapidly wears the belt. Further, the loading on the belt is a vital factor of its service lifetime. Overload creates very high friction, leading to accelerated wear to the belt.

The NANOVEA T2000 Tribometer offers precise and repeatable wear and friction testing using ISO and ASTM compliant rotative and linear modes, with optional high temperature wear, lubrication and tribocorrosion modules available in one pre-integrated system. NANOVEA’s unmatched range is an ideal solution for determining the full range of tribological properties of thin or thick, soft or hard coatings, films and substrates.

NOW, LET'S TALK ABOUT YOUR APPLICATION

Sandpaper Abrasion Performance Using a Tribometer

SANDPAPER ABRASION PERFORMANCE

USING A TRIBOMETER

Prepared by

DUANJIE LI, PhD

INTRODUCTION

Sandpaper consists of abrasive particles glued to one face of a paper or cloth. Various abrasive materials can be used for the particles, such as garnet, silicon carbide, aluminum oxide and diamond. Sandpaper is widely applied in a variety of industrial sectors to create specific surface finishes on wood, metal and drywall. They often work under high pressure contact applied by hand or power tools.

IMPORTANCE OF EVALUATING SANDPAPER ABRASION PERFORMANCE

The effectiveness of sandpaper is often determined by its abrasion performance under different conditions. The grit size, i.e. the size of the abrasive particles embedded in the sandpaper, determines the wear rate and the scratch size of the material being sanded. Sandpapers of higher grit numbers have smaller particles, resulting in lower sanding speeds and finer surface finishes. Sandpapers with the same grit number but made of different materials can have unalike behaviors under dry or wet conditions. Reliable tribological evaluations are needed to ensure that manufactured sandpaper possesses the desired abrasive behavior intended. These evaluations allow users to quantitatively compare the wear behaviors of different types of sandpapers in a controlled and monitored manner in order to select the best candidate for the target application.

MEASUREMENT OBJECTIVE

In this study, we showcase the NANOVEA Tribometer’s ability to quantitatively evaluate the abrasion performance of various sandpaper samples under dry and wet conditions.

NANOVEA

T2000

TEST PROCEDURES

The coefficient of friction (COF) and the abrasion performance of two types of sandpapers were evaluated by the NANOVEA T100 Tribometer. A 440 stainless steel ball was used as the counter material. The ball wear scars were examined after each wear test using the NANOVEA 3D Non-Contact Optical Profiler to ensure precise volume loss measurements.

Please note that a 440 stainless steel ball was chosen as the counter material to create a comparative study but any solid material could be substituted to simulate a different application condition.

TEST RESULTS & DISCUSSION

FIGURE 1 shows a COF comparison of Sandpaper 1 and 2 under dry and wet environmental conditions. Sandpaper 1, under dry conditions, shows a COF of 0.4 at the beginning of the test which progressively decreases and stabilizes to 0.3. Under wet conditions, this sample exhibits a lower average COF of 0.27. In contrast, Sample 2’s COF results show a dry COF of 0.27 and wet COF of ~ 0.37. 

Please note the oscillation in the data for all COF plots was caused by the vibrations generated by the sliding movement of the ball against the rough sandpaper surfaces.

FIGURE 1: Evolution of COF during the wear tests.

FIGURE 2 summarizes the results of the wear scar analysis. The wear scars were measured using an optical microscope and a NANOVEA 3D Non-Contact Optical Profiler. FIGURE 3 and FIGURE 4 compare the wear scars of the worn SS440 balls post wear tests on Sandpaper 1 and 2 (wet and dry conditions). As shown in FIGURE 4 the NANOVEA Optical Profiler precisely captures the surface topography of the four balls and their respective wear tracks which were then processed with the NANOVEA Mountains Advanced Analysis software to calculate volume loss and wear rate. On the microscope and profile image of the ball it can be observed that the ball used for Sandpaper 1 (dry) testing exhibited a larger flattened wear scar compared to the others with a volume loss of 0.313 mm3. In contrast, the volume loss for Sandpaper 1 (wet) was 0.131 mm3. For Sandpaper 2 (dry) the volume loss was 0.163 mm3 and for Sandpaper 2 (wet) the volume loss increased to 0.237 mm3.

