COVID-19: In these troubled times, NANOVEA devotes necessary resources to maintain all of the essential services you count on. Stay safe!
CONTACT SUPPORT CONTACT US

Creep Deformation of Polymers using Nanoindentation

Creep Deformation of Polymers using Nanoindentation

Learn more

 

CREEP DEFORMATION

OF POLYMERS USING NANOINDENTATION

Prepared by

DUANJIE LI, PhD

INTRODUCTION

As viscoelastic materials, polymers often undergo a time-dependent deformation under a certain applied load, also known as creep. Creep becomes a critical factor when the polymeric parts are designed to be exposed to continuous stress, such as structural components, joins and fittings, and hydrostatic pressure vessels.

IMPORTANCE OF CREEP MEASUREMENT FOR POLYMERS

The inherent nature of viscoelasticity plays a vital role in the performance of polymers and directly influences their service reliability. The environmental conditions such as loading and temperature affect the creep behavior of the polymers. Creep failures often occur due to the lack of alertness of the time-dependent creep behavior of the polymer materials used under specific service conditions. As a result, it is important to develop a reliable and quantitative test of the viscoelastic mechanical behaviors of the polymers. The Nano module of the NANOVEA Mechanical Testers applies the load with a high-precision piezo and directly measures the evolution of force and displacement in situ. The combination of accuracy and repeatability makes it an ideal tool for creep measurement.

MEASUREMENT OBJECTIVE

In this application, we showcased that
the NANOVEA PB1000 Mechanical Tester
in Nanoindentation mode is an ideal tool
for studying viscoelastic mechanical properties
including hardness, Young’s modulus
and creep of polymeric materials.

NANOVEA

PB1000

TEST CONDITIONS

Eight different polymer samples were tested by nanoindentation technique using the NANOVEA PB1000 Mechanical Tester. As the load linearly increased from 0 to 40 mN, the depth progressively increased during the loading stage. The creep was then measured by the change of indentation depth at the maximum load of 40 mN for 30 s.

MAXIMUM LOAD 40 mN
LOADING RATE
80 mN/min
UNLOADING RATE 80 mN/min
CREEP TIME
30 s

INDENTER TYPE

Berkovich

Diamond

*setup of the nanoindentation test

RESULTS & DISCUSSION

The load vs displacement plot of the nanoindentation tests on different polymer samples is shown in FIGURE 1 and the creep curves are compared
in FIGURE 2. The hardness and Young’s modulus are summarized in  FIGURE 3, and the creep depth is shown in FIGURE 4. As an examples in FIGURE 1, the AB, BC and CD portions of the load-displacement curve for
the nanoindentation measurement represent the loading, creep and
unloading processes, respectively.


Delrin and PVC exhibit the highest hardness of 0.23 and 0.22 GPa, respectively, while LDPE possesses the lowest hardness of 0.026 GPa among the tested polymers. In general, the harder polymers show lower creep rates. The softest LDPE has the highest creep depth of 798 nm,
compared to ~120 nm for Delrin.


The creep properties of the polymers are critical when they are used in structural parts. By precisely measuring the hardness and creep of the polymers, a better understanding of the time-dependent reliability of the polymers can be obtained. The creep, change of the displacement at a given load, can also be measured at different elevated temperatures and humidity using the NANOVEA PB1000 Mechanical Tester, providing an ideal tool to quantitatively and reliably measure the viscoelastic mechanical behaviors of polymers
in the simulated realistic application environment.

FIGURE 1: The load vs displacement plots
of different polymers.

FIGURE 2: Creeping at a maximum load of 40 mN for 30 s.

FIGURE 3: Hardness and Young’s modulus of the polymers.

FIGURE 4: Creep depth of the polymers.

CONCLUSION

In this study, we showcased that the NANOVEA PB1000
Mechanical Tester measures the mechanical properties of different polymers, including hardness, Young’s modulus and creep. Such mechanical properties are essential in selecting the proper polymer material for intended applications. Derlin and PVC exhibit the highest hardness of 0.23 and 0.22 GPa, respectively, while LDPE possesses the lowest hardness of 0.026 GPa among the tested polymers. In general, the harder polymers exhibit lower creep rates. The softest LDPE shows the highest creep depth of 798 nm, compared to ~120 nm for Derlin.

The NANOVEA Mechanical Testers provide unmatched
multi-function Nano and Micro modules on a single platform.
Both the Nano and Micro modules include scratch tester, hardness tester and wear tester modes, providing the wildest and most user-friendly range of testing available on a single system.

