EEUU/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTÁCTENOS

Prueba de rayado del revestimiento de nitruro de titanio

ENSAYO DE RAYADO DEL REVESTIMIENTO DE NITRURO DE TITANIO

INSPECCIÓN DE CONTROL DE CALIDAD

Preparado por

DUANJIE LI, PhD

INTRODUCCIÓN

La combinación de alta dureza, excelente resistencia al desgaste, resistencia a la corrosión e inercia hace que el nitruro de titanio (TiN) sea un revestimiento protector ideal para los componentes metálicos de diversas industrias. Por ejemplo, la retención de los bordes y la resistencia a la corrosión de un revestimiento de TiN pueden aumentar considerablemente la eficacia del trabajo y prolongar la vida útil de las máquinas herramienta, como las cuchillas de afeitar, los cortadores de metal, los moldes de inyección y las sierras. Su gran dureza, inercia y no toxicidad hacen del TiN un gran candidato para aplicaciones en dispositivos médicos, como implantes e instrumentos quirúrgicos.

IMPORTANCIA DE LAS PRUEBAS DE ROTURA DEL RECUBRIMIENTO DE TiN

La tensión residual en los revestimientos protectores de PVD/CVD desempeña un papel fundamental en el rendimiento y la integridad mecánica del componente revestido. La tensión residual proviene de varias fuentes principales, como la tensión de crecimiento, los gradientes térmicos, las limitaciones geométricas y la tensión de servicio¹. El desajuste de la expansión térmica entre el revestimiento y el sustrato creado durante la deposición del revestimiento a temperaturas elevadas da lugar a una elevada tensión residual térmica. Además, las herramientas con revestimiento de TiN se utilizan a menudo bajo tensiones concentradas muy elevadas, por ejemplo, en brocas y cojinetes. Es fundamental desarrollar un proceso de control de calidad fiable para inspeccionar cuantitativamente la resistencia cohesiva y adhesiva de los revestimientos funcionales de protección.

[1] V. Teixeira, Vacuum 64 (2002) 393-399.

OBJETIVO DE MEDICIÓN

En este estudio, mostramos que NANOVEA Probadores Mecánicos en modo Scratch son ideales para evaluar la fuerza cohesiva/adhesiva de recubrimientos protectores de TiN de manera controlada y cuantitativa.

NANOVEA

PB1000

CONDICIONES DE PRUEBA

Para realizar el recubrimiento se utilizó el Comprobador Mecánico NANOVEA PB1000 pruebas de resistencia al rayado en tres revestimientos de TiN utilizando los mismos parámetros de ensayo que se resumen a continuación:

MODO DE CARGA: Lineal progresivo

CARGA INICIAL

0.02 N

CARGA FINAL

10 N

TASA DE CARGA

20 N/min

LONGITUD DEL RASPADO

5 mm

TIPO DE INDENTADOR

Sphero-Conical

Diamante, 20 μm de radio

RESULTADOS Y DISCUSIÓN

La FIGURA 1 muestra la evolución registrada de la profundidad de penetración, el coeficiente de fricción (COF) y la emisión acústica durante el ensayo. En la FIGURA 2 se muestran las huellas completas de micro arañazos en las muestras de TiN. Los comportamientos de fallo a diferentes cargas críticas se muestran en la FIGURA 3, donde la carga crítica Lc1 se define como la carga a la que se produce el primer signo de grieta cohesiva en la pista de rayado, Lc2 es la carga después de la cual se producen fallos de espalación repetidos, y Lc3 es la carga a la que el recubrimiento se desprende completamente del sustrato. Los valores de la carga crítica (Lc) para los revestimientos de TiN se resumen en la FIGURA 4.

La evolución de la profundidad de penetración, del COF y de la emisión acústica permite conocer el mecanismo de fallo del recubrimiento en diferentes etapas, que están representadas por las cargas críticas en este estudio. Se puede observar que la muestra A y la muestra B presentan un comportamiento comparable durante el ensayo de rayado. El palpador penetra progresivamente en la muestra hasta una profundidad de ~0,06 mm y el COF aumenta gradualmente hasta ~0,3 a medida que la carga normal aumenta linealmente al principio del ensayo de rayado del revestimiento. Cuando se alcanza el Lc1 de ~3,3 N, se produce el primer signo de fallo por astillamiento. Esto también se refleja en los primeros picos grandes en el gráfico de la profundidad de penetración, el COF y la emisión acústica. A medida que la carga sigue aumentando hasta Lc2 de ~3,8 N, se producen nuevas fluctuaciones de la profundidad de penetración, el COF y la emisión acústica. Podemos observar un fallo de espalación continuo presente en ambos lados de la pista de rayado. En Lc3, el revestimiento se desprende completamente del sustrato metálico bajo la alta presión aplicada por el palpador, dejando el sustrato expuesto y desprotegido.