Moreover, it is interesting to observe that the COF played an important role in the abrasion performance of the sandpapers. Sandpaper 1 exhibited higher COF in the dry condition, leading to a higher abrasion rate for the SS440 ball used in the test. In comparison, the higher COF of Sandpaper 2 in the wet condition resulted in a higher abrasion rate. The wear tracks of the sandpapers after the measurements are displayed in FIGURE 5.

Both Sandpapers 1 and 2 claim to work in either dry and wet environments. However, they exhibited significantly different abrasion performance in the dry and wet conditions. NANOVEA tribometers provide well-controlled quantifiable and reliable wear assessment capabilities that ensure reproducible wear evaluations. Moreover, the capacity of in situ COF measurement allows users to correlate different stages of a wear process with the evolution of COF, which is critical in improving fundamental understanding of the wear mechanism and tribological characteristics of sandpaper

FIGURE 2: Wear scar volume of the balls and average COF under different conditions.

FIGURE 3: Wear scars of the balls after the tests.

FIGURE 4: 3D morphology of the wear scars on the balls.

FIGURE 5: Wear tracks on the sandpapers under different conditions.

CONCLUSION

The abrasion performance of two types of sandpapers of the same grit number were evaluated under dry and wet conditions in this study. The service conditions of the sandpaper play a critical role in the effectiveness of the work performance. Sandpaper 1 possessed significantly better abrasion behavior under dry conditions, while Sandpaper 2 performed better under wet conditions. The friction during the sanding process is an important factor to consider when evaluating abrasion performance. The NANOVEA Optical Profiler precisely measures the 3D morphology of any surface, such as wear scars on a ball, ensuring reliable evaluation on the abrasion performance of the sandpaper in this study. The NANOVEA Tribometer measures the coefficient of friction in situ during a wear test, providing an insight on the different stages of a wear process. It also offers repeatable wear and friction testing using ISO and ASTM compliant rotative and linear modes, with optional high temperature wear and lubrication modules available in one pre-integrated system. This unmatched range allows users to simulate different severe work environment of the ball bearings including high stress, wear and high temperature, etc. It also provides an ideal tool to quantitatively assess the tribological behaviors of superior wear resistant materials under high loads.

NOW, LET'S TALK ABOUT YOUR APPLICATION

Piston Wear Testing

Piston Wear Testing

Using a Tribometer

Prepared by

FRANK LIU

INTRODUCTION

Friction loss accounts for approximately 10% of total energy in fuel for a diesel engine[1]. 40-55% of the friction loss comes from the power cylinder system. The loss of energy from friction can be diminished with better understanding of the tribological interactions occurring in the power cylinder system.

A significant portion of the friction loss in the power cylinder system stems from the contact between the piston skirt and the cylinder liner. The interaction between the piston skirt, lubricant, and cylinder interfaces is quite complex due to the constant changes in force, temperature, and speed in a real life engine. Optimizing each factor is key to obtaining optimal engine performance. This study will focus on replicating the mechanisms causing friction forces and wear at the piston skirt-lubricant-cylinder liner (P-L-C) interfaces.

 Schematic of power cylinders system and piston skirt-lubricant-cylinder liner interfaces.

[1] Bai, Dongfang. Modeling piston skirt lubrication in internal combustion engines. Diss. MIT, 2012

IMPORTANCE OF TESTING PISTONS WITH TRIBOMETERS

Motor oil is a lubricant that is well-designed for its application. In addition to the base oil, additives such as detergents, dispersants, viscosity improver (VI), anti-wear/anti-friction agents, and corrosion inhibitors are added to improve its performance. These additives affect how the oil behaves under different operating conditions. The behavior of oil affects the P-L-C interfaces and determines if significant wear from metal-metal contact or if hydrodynamic lubrication (very little wear) is occurring.

It is difficult to understand the P-L-C interfaces without isolating the area from external variables. It is more practical to simulate the event with conditions that are representative of its real-life application. The NANOVEA Tribometer is ideal for this. Equipped with multiple force sensors, depth sensor, a drop-by-drop lubricant module, and linear reciprocating stage, the NANOVEA T2000 is able to closely mimic events occurring within an engine block and obtain valuable data to better understand the P-L-C interfaces.

Liquid Module on the NANOVEA T2000 Tribometer

The drop-by-drop module is crucial for this study. Since pistons can move at a very fast rate (above 3000 rpm), it is difficult to create a thin film of lubricant by submerging the sample. To remedy this issue, the drop-by-drop module is able to consistently apply a constant amount of lubricant onto the piston skirt surface.

