USA/GLOBAL: +1-949-461-9292
EUROPE: +39-011-3052-794
CONTACT US

Category: Profilometry | Volume and Area

 

Portability and Flexibility of the Jr25 3D Non-contact Profilometer

Understanding and quantifying a sample’s surface is crucial for many applications including quality control and research. To study surfaces, profilometers are often used to scan and image samples. A large problem with conventional profilometry instruments is the inability to accommodate for non conventional samples. Difficulties in measuring non conventional samples can occur due to sample size, geometry, inability to move the sample, or other inconvenient sample preparations. Nanovea’s portable 3D non-contact profilometers, the JR series, is able to solve most of these problems with its ability to scan sample surfaces from varying angles and its portability.

Read about the Jr25 Non-contact Profilometer!

Quality Analysis on Electrical Discharge Machined Metals

Electrical discharge machining, or EDM, is a manufacturing process that removes material via electrical
discharges [1]. This machining process is generally used with conductive metals that would be difficult
to machine with conventional methods.

As with all machining processes, precision and accuracy must be high in order to meet acceptable
tolerance levels. In this application note, the quality of the machined metals will be assessed with a
Nanovea 3D non-contact profilometer.

Click to read!

A BETTER Look at Polycarbonate Lens

A BETTER Look at Polycarbonate Lens Learn more
 
Polycarbonate lenses are commonly used in many optical applications. Their high impact resistance, low weight, and cheap cost of high-volume production makes them more practical than traditional glass in various applications [1]. Some of these applications require safety (e.g. safety eyewear), complexity (e.g. Fresnel lens) or durability (e.g. traffic light lens) criteria that are difficult to meet without the use of plastics. Its ability to cheaply meet many requirements while maintaining sufficient optical qualities makes plastic lenses stand out in its field. Polycarbonate lenses also have limitations. The main concern for consumers is the ease at which they can be scratched. To compensate for this, extra processes can be carried out to apply an anti-scratch coating. Nanovea takes a look into some important properties of plastic lens by utilizing our three metrology instruments: Profilometer, Tribometer, and Mechanical Tester.   Click to Read More!

Mechanical Properties of Silicon Carbide Wafer Coatings

Understanding the mechanical properties of silicon carbide wafer coatings is critical. The fabrication process for microelectronic devices can have over 300 different processing steps and can take anywhere from six to eight weeks. During this process, the wafer substrate must be able to withstand the extreme conditions of manufacturing, since a failure at any step would result in the loss of time and money. The testing of hardness, adhesion/scratch resistance and COF/wear rate of the wafer must meet certain requirements in order to survive the conditions imposed during the manufacturing and application process to insure a failure will not occur.

Mechanical Properties of Silicon Carbide Wafer Coatings

Replica Molding of Inner Pipe Corrosion

Surface finish of the metal pipe is critical for its product quality and performance. Rust progressively builds up and pits initiate and grow on the metal surface as corrosion process takes place, resulting in roughening of the pipe surface. The differential galvanic properties between metals, the ionic influences of solutions as well as the solution pH may all play roles in the pipe corrosion process, leading to corroded metal with different surface features. An accurate surface roughness and texture measurement of the corroded surface provides insight in the mechanisms involved in a specific corrosion process. Conventional profilometers have difficulty in reaching in and measuring the corroded inner pipe wall. Replica molding provides a solution by replicating the inner surface features in a non-destructive way. It can easily be applied on the inner wall of the corroded pipe and sets in 15 min. We scan the replicated surface of the replica molding to obtain the surface morphology of the inner pipe wall.

Replica Molding of Inner Pipe Corrosion

Surface Analysis of Carbon & Zeolite Catalysts Using 3D Profilometry

In this application the Nanovea ST400 Profilometer is used to measure the surface of carbon and zeolite catalysts. The area measured was selected at random, and assumed large enough in that it could be extrapolated to make assumptions about a much larger surface. Surface roughness and developed area will be used to characterize the available surface area.

Surface Analysis of Carbon & Zeolite Catalysts Using 3D Profilometry

Pitting Corrosion density, area, volume, size and shape

In this application the Nanovea ST400 Profilometer is used to measure the surface of a corrosion pitted stainless steel coupon. The area measured was selected at random, and assumed large enough in that it could be extrapolated to make assumptions
about a much larger surface. Density, area, volume, size and shape will be used here to quantify the level of corrosion.

Pitting Corrosion Measurement Using 3D Profilometry

Micro Scratch Depth Measurement Using 3D Profilometry

In this application the Nanovea ST400 Profilometer is used for depth measurement of a row of micro scratches created using Nanovea’s Mechanical Tester in scratch mode. In seconds the Profilometer, with a single line pass in 2D mode, provides area and depth  measurement.

Depth Measurement of Micro Scratches Using 3D Profilometry