USA/GLOBAL: +1-949-461-9292
EUROPE: +39-011-3052-794
CONTACT US

Category: Profilometry | Roughness and Finish

 

Sandpaper Roughness Profilometer

Sandpaper: Roughness & Particle Diameter Analysis

Sandpaper: Roughness & Particle Diameter Analysis

Learn more

 

SANDPAPER

Roughness & Particle Diameter Analysis

Prepared by

FRANK LIU

INTRODUCTION

Sandpaper is a common commercially available product used as an abrasive. The most common use for sandpaper is to remove coatings or to polish a surface with its abrasive properties. These abrasive properties are classified into grits, each related to how smooth or
rough of a surface finish it will give. To achieve desired abrasive properties, manufactures of sandpaper must ensure that the abrasive particles are of a specific size and have little deviation. To quantify the quality of sandpaper, NANOVEA’s 3D Non-Contact Profilometer can be used to obtain the arithmetic mean (Sa) height parameter and average particle diameter of a sample area.

IMPORTANCE OF 3D NON-CONTACT OPTICAL PROFILER FOR SANDPAPER

When using sandpaper, interaction between abrasive particles and the surface being sanded must be uniform to obtain consistent surface finishes. To quantify this, the surface of the sandpaper can be observed with NANOVEA’s 3D Non-Contact Optical Profiler to see deviations in the particle sizes, heights, and spacing.

MEASUREMENT OBJECTIVE

In this study, five different sandpaper grits (120,
180, 320, 800, and 2000) are scanned with the
NANOVEA ST400 3D Non-Contact Optical Profiler.
The Sa is extracted from the scan and the particle
size is calculated by conducting a Motifs analysis to
find their equivalent diameter

NANOVEA

ST400

RESULTS & DISCUSSION

The sandpaper decreases in surface roughness (Sa) and particle size as the grit increases, as expected. The Sa ranged from 42.37 μm to 3.639 μm. The particle size ranges from 127 ± 48.7 to 21.27 ± 8.35. Larger particles and high height variations create stronger abrasive action on surfaces as opposed to smaller particles with low height variation.
Please note all definitions of the given height parameters are listed on page.A.1.

TABLE 1: Comparison between sandpaper grits and height parameters.

TABLE 2: Comparison between sandpaper grits and particle diameter.

2D & 3D VIEW OF SANDPAPER 

Below are the false-color and 3D view for the sandpaper samples.
A gaussian filter of 0.8 mm was used to remove the form or waviness.

MOTIF ANALYSIS

To accurately find the particles at the surface, the height scale threshold was redefined to only show the upper layer of the sandpaper. A motifs analysis was then conducted to detect the peaks.

CONCLUSION

NANOVEA’s 3D Non-Contact Optical Profiler was used to inspect the surface properties of various sandpaper grits due to its ability to scan surfaces with micro and nano features with precision.

Surface height parameters and the equivalent particle diameters were obtained from each of the sandpaper samples using advanced software to analyze the 3D scans. It was observed that as the grit size increased, the surface roughness (Sa) and particle size decreased as expected.

NOW, LET'S TALK ABOUT YOUR APPLICATION

Styrofoam Surface Boundary Measurement Profilometry

Surface Boundary Measurement

Surface Boundary Measurement Using 3D Profilometry

Learn more

 

SURFACE BOUNDARY MEASUREMENT

USING 3D PROFILOMETRY

Prepared by

Craig Leising

INTRODUCTION

In studies where the interface of surface features, patterns, shapes etc., are being evaluated for orientation, it will be useful to quickly identify areas of interest over the entire profile of measurement. By segmenting a surface into significant areas the user can quickly evaluate boundaries, peaks, pits, areas, volumes and many others to understand their functional role in the entire surface profile under study. For example, like that of a grain boundary imaging of metals, the importance of analysis is the interface of many structures and their overall orientation. By understanding each area of interest defects and or abnormalities within the overall area can be identified. Although grain boundary imaging is typically studied at a range surpassing Profilometer capability, and is only 2D image analysis, it is a helpful reference to illustrate the concept of what will be shown here on a larger scale along with 3D surface measurement advantages.