Application of fresh lubricant also removes concern of dislodged wear contaminants influencing the lubricant’s properties.

NANOVEA T2000

High Load Tribometer

MEASUREMENT OBJECTIVE

The piston skirt-lubricant-cylinder liner interfaces will be studied in this report. The interfaces will be replicated by conducting a linear reciprocating wear test with drop-by-drop lubricant module.

The lubricant will be applied at room temperature and heated conditions to compare cold start and optimal operation conditions. The COF and wear rate will be observed to better understand how the interfaces behaves in real-life applications.

TEST PARAMETERS

for tribology testing on pistons

LOAD ………………………. 100 N

TEST DURATION ………………………. 30 min

SPEED ………………………. 2000 rpm

AMPLITUDE ………………………. 10 mm

TOTAL DISTANCE ………………………. 1200 m

SKIRT COATING ………………………. Moly-graphite

PIN MATERIAL ………………………. Aluminum Alloy 5052

PIN DIAMETER ………………………. 10 mm

LUBRICANT ………………………. Motor Oil (10W-30)

APPROX. FLOW RATE ………………………. 60 mL/min

TEMPERATURE ………………………. Room temp & 90°C

LINEAR RECIPROCATING TEST RESULTS

In this experiment, A5052 was used as the counter material. While engine blocks are usually made of cast aluminum such as A356, A5052 have mechanical properties similar to A356 for this simulative testing [2].

Under the testing conditions, significant wear was
observed on the piston skirt at room temperature
compared to at 90°C. The deep scratches seen on the samples suggest that contact between the static material and the piston skirt occurs frequently throughout the test. The high viscosity at room temperature may be restricting the oil from completely filling gaps at the interfaces and creating metal-metal contact. At higher temperature, the oil thins and is able to flow between the pin and the piston. As a result, significantly less wear is observed at higher temperature. FIGURE 5 shows one side of the wear scar wore significantly less than the other side. This is most likely due to the location of the oil output. The lubricant film thickness was thicker on one side than the other, causing uneven wearing.

 

 

[2] “5052 Aluminum vs 356.0 Aluminum.” MakeItFrom.com, makeitfrom.com/compare/5052-O-Aluminum/A356.0-SG70B-A13560-Cast-Aluminum

The COF of linear reciprocating tribology tests can be split into a high and low pass. High pass refers to the sample moving in the forward, or positive, direction and low pass refers to the sample moving in the reverse, or negative, direction. The average COF for the RT oil was observed to be under 0.1 for both directions. The average COF between passes were 0.072 and 0.080. The average COF of the 90°C oil was found to be different between passes. Average COF values of 0.167 and 0.09 were observed. The difference in COF gives additional proof that the oil was only able to properly wet one side of the pin. High COF was obtained when a thick film was formed between the pin and the piston skirt due to hydrodynamic lubrication occurring. Lower COF is observed in the other direction when mixed lubrication is occurring. For more information on hydrodynamic lubrication and mixed lubrication, please visit our application note on Stribeck Curves.

Table 1: Results from lubricated wear test on pistons.

FIGURE 1: COF graphs for room temperature oil wear test A raw profile B high pass C low pass.

FIGURE 2: COF graphs for 90°C wear oil test A raw profile B high pass C low pass.

FIGURE 3: Optical image of wear scar from RT motor oil wear test.

FIGURE 4: Volume of a hole analysis of wear scar from RT motor oil wear test.

FIGURE 5: Profilometry scan of wear scar from RT motor oil wear test.

FIGURE 6: Optical image of wear scar from 90°C motor oil wear test

FIGURE 7: Volume of a hole analysis of wear scar from 90°C motor oil wear test.

FIGURE 8: Profilometry scan of wear scar from 90°C motor oil wear test.

CONCLUSION

Lubricated linear reciprocating wear testing was conducted on a piston to simulate events occurring in a
real-life operational engine. The piston skirt-lubricant-cylinder liner interfaces is crucial to the operations of an engine. The lubricant thickness at the interface is responsible for energy loss due to friction or wear between the piston skirt and cylinder liner. To optimize the engine, the film thickness must be as thin as possible without allowing the piston skirt and cylinder liner to touch. The challenge, however, is how changes in temperature, speed, and force will affect the P-L-C interfaces.