En comparación, la Muestra C presenta cargas críticas más bajas en las diferentes etapas de los ensayos de rayado del revestimiento, lo que también se refleja en la evolución de la profundidad de penetración, el coeficiente de fricción (COF) y la emisión acústica durante el ensayo de rayado del revestimiento. La muestra C posee una capa intermedia de adhesión con menor dureza y mayor tensión en la interfaz entre el revestimiento superior de TiN y el sustrato metálico en comparación con la muestra A y la muestra B.

Este estudio demuestra la importancia del soporte adecuado del sustrato y de la arquitectura del recubrimiento para la calidad del sistema de recubrimiento. Una capa intermedia más fuerte puede resistir mejor la deformación bajo una alta carga externa y la tensión de concentración, y así mejorar la fuerza cohesiva y adhesiva del sistema de recubrimiento/sustrato.

FIGURA 1: Evolución de la profundidad de penetración, del COF y de la emisión acústica de las muestras de TiN.

FIGURA 2: Rastro completo de arañazos de los revestimientos de TiN después de las pruebas.

FIGURA 3: Fallos del recubrimiento de TiN bajo diferentes cargas críticas, Lc.

FIGURA 4: Resumen de los valores de carga crítica (Lc) para los revestimientos de TiN.

CONCLUSIÓN

En este estudio, demostramos que el comprobador mecánico NANOVEA PB1000 realiza ensayos de rayado fiables y precisos en muestras recubiertas de TiN de forma controlada y estrechamente supervisada. Las mediciones de arañazos permiten a los usuarios identificar rápidamente la carga crítica a la que se producen los típicos fallos del revestimiento cohesivo y adhesivo. Nuestros instrumentos son herramientas superiores de control de calidad que pueden inspeccionar y comparar cuantitativamente la calidad intrínseca de un revestimiento y la integridad interfacial de un sistema de revestimiento/sustrato. Un revestimiento con una capa intermedia adecuada puede resistir una gran deformación bajo una alta carga externa y tensión de concentración, y mejorar la fuerza cohesiva y adhesiva de un sistema de revestimiento/sustrato.

Los módulos Nano y Micro de un comprobador mecánico NANOVEA incluyen todos los modos de indentación, rayado y desgaste que cumplen con las normas ISO y ASTM, proporcionando la gama más amplia y fácil de usar de pruebas disponibles en un solo sistema. La gama inigualable de NANOVEA es una solución ideal para determinar toda la gama de propiedades mecánicas de revestimientos, películas y sustratos finos o gruesos, blandos o duros, incluyendo la dureza, el módulo de Young, la tenacidad a la fractura, la adhesión, la resistencia al desgaste y muchas otras.

AHORA, HABLEMOS DE SU SOLICITUD

Análisis de la fractografía mediante perfilometría 3D

ANÁLISIS DE LA FRACTOGRAFÍA

UTILIZANDO LA PERFILOMETRÍA 3D

Preparado por

CRAIG LEISING

INTRODUCCIÓN

La fractografía es el estudio de las características de las superficies fracturadas e históricamente se ha investigado mediante microscopio o SEM. Dependiendo del tamaño de la característica, se selecciona un microscopio (macro características) o SEM (nano y micro características) para el análisis de la superficie. Ambos permiten en última instancia la identificación del tipo de mecanismo de fractura. Aunque eficaz, el microscopio tiene limitaciones claras y el SEM en la mayoría de los casos, aparte del análisis a nivel atómico, no es práctico para medir la superficie de fracturas y carece de una capacidad de uso más amplia. Con avances en la tecnología de medición óptica, NANOVEA Perfilómetro 3D sin contacto ahora se considera el instrumento preferido, con su capacidad de proporcionar mediciones de superficies en 2D y 3D desde nano hasta macroescala.

IMPORTANCIA DEL PERFILÓMETRO 3D SIN CONTACTO PARA LA INSPECCIÓN DE FRACTURAS

A diferencia de un SEM, un perfilómetro 3D sin contacto puede medir casi cualquier superficie y tamaño de muestra, con una preparación mínima de la muestra, a la vez que ofrece unas dimensiones verticales/horizontales superiores a las de un SEM. Con un perfilómetro, las características de rango nano a macro se capturan en una sola medición con cero influencia de la reflectividad de la muestra. Mide fácilmente cualquier material: transparente, opaco, especular, difusivo, pulido, rugoso, etc. El perfilómetro 3D sin contacto proporciona una capacidad amplia y fácil de usar para maximizar los estudios de fractura de superficies a una fracción del coste de un SEM.

OBJETIVO DE MEDICIÓN

En esta aplicación, el NANOVEA ST400 se utiliza para medir la superficie fracturada de una muestra de acero. En este estudio, mostraremos un área 3D, extracción de perfil 2D y mapa direccional de la superficie.