IMPORTANCE OF 3D NON CONTACT PROFILOMETER FOR SURFACE SEPARATION STUDY

Unlike other techniques such as touch probes or interferometry, the 3D Non Contact Profilometer, using axial chromatism, can measure nearly any surface, sample sizes can vary widely due to open staging and there is no sample preparation needed. Nano through macro range is obtained during surface profile measurement with zero influence from sample reflectivity or absorption, has advanced ability to measure high surface angles and there is no software manipulation of results. Easily measure any material: transparent, opaque, specular, diffusive, polished, rough etc. The technique of the Non Contact Profilometer provides an ideal, broad and user friendly capability to maximize surface studies when surface boundary analysis will be needed; along with the benefits of combined 2D & 3D capability.

MEASUREMENT OBJECTIVE

In this application the Nanovea ST400 Profilometer is used to measure the surface area of Styrofoam. Boundaries were established by combining a reflected intensity file along with the topography, which are simultaneously acquired using the NANOVEA ST400. This data was then used to calculate different shape and size information of each Styrofoam “grain”.

NANOVEA

ST400

RESULTS & DISCUSSION: 2D Surface Boundary Measurement

Topography image(below left) masked by reflected intensity image(below right) to clearly define grain boundaries. All grains below 565µm diameter have been ignored by applying filter.

Total number of grains: 167
Total projected area occupied by the grains: 166.917 mm² (64.5962 %)
Total projected area occupied by boundaries: (35.4038 %)
Density of grains: 0.646285 grains / mm2

Area = 0.999500 mm² +/- 0.491846 mm²
Perimeter = 9114.15 µm +/- 4570.38 µm
Equivalent diameter = 1098.61 µm +/- 256.235 µm
Mean diameter = 945.373 µm +/- 248.344 µm
Min diameter = 675.898 µm +/- 246.850 µm
Max diameter = 1312.43 µm +/- 295.258 µm

RESULTS & DISCUSSION: 3D Surface Boundary Measurement

By using the 3D topography data obtained, the volume, height, peak, aspect ratio and general shape information can be analyzed on each grain. Total 3D area occupied: 2.525mm3

CONCLUSION

In this application, we have shown how the NANOVEA 3D Non Contact Profilometer can precisely characterize the surface of Styrofoam. Statistical information can be gained over the entire surface of interest or on individual grains, whether they are peaks or pits. In this example all grains larger than a user defined size were used to show the area, perimeter, diameter and height. The features shown here can be critical to research and quality control of natural and pre fabricated surfaces ranging from bio medical to micromachining applications along with many others. 

NOW, LET'S TALK ABOUT YOUR APPLICATION

Contour Measurement using Profilometer by NANOVEA

Rubber Tread Contour Measurement

Rubber Tread Contour Measurement

Learn More
 

 

 

 

 

 

 

 

 

 

 

 

 

 

RUBBER TREAD CONTOUR MEASUREMENT

USING 3D OPTICAL PROFILER

Rubber Tread Contour Measurement - NANOVEA Profiler

Prepared by

ANDREA HERRMANN

INTRODUCTION

Like all materials, rubber’s coefficient of friction is related in part to its surface roughness. In vehicle tire applications, traction with the road is very important. Surface roughness and the tire’s treads both play a role in this. In this study, the rubber surface and tread’s roughness and dimensions are analyzed.

* THE SAMPLE

IMPORTANCE

OF 3D NON-CONTACT PROFILOMETRY

FOR RUBBER STUDIES

Unlike other techniques such as touch probes or interferometry, NANOVEA’s 3D Non-Contact Optical Profilers use axial chromatism to measure nearly any surface. 

The Profiler system’s open staging allows for a wide variety of sample sizes and requires zero sample preparation. Nano through macro range features can be detected during a single scan with zero influence from sample reflectivity or absorption. Plus, these profilers have the advanced ability to measure high surface angles without requiring software manipulation of results.

Easily measure any material: transparent, opaque, specular, diffusive, polished, rough etc. The measurement technique of the NANOVEA 3D Non-Contact Profilers provides an ideal, broad and user friendly capability to maximize surface studies along with the benefits of combined 2D & 3D capability.

MEASUREMENT OBJECTIVE

In this application, we showcase the NANOVEA ST400, a 3D Non-Contact Optical Profiler measuring the surface and treads of a rubber tire.

A sample surface area large enough to represent the entire tire surface was selected at random for this study. 

To quantify the rubber’s characteristics, we used the NANOVEA Ultra 3D analysis software to measure the contour dimensions, depth, roughness and developed area of the surface.