With its wide range of loading (up to 2000 N) and speed (up to 15000 rpm), the NANOVEA T2000 tribometer is able to simulate different conditions possible in an engine. Possible future studies on this topic include how the P-L-C interfaces will behave under different constant load, oscillated load, lubricant temperature, speed, and lubricant application method. These parameters can be easily adjusted with the NANOVEA T2000 tribometer to give a complete understanding on the mechanisms of the piston skirt-lubricant-cylinder liner interfaces.

NOW, LET'S TALK ABOUT YOUR APPLICATION

Glass Coating Humidity Wear Testing by Tribometer

Glass Coating Humidity Wear Testing by Tribometer

Learn more

 

GLASS COATING HUMIDITY

WEAR TESTING BY TRIBOMETER

Prepared by

DUANJIE LI, PhD

INTRODUCTION

Self-cleaning glass coating creates an easy-clean glass surface that prevents buildup of grime, dirt and staining. Its self-cleaning feature significantly reduces the frequency, time, energy and cleaning costs, making it an attractive choice for a variety of residential and commercial applications, such as glass facade, mirrors, shower glasses, windows and windshields.

IMPORTANCE OF WEAR RESISTANCE OF SELF-CLEANING GLASS COATING

A major application of the self-cleaning coating is the exterior surface of the glass facade on skyscrapers. The glass surface is often attacked by high-speed particles carried by strong winds. The weather condition also plays a major role in the service lifetime of the glass coating. It can be very difficult and costly to surface treat the glass and apply the new coating when the old one fails. Therefore, the wear resistance of the glass coating under
different weather condition is critical.


In order to simulate the realistic environmental conditions of the self-cleaning coating in different weather, repeatable wear evaluation in a controlled and monitored humidity is needed. It allows users to properly compare the wear resistance of the self-cleaning coatings exposed to different humidity and to select the best candidate for the targeted application.

MEASUREMENT OBJECTIVE

In this study, we showcased that the NANOVEA T100 Tribometer equipped with a humidity controller is an ideal tool for investigating the wear resistance of self-cleaning glass coatings in different humidity.

NANOVEA

T100

TEST PROCEDURES

The soda lime glass microscope slides were coated with self-clean glass coatings with two different treatment recipes. These two coatings are identified as Coating 1 and Coating 2. An uncoated bare glass slide is also tested for comparison.


NANOVEA Tribometer equipped with a humidity control module was used to evaluate the tribological behavior, e.g. coefficient of friction, COF, and wear resistance of the self-clean glass coatings. A WC ball tip (6 mm dia.) was applied against the tested samples. The COF was recorded in situ. The humidity controller attached to the tribo-chamber precisely controlled the relative humidity (RH) value in the range of ±1 %. The wear track morphology was examined under the optical microscope after the wear tests.

MAXIMUM LOAD 40 mN
RESULTS & DISCUSSION

The pin-on-disk wear tests in different humidity conditions were conducted on the coated and uncoated glass
samples. The COF was recorded in situ during the wear tests as shown in
FIGURE 1 and the average COF is summarized in FIGURE 2. FIGURE 4 compares the wear tracks after the wear tests.


As shown in
FIGURE 1, the uncoated glass exhibits a high COF of ~0.45 once the sliding movement begins in the 30% RH, and it progressively increases to ~0.6 at the end of the 300-revolution wear test. In comparison, the
coated glass samples Coating 1 and Coating 2 show a low COF below 0.2 at the beginning of the test. The COF
of Coating 2 stabilizes at ~0.25 during the rest of the test, while Coating 1 exhibits a sharp increase of COF at
~250 revolutions and the COF reaches a value of ~0.5. When the wear tests are carried out in the 60% RH, the
uncoated glass still shows a higher COF of ~0.45 throughout the wear test. Coatings 1 and 2 exhibit the COF values of 0.27 and 0.22, respectively. In the 90% RH, the uncoated glass possesses a high COF of ~0.5 at the end of the wear test. Coatings 1 and 2 exhibit comparable COF of ~0.1 as the wear test starts. Coating 1 maintains a relatively stable COF of ~0.15. Coating 2, however, fails at ~ 100 revolutions, followed by a significant increase of COF to ~0.5 towards the end of the wear test.