NANOVEA

ST400

RESULTADOS

SUPERFICIE SUPERIOR

Dirección de la textura de la superficie 3D

Isotropía51.26%
Primera dirección123.2º
Segunda dirección116.3º
Tercera dirección0.1725º

La superficie, el volumen, la rugosidad y muchos otros pueden calcularse automáticamente a partir de esta extracción.

Extracción de perfiles 2D

RESULTADOS

SUPERFICIE LATERAL

Dirección de la textura de la superficie 3D

Isotropía15.55%
Primera dirección0.1617º
Segunda dirección110.5º
Tercera dirección171.5º

La superficie, el volumen, la rugosidad y muchos otros pueden calcularse automáticamente a partir de esta extracción.

Extracción de perfiles 2D

CONCLUSIÓN

En esta aplicación, hemos mostrado cómo el perfilómetro 3D sin contacto NANOVEA ST400 puede caracterizar con precisión la topografía completa (características nano, micro y macro) de una superficie fracturada. A partir del área 3D, la superficie puede ser claramente identificada y las subáreas o perfiles/secciones transversales pueden ser rápidamente extraídas y analizadas con una lista interminable de cálculos de superficie. Las características subnano de la superficie pueden analizarse aún más con un módulo AFM integrado.

Además, NANOVEA ha incluido una versión portátil a su línea de perfilómetros, especialmente crítica para los estudios de campo en los que la superficie de la fractura es inamovible. Con esta amplia lista de capacidades de medición de superficies, el análisis de la superficie de la fractura nunca ha sido más fácil y conveniente con un solo instrumento.

AHORA, HABLEMOS DE SU SOLICITUD

Topografía de la superficie de la fibra de vidrio mediante perfilometría 3D

TOPOGRAFÍA DE LA SUPERFICIE DE LA FIBRA DE VIDRIO

UTILIZANDO LA PERFILOMETRÍA 3D

Preparado por

CRAIG LEISING

INTRODUCCIÓN

La fibra de vidrio es un material fabricado con fibras de vidrio extremadamente finas. Se utiliza como agente de refuerzo para muchos productos poliméricos; el material compuesto resultante, conocido propiamente como polímero reforzado con fibra (FRP) o plástico reforzado con vidrio (GRP), se denomina "fibra de vidrio" en el uso popular.

IMPORTANCIA DE LA INSPECCIÓN METROLÓGICA DE SUPERFICIES PARA EL CONTROL DE CALIDAD

Aunque hay muchos usos para el refuerzo de fibra de vidrio, en la mayoría de las aplicaciones es crucial que sean lo más fuertes posible. Los compuestos de fibra de vidrio tienen una de las relaciones más altas entre resistencia y peso disponibles y, en algunos casos, libra por libra es más fuerte que el acero. Aparte de la alta resistencia, también es importante tener la menor superficie expuesta posible. Las grandes superficies de fibra de vidrio pueden hacer que la estructura sea más vulnerable a los ataques químicos y posiblemente a la expansión del material. Por lo tanto, la inspección de la superficie es fundamental para controlar la calidad de la producción.

OBJETIVO DE MEDICIÓN

En esta aplicación, el NANOVEA ST400 se utiliza para medir la superficie de un compuesto de fibra de vidrio en cuanto a rugosidad y planitud. Al cuantificar estas características de la superficie es posible crear u optimizar un material compuesto de fibra de vidrio más fuerte y duradero.

NANOVEA

ST400

PARÁMETROS DE MEDICIÓN

SONDA 1 mm
TASA DE ADQUISICIÓN300 Hz
PROMEDIO1
SUPERFICIE MEDIDA5 mm x 2 mm
TAMAÑO DEL PASO5 µm x 5 µm
MODO DE ESCANEOVelocidad constante

ESPECIFICACIONES DE LA SONDA

MEDICIÓN GAMA1 mm
Z RESOLUCIÓN 25 nm
Z PRECISIÓN200 nm
RESOLUCIÓN LATERAL 2 μm

RESULTADOS

VISTA DE COLOR FALSO

Planicidad de la superficie 3D

Rugosidad superficial 3D

Sa15,716 μmAltura media aritmética
Sq19,905 μmAltura media cuadrática
Sp116,74 μmAltura máxima del pico
Sv136,09 μmAltura máxima del foso
Sz252,83 μmAltura máxima
Ssk0.556Skewness
Ssu3.654Kurtosis

CONCLUSIÓN

Como se muestra en los resultados, el NANOVEA ST400 Optical perfilador pudo medir con precisión la rugosidad y planitud de la superficie compuesta de fibra de vidrio. Los datos se pueden medir en múltiples lotes de compuestos de fibra o en un período de tiempo determinado para proporcionar información crucial sobre los diferentes procesos de fabricación de fibra de vidrio y cómo reaccionan con el tiempo. Por tanto, el ST400 es una opción viable para fortalecer el proceso de control de calidad de los materiales compuestos de fibra de vidrio.

AHORA, HABLEMOS DE SU SOLICITUD