NANOVEA

ST400

ANALYSIS: TIRE TREAD

The 3D View and False Color View of the treads show the value of mapping 3D surface designs. It provides users a straightforward tool to directly observe the size and shape of the treads from different angles. The Advanced Contour Analysis and Step Height Analysis are both extremely powerful tools for measuring precise dimensions of sample shapes and design

ADVANCED CONTOUR ANALYSIS

STEP HEIGHT ANALYSIS

ANALYSIS: RUBBER SURFACE

The rubber surface can be quantified in numerous ways using built-in software tools as shown in the following figures as examples. It can be observed that the surface roughness is 2.688 μm, and the developed area vs. projected area is 9.410 mm² vs. 8.997 mm². This information allows us to examine the relationship between surface finish and the traction of different rubber formulations or even rubber with varying degrees of surface wear.

CONCLUSION

In this application, we have shown how the NANOVEA 3D Non-Contact Optical Profiler can precisely characterize the surface roughness and tread dimensions of rubber.

The data shows a surface roughness of 2.69 ­µm and a developed area of 9.41 mm² with a projected area of 9 mm². Various dimensions and radii of the rubber treads were measured as well.

The information presented in this study can be used to compare the performance of rubber tires with di­fferent tread designs, formulations, or varying degrees of wear. The data shown here represents only a portion of the calculations available in the Ultra 3D analysis software.

NOW, LET'S TALK ABOUT YOUR APPLICATION

Fish Scale Surface Analysis Using 3D Optical Profiler

Fish Scale Surface Analysis Using 3D Optical Profiler

Learn more

 

FISH SCALE SURFACE ANALYSIS

using 3D OPTICAL PROFILER

Fish Scales profilometer

Prepared by

Andrea Novitsky

INTRODUCTION

The morphology, patterns, and other features of a fish scale are studied using the NANOVEA 3D Non-Contact Optical Profiler. The delicate nature of this biological sample along with its very small and high angled grooves also highlights the importance of the profiler’s non-contact technique. The grooves on the scale are called circuli, and can be studied to estimate the age of the fish, and even distinguish periods of different rates of growth, similar to the rings of a tree. This is very important information for the management of wild fish populations in order to prevent overfishing.

Importance of 3D Non-Contact Profilometry FOR BIOLOGICAL STUDIES

Unlike other techniques such as touch probes or interferometry, the 3D Non-Contact Optical Profiler, using axial chromatism, can measure nearly any surface. Sample sizes can vary widely due to open staging and there is no sample preparation needed. Nano through macro range features are obtained during a surface profile measurement with zero influence from sample reflectivity or absorption. The instrument provides an advanced ability to measure high surface angles with no software manipulation of the results. Any material can be easily measured, whether it’s transparent, opaque, specular, diffusive, polished or rough. The technique provides an ideal, broad and user friendly capability to maximize surface studies along with the benefits of combined 2D & 3D capabilities.

MEASUREMENT OBJECTIVE

In this application, we showcase NANOVEA ST400, a 3D Non-Contact Profiler with a high-speed sensor, providing comprehensive analysis of the surface of a scale.

The instrument has been used to scan the entire sample, along with a higher resolution scan of the center area. The outer and inner side surface roughness of the scale was measured for comparison as well.

NANOVEA

ST400

3D & 2D Surface Characterization of Outer Scale

The 3D View and False Color View of the outer scale show a complex structure similar to a finger print or the rings of a tree. This provides users a straightforward tool to directly observe the surface characterization of the scale from different angles. Various other measurements of the outer scale are shown along with the comparison of the outer and inner side of the scale.

Fish Scale Scan 3D View Profilometer
Fish Scale Scan Volume 3D Profilometer
Fish Scale Scan Step Height 3D Optical Profiler

SURFACE ROUGHNESS COMPARISON

Fish Scale Profilometer 3D Scanning

CONCLUSION

In this application, we have shown how the NANOVEA 3D Non-Contact Optical Profiler can characterize a fish scale in a variety of ways. 

The outer and inner surfaces of the scale can be easily distinguished by surface roughness alone, with roughness values of 15.92μm and 1.56μm respectively. Additionally, precise and accurate information can be learned about a fish scale by analyzing the grooves, or circuli, on the outer surface of the scale. The distance of bands of circuli from the center focus were measured, and the height of the circuli were also found to be approximately 58μm high on average. 

The data shown here represents only a portion of the calculations available in the analysis software.