The low friction of the self-clean glass coating is caused by its low surface energy. It creates a very high static
water contact angle and low roll-off angle. It leads to formation of small water droplets on the coating surface in the 90% RH as shown under the microscope in
FIGURE 3. It also results in decrease of the average COF from ~0.23 to ~0.15 for Coating 2 as the RH value increases from 30% to 90%.

FIGURE 1: Coefficient of friction during the pin-on-disk tests in different relative humidity.

FIGURE 2: Average COF during the pin-on-disk tests in different relative humidity.

FIGURE 3: Formation of small water droplets on the coated glass surface.

FIGURE 4 compares the wear tracks on the glass surface after the wear tests in different humidity. Coating 1 exhibits signs of mild wear after the wear tests in the RH of 30% and 60%. It possesses a large wear track after the test in the 90% RH, in agreement with the significant increase of COF during the wear test. Coating 2 shows nearly no sign of wear after the wear tests in both dry and wet environment, and it also exhibits constant low COF during the wear tests in different humidity. The combination of good tribological properties and low surface energy makes Coating 2 a good candidate for self-cleaning glass coating applications in harsh environments. In comparison, the uncoated glass shows larger wear tracks and higher COF in different humidity, demonstrating the necessity of self-cleaning coating technique.

FIGURE 4: Wear tracks after the pin-on-disk tests in different relative humidity (200x magnification).

CONCLUSION

NANOVEA T100 Tribometer is a superior tool for evaluation and quality control of self-cleaning glass coatings in different humidity. The capacity of in-situ COF measurement allows users to correlate different stages of wear process with the evolution of COF, which is critical in improving fundamental understanding of the wear mechanism and tribological characteristics of the glass coatings. Based on the comprehensive tribological analysis on the self-cleaning glass coatings tested in different humidity, we show that Coating 2 possesses a constant low COF and superior wear resistance in both dry and wet environments, making it a better candidate for self-cleaning glass coating applications exposed to different weathers.


NANOVEA Tribometers offer precise and repeatable wear and friction testing using ISO and ASTM compliant rotative and linear modes, with optional high temperature wear, lubrication and tribo-corrosion modules available in one pre-integrated system. Optional 3D non-contact profiler is available for high
resolution 3D imaging of wear track in addition to other surface measurements such as roughness. 

NOW, LET'S TALK ABOUT YOUR APPLICATION

In Situ Wear Measurement at High Temperature

IN SITU WEAR MEASUREMENT AT HIGH TEMPERATURE

USING TRIBOMETER

IN-SITU WEAR MEASUREMENT Aerospace Tribometer

Prepared by

Duanjie Li, PhD

INTRODUCTION

The Linear Variable Differential Transformer (LVDT) is a type of robust electrical transformer used to measure linear displacement. It has been widely used in a variety of industrial applications, including power turbines, hydraulics, automation, aircraft, satellites, nuclear reactors, and many others.

In this study, we feature the add-ons of LVDT and high temperature modules of the NANOVEA Tribometer which allow the change of wear track depth of the tested sample to be measured during the wear process at elevated temperatures. This enables users to correlate different stages of wear process with the evolution of COF, which is critical in improving fundamental understanding of the wear mechanism and tribological characteristics of the materials for high temperature applications.

MEASUREMENT OBJECTIVE

In this study. we would like to showcase the capacity of NANOVEA T50 Tribometer for in situ monitoring the evolution of the wear process of materials at elevated temperatures.

The wear process of the alumina silicate ceramic at different temperatures is simulated in a controlled and monitored manner.

NANOVEA

T50

TEST PROCEDURE

The tribological behavior, e. g. coefficient of friction, COF, and wear resistance of alumina silicate ceramic plates was evaluated by the NANOVEA Tribometer. The alumina silicate ceramic plate was heated up by a furnace from room temperature, RT, to elevated temperatures (400°C and 800°C), followed by the wear tests at such temperatures. 

For comparison, the wear tests were carried out when the sample cooled down from 800°C to 400°C and then to room temperature. An AI2O3 ball tip (6mm dia., Grade 100) was applied against the tested samples. The COF, wear depth and temperature were monitored in situ.