LEARN MORE ABOUT OUR INSTRUMENTS

Optical profilers

Mechanical Testers

Tribometers

Lab Services

Comment

Nanovea India Private Limited

INDIA

#1112, 2nd Stage,
17th Cross, Banashankari
Bangalore, Pin: 560 060

CONTACT US

160-0023

株式会社日本サーマル・コンサルティング

東京都新宿区西新宿1-5-11新宿三葉ビル5F

 

+81(0) 3 5339-1470

問い合わせ / CONTACT US

Nanovea Inc

HEADQUARTERS

6 Morgan Ste 156
Irvine, CA 92618
Phone: (949) 461-9292

CONTACT US

Please fill out our form and we will reach out to you as soon as possible!

Nanovea SRL

EUROPEAN OFFICE

Via Balegno 1
Rivalta di Torino
10040 TO (IT)
Phone: +39 011 3052 794

CONTACT US / CONTATTACI

Nanovea SRL

EUROPEAN OFFICE

Via Balegno 1
Rivalta di Torino
10040 TO (IT)
Phone: +39 011 3052 794

CONTACT US / CONTATTACI

Nanovea S.A. de C.V.

LATIN AMERICA

1952 Hidalgo
Colonia Ladron de Guevara
Guadalajara, Jalisco
Mexico 44600
Phone: +52 1 33 10 31 52 27

CONTACT US / CONTÁCTENOS

MICRO-NANO Technology Co. Ltd

CHINA | TAIWAN | HONG KONG

• BEIJING
Room 081-082,2/F,Dongqu, Yiqing Building
No 38 Guangqulu
Chaoyang District
Beijing China/100022
+86 10 51649103
Mobile: 15321352298

• SHANGHAI
Room 703, No. 578 Tianbao Road,
Shanghai China
Mobile: 15801657153

CONTACT US / 联系我们

Tribotron AG

SWITZERLAND | AUSTRIA

Lerchenfeldstrasse 3
CH-9014 St.Gallen
+41 71 511 24 65

CONTACT US / KONTAKTIERE UNS

Mi-Net Technology Ltd. UNITED KINGDOM | IRELAND 30 Summerleaze Road Maidenhead Berks SL6 8EN United Kingdom +44(0) 1628 783576

CONTACT US

Please fill out our form and we will reach out to you as soon as possible!

Nanovea Inc

HEADQUARTERS

6 Morgan Ste 156
Irvine, CA 92618

Phone: (949) 461-9292

CONTACT SUPPORT

Please fill out the form below. We will reach out to you as soon as possible. If it is urgent, feel free to call (949) 461-9292

Nanovea India Private Limited

INDIA

#1112, 2nd Stage,
17th Cross, Banashankari
Bangalore, Pin: 560 060

CONTACT US

Мелитэк | Melytec LLC

RUSSIA | BELARUS

34/63 Obrucheva st. bld.26
Moscow, 117342, Russia
+7 (495) 781-07-85

СВЯЖИТЕСЬ С НАМИ / CONTACT US

Nanovea Inc

HEADQUARTERS

6 Morgan Ste 156
Irvine, CA 92618
Phone: (949) 461-9292

CONTACT US

Please fill out our form and we will reach out to you as soon as possible!

Nanovea S.A. de C.V.

LATIN AMERICA

1952 Hidalgo
Colonia Ladron de Guevara
Guadalajara, Jalisco
Mexico 44600
Phone: +52 1 33 10 31 52 27

CONTACT US / CONTÁCTENOS

Nanovea SRL

EUROPEAN OFFICE

Via Balegno 1
Rivalta di Torino
10040 TO (IT)
Phone: +39 011 3052 794

CONTACT US / CONTATTACI

Nanovea S.A. de C.V.

LATIN AMERICA

1952 Hidalgo
Colonia Ladron de Guevara
Guadalajara, Jalisco
Mexico 44600
Phone: +52 1 33 10 31 52 27

CONTACT US / CONTÁCTENOS

Altmann S.A. Importação e Comércio

BRAZIL

Av. Dr. Chucri Zaidan, 1550 Edifício Capital Corporate 17º andar- conjunto 1701
04711-130 – São Paulo – SP – Brazil
+55(11) 2198-7198
P: +55(11) 5507-3302

CONTATE-NOS / CONTACT US

Nanovea India Private Limited

INDIA

#1112, 2nd Stage,
17th Cross, Banashankari
Bangalore, Pin: 560 060

CONTACT US

Want us to test your samples?

Please fill up our form and we will reach out to you soon!