NOW, LET'S TALK ABOUT YOUR APPLICATION

Pharmaceutical Tablets Surface Roughness Inspection

 

Pharmaceutical Tablets

Inspecting Roughness using 3d profilometers

Author:

Jocelyn Esparza

Introduction

Pharmaceutical tablets are the most popular medicinal dosage used today. Each tablet is made up by a combination of active substances (the chemicals that produce pharmacological effect) and inactive substances (disintegrant, binder, lubricant, diluent – usually in the form of powder). The active and inactive substances are then compressed or molded into a solid. Then, depending on the manufacturer specifications, the tablets are either coated or uncoated.

To be effective, tablet coatings need to follow the fine contours of embossed logos or characters on tablets, they need to be stable and sturdy enough to survive handling of the tablet, and they must not cause the tablets to stick to each other during the coating process. Current tablets typically have a polysaccharide and polymer-based coating which include substances like pigments and plasticizers. The two most common types of table coatings are film coatings and sugar coating. Compared to sugar coatings, film coatings are less bulky, more durable, and are less time-consuming to prepare and apply. However, film coatings have more difficulty hiding tablet appearance.

Tablet coatings are essential for moisture protection, masking the taste of the ingredients, and making the tablets easier to swallow. More importantly, the tablet coating controls the location and the rate in which the drug is released.

MEASUREMENT OBJECTIVE

In this application, we use the NANOVEA Optical Profiler and advanced Mountains software to measure and quantify the topography of various name brand pressed pills (1 coated and 2 uncoated) to compare their surface roughness.

It is assumed that Advil (coated) will have the lowest surface roughness due to the protective coating it has.

NANOVEA

HS2000

Test Conditions

Three batches of name brand pharmaceutical pressed tablets were scanned with the Nanovea HS2000
using High-Speed Line Sensor to measure various surface roughness parameters according to ISO 25178.

Scan Area

2 x 2 mm

Lateral Scan Resolution

5 x 5 μm

Scan Time

4 sec

Samples

Results & Discussion

After scanning the tablets, a surface roughness study was conducted with the advanced Mountains analysis software to calculate the surface average, root-mean-square, and maximum height of each tablet.

The calculated values support the assumption that Advil has a lower surface roughness due to the protective coating encasing its ingredients. Tylenol shows to have the highest surface roughness out of all three measured tablets.

A 2D and 3D height map of each tablet’s surface topography was produced which show the height distributions measured. One out of the five tablets were selected to represent the height maps for each brand. These height maps make a great tool for visual detection of outlying surface features such as pits or peaks.

Conclusion

In this study, we analyzed and compared the surface roughness of three name brand pressed pharmaceutical pills: Advil, Tylenol, and Excedrin. Advil proved to have the lowest average surface roughness. This can be attributed to the presence of the orange coating incasing the drug. In contrast, both Excedrin and Tylenol lack coatings, however, their surface roughness still differ from each other. Tylenol proved to have the highest average surface roughness out of all the tablets studied.

Using the NANOVEA HS2000 with High-Speed Line Sensor, we were able to measure 5 tablets in less than 1 minute. This can prove to be useful for quality control testing of hundreds of pills in a production today.

NOW, LET'S TALK ABOUT YOUR APPLICATION

Dental-Screws-dimensional-measurement-using-3d-profilometer

Dental Tools: Dimensional and Surface Roughness Analysis



INTRODUCTION

 

Having precise dimensions and optimal surface roughness are vital to the functionality of dental screws. Many dental screw dimensions require high precision such as radii, angles, distances, and step heights. Understanding local surface roughness is also highly important for any medical tool or part being inserted inside the human body to minimize sliding friction.

 

 

NON-CONTACT PROFILOMETRY FOR DIMENSIONAL STUDY

 

Nanovea 3D Non-Contact Profilers use a chromatic light-based technology to measure any material surface: transparent, opaque, specular, diffusive, polished or rough. Unlike a touch probe technique, the non-contact technique can measure inside tight areas and will not add any intrinsic errors due to deformation caused by the tip pressing on a softer plastic material.  Chromatic light-based technology also offers superior lateral and height accuracies compared to focus variation technology. Nanovea Profilers can scan large surfaces directly without stitching and profile the length of a part in a few seconds. Nano through macro range surface features and high surface angles can be measured due to the profiler’s ability to measure surfaces without any complex algorithms manipulating the results.