TEST PARAMETERS

of the pin-on-disk measurement

Tribometer LVDT Sample

The wear rate, K, was evaluated using the formula K=V/(Fxs)=A/(Fxn), where V is the worn volume, F is the normal load, s is the sliding distance, A is the cross-sectional area of the wear track, and n is the number of revolution. Surface roughness and wear track profiles were evaluated by the NANOVEA Optical Profiler, and the wear track morphology was examined using an optical microscope.

RESULTS & DISCUSSION

The COF and wear track depth recorded in situ are shown in FIGURE 1 and FIGURE 2, respectively. In FIGURE 1, “-I” indicates the test performed when the temperature was increased from RT to an elevated temperature. “-D” represents the temperature decreased from a higher temperature of 800°C.

As shown in FIGURE 1, the samples tested at different temperatures exhibit a comparable COF of ~0.6 throughout the measurements. Such a high COF leads to an accelerated wear process which creates a substantial amount of debris. The wear track depth was monitored during the wear tests by LVDT as shown in FIGURE 2. The tests performed at room temperature before sample heating up and after sample cooling down show that the alumina silicate ceramic plate exhibits a progressive wear process at RT, the wear track depth gradually increases throughout the wear test to ~170 and ~150 μm, respectively. 

In comparison, the wear tests at elevated temperatures (400°C and 800°C) exhibit a different wear behavior – the wear track depth increases promptly at the beginning of the wear process, and it slows down as the test continues. The wear track depths for tests performed at temperatures 400°C-I, 800°C and 400°C-D are ~140, ~350 and ~210 μm, respectively.

COF during pin-on-desk Tests at different temperatures

FIGURE 1. Coefficient of Friction during pin-on-disk tests at different temperatures

Wear track depth of the alumina silicate ceramic plate at different temperatures

FIGURE 2. Evolution of wear track depth of the alumina silicate ceramic plate at different temperatures

The average wear rate and wear track depth of the alumina silicate ceramic plates at different temperatures were measured using NANOVEA Optical Profiler as summarized in FIGURE 3. The wear track depth is in agreement with that recorded using LVDT. The alumina silicate ceramic plate shows a substantially increased wear rate of ~0.5 mm3/Nm at 800°C, compared to the wear rates below 0.2mm3/N at temperatures below 400°C. The alumina silicate ceramic plate does not exhibit significantly enhanced mechanical/tribological properties after the short heating process, possessing a comparable wear rate before and after the heat treatment.

Alumina silicate ceramic, also knows as lava and wonderstone, is soft and machinable before heating treatment. A long process of firing at elevated temperatures up to 1093°C can substantially enhance its hardness and strength, after which diamond machining is required. Such a unique characteristic makes alumina silicate ceramic an ideal material for sculpture.

In this study, we show that heat treatment at a lower temperature that the one required for firing (800°C vs 1093°C) in a short time does not improve the mechanical and tribological characteristics of alumina silicate ceramic, making proper firing an essential process for this material before its usage in the real applications.

 
Wear rate and wear track depth of the sample at different temperatures 1

FIGURE 3. Wear rate and wear track depth of the sample at different temperatures

CONCLUSION

Based on the comprehensive tribological analysis in this study, we show that the alumina silicate ceramic plate exhibits comparable coefficient of friction at different temperatures from room temperature to 800°C. However, it shows a substantially increased wear rate of ~0.5 mm3/Nm at 800°C, demonstrating the importance of proper heat treatment of this ceramic.

NANOVEA Tribometers are capable of evaluating the tribological properties of materials for applications at high temperatures up to 1000°C. The function of in situ COF and wear track depth measurements allows users to correlate different stages of wear process with the evolution of COF, which is critical in improving fundamental understanding of the wear mechanism and tribological characteristics of the materials used at elevated temperatures.

NANOVEA Tribometers offer precise and repeatable wear and friction testing using ISO and ASTM compliant rotative and linear modes, with optional high temperature wear, lubrication and tribo-corrosion modules available in one pre-integrated system. NANOVEA’s unmatched range is an ideal solution for determining the full range of tribological properties of thin or thick, soft or hard coatings, films and substrates.

Optional 3D Non-Contact Profilers are available for high resolution 3D imaging of wear tracks in addition to other surface measurements such as roughness.

IN-SITU WEAR MEASUREMENT

NOW, LET'S TALK ABOUT YOUR APPLICATION