 

 

MEASUREMENT OBJECTIVE

 

In this application, the Nanovea ST400 Optical Pro­filer was used to measure a dental screw along flat and thread features in a single measurement. The surface roughness was calculated from the flat area, and various dimensions of the threaded features were determined.

 

dental screw quality control

Sample of dental screw analyzed by NANOVEA Optical Profiler.

 

Dental screw sample analyzed.

 

RESULTS

 

3D Surface

The 3D View and False Color View of the dental screw shows a flat area with threading starting on either side. It provides users a straightforward tool to directly observe the morphology of the screw from different angles. The flat area was extracted from the full scan to measure its surface roughness.

 

 

2D Surface Analysis

Line profiles can also be extracted from the surface to show a cross-sectional view of the screw. The Contour Analysis and step height studies were used to measure precise dimensions at a certain location on the screw.

 

 

CONCLUSION

 

In this application, we have showcase the Nanovea 3D Non-Contact Profiler’s ability to precisely calculate local surface roughness and measure large dimensional features in a single scan.

The data shows a local surface roughness of 0.9637 μm. The radius of the screw between threads was found to be 1.729 mm, and the threads had an average height of 0.413 mm. The average angle between the threads was determined to be 61.3°.

The data shown here represents only a portion of the calculations available in the analysis software.

 

Prepared by
Duanjie Li, PhD., Jonathan Thomas, and Pierre Leroux

In-line Roughness Inspection

Instant Error Detection With In-Line Profilers

Learn more
 

IMPORTANCE OF NON-CONTACT PROFILER FOR IN-LINE ROUGHNESS INSPECTION

Surface defects derive from materials processing and product manufacturing. In-line surface quality inspection ensures the tightest quality control of the end products. The Nanovea 3D Non-Contact Profilometers utilize chromatic confocal technology with a unique capability to determine the roughness of a sample with-out contact. Multiple profiler sensors can be installed to monitor the roughness and texture of different areas of the product at the same time. The roughness threshold calculated in real-time by the analysis software serves as a fast and reliable pass/fail tool.

MEASUREMENT OBJECTIVE

In this study, the Nanovea roughness inspection conveyor system equipped with a point sensor is used to inspect the surface roughness of the acrylic and sandpaper samples. We showcase the capacity of Nanovea non-contact profilometer in providing fast and reliable in-line roughness inspection in a production line in real-time.

RESULTS AND DISCUSSION

The conveyor profilometer system can operate in two modes, namely Trigger Mode and Continuous Mode. As illustrated in Figure 2, the surface roughness of the samples are measured when they are passing under the optical profiler heads under the Trigger Mode. In comparison, Continuous Mode provides non-stop measurement of the surface roughness on the continuous sample, such as metal sheet and fabric. Multiple optical profiler sensors can be installed to monitor and record the roughness of different sample areas.

 

During the real-time roughness inspection measurement, the pass and fail alerts are displayed on the software windows as shown in Figure 4 and Figure 5. When the roughness value is within the given thresholds, the measured roughness is highlighted in green color. However, the highlight turns red when the measured surface roughness is out of the range of the set threshold values. This provides a tool for the user to determine the quality of a product’s surface finish.

In the following sections, two types of samples, e.g. Acrylic and Sandpaper are used to demonstrate the Trigger and Continuous Modes of the Inspection system.

Trigger Mode: Surface inspection of the Acrylic Sample

A series of Acrylic samples are aligned on the conveyor belt and move under the optical profiler head as shown in Figure 1. The false color view in Figure 6 shows the change of the surface height. Some of the mirror-like finished Acrylic samples had been sanded to create a rough surface texture as shown in Figure 6b.

As the Acrylic samples move at a constant speed under the optical profiler head, the surface profile is measured as shown in Figure 7 and Figure 8. The roughness value of the measured profile is calculated at the same time and compared to the threshold values. The red fail alert is launched when the roughness value is over the set threshold, allowing users to immediately detect and locate the defective product on the production line.

Continuous Mode: Surface Inspection of the sandpaper sample

Surface Height Map, Roughness Distribution Map, and Pass / Fail Roughness Threshold Map of the sandpaper sample surface as shown in Figure 9. The sandpaper sample has a couple of higher peaks in the used part as shown in the surface height map. The different colors in the pallet of Figure 9C represent the roughness value of the local surface. The Roughness Map exhibits a homogeneous roughness in the intact area of the sandpaper sample, while the used area is highlighted in dark blue color, indicating the reduced roughness value in this region. A Pass/Fail roughness threshold can be set up to locate such regions as shown in Figure 9D.

As the sandpaper continuously passes under the in-line profiler sensor, the real-time local roughness value is calculated and recorded as plotted in Figure 10. The pass/fail alerts are displayed on the software screen based on the set roughness threshold values, serving as a fast and reliable tool for quality control. The product surface quality in the production line is inspected in situ to discover defective areas in time.

CONCLUSION

In this application, we have shown the Nanovea Conveyor Profilometer equipped with an optical non-contact profiler sensor works as a reliable in-line quality control tool effectively and efficiently.

The inspection system can be installed in the production line to monitor the surface quality of the products in situ. The roughness threshold works as a dependable criteria to determine the surface quality of the products, allowing users to notice the defective products in time. Two inspection modes, namely Trigger Mode and Continuous Mode, are provided to meet the requirement for inspection on different types of products.

The data shown here represent only a portion of the calculations available in the analysis software. Nanovea Profilometers measure virtually any surface in fields including Semiconductor, Microelectronics, Solar, Fiber, Optics, Automotive, Aerospace, Metallurgy, Machining, Coatings, Pharmaceutical, Biomedical, Environmental and many others.

NOW, LET'S TALK ABOUT YOUR APPLICATION

Block-On-Ring Wear Test

IMPORTANCE OF BLOCK-ON-RING WEAR EVALUATION

Sliding wear is the progressive loss of material that results from two materials sliding against each other at the contact area under load. It occurs inevitably in a wide variety of industries where machines and engines are in operation, including automotive, aerospace, oil & gas and many others. Such sliding motion causes serious mechanical wear and material transfer at the surface, which may lead to reduced production efficiency, machine performance or even damage to the machine.
 

 

Sliding wear often involves complex wear mechanisms taking place at the contact surface, such as adhesion wear, two-body abrasion, three-body abrasion and fatigue wear. The wear behavior of materials is significantly influenced by the work environment, such as normal loading, speed, corrosion and lubrication. A versatile tribometer that can simulate the different realistic work conditions will be ideal for wear evaluation.
Block-on-Ring (ASTM G77) test is a widely used technique that evaluates the sliding wear behaviors of materials in different simulated conditions, allows reliable ranking of material couples for specific tribological applications.
 
 

 

MEASUREMENT OBJECTIVE

In this application, the Nanovea Mechanical Tester measures the YS and UTS of stainless steel SS304 and aluminum Al6061 metal alloy samples. The samples were chosen for their commonly recognized YS and UTS values showing the reliability of Nanovea’s indentation methods.

 

The sliding wear behavior of an H-30 block on an S-10 ring was evaluated by Nanovea’s tribometer using the Block-on-Ring module. The H-30 block is made of 01 tool steel of 30HRC hardness, while the S-10 ring is steel type 4620 of surface hardness 58 to 63 HRC and ring diameter of ~34.98 mm. Block-on-Ring tests were performed in dry and lubricated environments to investigate the effect on wear behavior. Lubrication tests were performed in USP heavy mineral oil. The wear track was examined using Nanovea’s 3D non-contact profilometer. Test parameters are summarized in Table 1. The wear rate (K), was evaluated using the formula K=V/(F×s), where V is the worn volume, F is the normal load, s is the sliding distance.

 

 

RESULTS AND DISCUSSION

Figure 2 compares the coefficient of friction (COF) of the Block-on-Ring tests in dry and lubricated environments. The block has significantly more friction in a dry environment than a lubricated environment. COF
fluctuates during the run-in period in the first 50-revolution and reaches a constant COF of ~0.8 for the rest of the 200-revolution wear test. In comparison, the Block-on-Ring test performed in the USP heavy mineral oil lubrication exhibits constant low COF of 0.09 throughout the 500,000-revolution wear test. The lubricant significantly reduces the COF between the surfaces by ~90 times.

 

Figures 3 and 4 show the optical images and cross-section 2D profiles of the wear scars on the blocks after dry and lubricated wear tests. The wear track volumes and wear rates are listed in Table 2. The steel block after the dry wear test at a lower rotational speed of 72 rpm for 200 revolutions exhibits a large wear scar volume of 9.45 mm˙. In comparison, the wear test carried out at a higher speed of 197 rpm for 500,000 revolutions in the mineral oil lubricant creates a substantially smaller wear track volume of 0.03 mm˙.

 


The images in ÿgure 3 show severe wear takes place during tests in the dry conditions compared to the mild wear from the lubricated wear test. High heat and intense vibrations generated during the dry wear test promotes oxidation of metallic debris resulting in severe three-body abrasion. In the lubricated test the mineral oil reduces friction and cools the contact face as well as transporting abrasive debris created during wear away. This leads to signiÿcant reduction of wear rate by a factor of ~8×10ˆ. Such a substantial di˛erence in wear resistance in di˛erent environments shows the importance of proper sliding wear simulation in realistic service conditions.

 


Wear behavior can change drastically when small changes in test conditions are introduced. The versatility of Nanovea’s tribometer allows wear measurement in high temperature, lubrication, and tribocorrosion conditions. The accurate speed and position control by the advanced motor enables wear tests to be performed at speeds ranging from 0.001 to 5000 rpm, making it an ideal tool for research/testing labs to investigate the wear in di˛erent tribological conditions.

 

The surface condition of the samples was examined by Nanovea’s non-contact optical proÿlometer. Figure 5 shows the surface morphology of the rings after the wear tests. The cylinder form is removed to better present the surface morphology and roughness created by the sliding wear process. Signiÿcant surface roughening took place due to the three-body abrasion process during the dry wear test of 200 revolutions. The block and ring after the dry wear test exhibit a roughness Ra of 14.1 and 18.1 µm, respectively, compared to 5.7 and 9.1 µm for the long-term 500,000 – revolution lubricated wear test at a higher speed. This test demonstrates the importance of proper lubrication of piston ring-cylinder contact. Severe wear quickly damages the contact surface without lubrication and leads to irreversible deterioration of the service quality and even breakage of the engine.

 

 

CONCLUSION

In this study we showcase how Nanovea’s Tribometer is used to evaluate the sliding wear behavior of a steel metal couple using the Block-on-Ring module following the ASTM G77 Standard. The lubricant plays a critical role in the wear properties of the material couple. The mineral oil reduces the wear rate of the H-30 block by a factor of ~8×10ˆ and the COF by ~90 times. The versatility of Nanovea’s Tribometer makes it an ideal tool for measuring wear behavior under various lubrication, high temperature, and tribocorrosion conditions.

Nanovea’s Tribometer o˛ers precise and repeatable wear and friction testing using ISO and ASTM compliant rotative and linear modes, with optional high-temperature wear, lubrication, and tribo-corrosion modules available in one pre-integrated system. Nanovea’s unmatched range is an ideal solution for determining the full range of tribological properties of thin or thick, soft, or hard coatings, ÿlms, and substrates.

NOW, LET'S TALK ABOUT YOUR APPLICATION

Paint Orange Peel Texture Analysis using 3D Profilometry

Paint Orange Peel Texture Analysis using 3D Profilometry

Introduction

The size and frequency of surface structures on substrates affect the quality of gloss coatings. Paint orange peel texture, named after its appearance, can develop from substrate influence and paint application technique. Texture problems are commonly quantified by waviness, wavelength, and the visual effect they have on gloss coatings. The smallest textures result in gloss reduction while larger textures result in visible ripples on the coated surface. Understanding the development of these textures and its relation to substrates and techniques are critical to quality control.

Importance of Profilometry for Texture Measurement

Unlike traditional 2D instruments used to measure gloss texture, 3D non-contact measurement quickly provides a 3D image used to understand surface characteristics with the added ability to quickly investigate areas of interest. Without speed and 3D review, a quality control environment would solely rely on 2D information that gives little predictability of the entire surface. Understanding textures in 3D allows for the best selection of processing and control measures. Assuring quality control of such parameters heavily relies on quantifiable, reproducible, and reliable inspection. Nanovea 3D Non-Contact Profilometers utilize chromatic confocal technology to have the unique capability to measure the steep angles found during fast measurement. Nanovea Profilometers succeed where other techniques fail to provide reliable data due to probe contact, surface variation, angle, or reflectivity.

Measurement Objective

In this application, the Nanovea HS2000L measures the paint orange peel texture of a gloss paint. There are endless surface parameters automatically calculated from the 3D surface scan. Here we analyze a scanned 3D surface by quantifying the characteristics of the paint orange peel texture.

Results and Discussion

The Nanovea HS2000L quantified isotropy and height parameters of the orange peel paint. The orange peel texture quantified the random pattern direction with 94.4% isotropy. Height parameters quantify the texture with a 24.84µm height difference.

The bearing ratio curve in Figure 4 is a graphical representation of the depth distribution. This is an interactive feature within the software that allows the user to view distributions and percentages at varying depths. An extracted profile in Figure 5 gives useful roughness values for the orange peel texture. Peak extraction above a 144 micron threshold shows the orange peel texture. These parameters are easily adjusted to other areas or parameters of interest.

Conclusion

In this application, the Nanovea HS2000L 3D Non-Contact Profilometer precisely characterizes both topography and nanometer details of the paint orange peel texture on a gloss coating. Areas of interest from 3D surface measurements are quickly identified and analyzed with many useful measurements (Dimension, Roughness Finish Texture, Shape Form Topography, Flatness Warpage Planarity, Volume Area, Step-Height, etc.). Quickly chosen 2D cross-sections provide a complete set of surface measurement resources on gloss texture. Special areas of interest can be further analyzed with an integrated AFM module. Nanovea 3D Profilometer’s speed ranges from <1 mm/s to 500 mm/s for suitability in research applications to the needs of high-speed inspection. Nanovea 3D Profilometers have a wide range of configurations to suit your application.

NOW, LET'S TALK ABOUT YOUR APPLICATION

3D Surface Analysis of a Penny with Non-contact Profilometry

Importance of Non-contact Profilometry for Coins

Currency is highly valued in modern society because it is traded for goods and services. Coin and paper bill currency circulates around the hands of many people. Constant transfer of physical currency creates surface deformation. Nanovea’s 3D Profilometer scans the topography of coins minted in different years to investigate surface differences.

Coin features are easily recognizable to the general public since they are common objects. A penny is ideal for introducing the strength of Nanovea’s Advanced Surface Analysis Software: Mountains 3D. Surface data collected with our 3D Profilometer allows for high level analyses on complex geometry with surface subtraction and 2D contour extraction. Surface subtraction with a controlled mask, stamp, or mold compares the quality of manufacturing processes while contour extraction identifies tolerances with dimensional analysis. Nanovea’s 3D Profilometer and Mountains 3D software investigates the submicron topography of seemingly simple objects, like pennies.



Measurement Objective

The full upper surface of five pennies were scanned using Nanovea’s High-Speed Line Sensor. The inner and outer radius of each penny was measured using Mountains Advanced Analysis Software. An extraction from each penny surface at an area of interest with direct surface subtraction quantified surface deformation.

 



Results and Discussion

3D Surface

The Nanovea HS2000 profilometer took only 24 seconds to scan 4 million points in a 20mm x 20mm area with a 10um x 10um step size to acquire the surface of a penny. Below is a height map and 3D visualization of the scan. The 3D view shows the High-Speed sensor’s ability to pick up small details unperceivable to the eye. Many small scratches are visible across the surface of the penny. Texture and roughness of the coin seen in the 3D view are investigated.

 










Dimensional Analysis

The contours of the penny were extracted and dimensional analysis obtained inner and outer diameters of the edge feature. The outer radius averaged 9.500 mm ± 0.024 while the inner radius averaged 8.960 mm ± 0.032. Additional dimensional analyses Mountains 3D can do on 2D and 3D data sources are distance measurements, step height, planarity, and angle calculations.







Surface Subtraction

Figure 5 shows the area of interest for the surface subtraction analysis. The 2007 penny was used as the reference surface for the four older pennies. Surface subtraction from the 2007 penny surface shows differences between pennies with holes/peaks. Total surface volume difference is obtained from adding volumes of the holes/peaks. The RMS error refers to how closely penny surfaces agree with each other.


 









Conclusion





Nanovea’s High-Speed HS2000L scanned five pennies minted in different years. Mountains 3D software compared surfaces of each coin using contour extraction, dimensional analysis, and surface subtraction. The analysis clearly defines the inner and outer radius between the pennies while directly comparing surface feature differences. With Nanovea’s 3D profilometer’s ability to measure any surfaces with nanometer-level resolution, combined with Mountains 3D analysis capabilities, the possible Research and Quality Control applications are endless.

 


NOW, LET'S TALK ABOUT YOUR APPLICATION