USA/GLOBALNE: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT

Test na zarysowanie powłoki z azotku tytanu

BADANIE ZARYSOWANIA POWŁOKI Z AZOTKU TYTANU

INSPEKCJA KONTROLI JAKOŚCI

Przygotowane przez

DUANJIE LI, PhD

WPROWADZENIE

Połączenie wysokiej twardości, doskonałej odporności na zużycie, odporności na korozję i obojętności sprawia, że azotek tytanu (TiN) jest idealną powłoką ochronną dla elementów metalowych w różnych branżach. Na przykład, zachowanie krawędzi i odporność na korozję powłoki TiN może znacznie zwiększyć wydajność pracy i wydłużyć żywotność narzędzi maszynowych, takich jak żyletki, noże do metalu, formy wtryskowe i piły. Jego wysoka twardość, obojętność i nietoksyczność sprawiają, że TiN jest doskonałym kandydatem do zastosowań w urządzeniach medycznych, w tym implantach i instrumentach chirurgicznych.

WAŻNOŚĆ TESTOWANIA POWŁOKI TiN POD KĄTEM ZADRAśNIENIA

Naprężenia szczątkowe w ochronnych powłokach PVD/CVD odgrywają krytyczną rolę w wydajności i mechanicznej integralności powlekanego elementu. Naprężenia szczątkowe pochodzą z kilku głównych źródeł, w tym naprężeń wzrostowych, gradientów termicznych, ograniczeń geometrycznych i naprężeń eksploatacyjnych¹. Niedopasowanie rozszerzalności cieplnej pomiędzy powłoką a podłożem powstałe podczas osadzania powłoki w podwyższonej temperaturze prowadzi do dużych termicznych naprężeń resztkowych. Ponadto, narzędzia z powłoką TiN są często używane w warunkach bardzo dużych naprężeń skupionych, np. wiertła i łożyska. Krytyczne znaczenie ma opracowanie niezawodnego procesu kontroli jakości w celu ilościowej kontroli wytrzymałości kohezyjnej i adhezyjnej ochronnych powłok funkcjonalnych.

[1] V. Teixeira, Vacuum 64 (2002) 393-399.

CEL POMIARU

W tym badaniu wykazaliśmy, że NANOVEA Testery mechaniczne w trybie zarysowania idealnie nadają się do oceny wytrzymałości kohezyjnej/adhezyjnej powłok ochronnych TiN w sposób kontrolowany i ilościowy.

NANOVEA

PB1000

WARUNKI BADANIA

Do wykonania powłoki wykorzystano tester mechaniczny NANOVEA PB1000. testy zarysowań na trzech powłokach TiN przy użyciu tych samych parametrów testowych, jak podsumowano poniżej:

TRYB ŁADOWANIA: Progresywny liniowy

OBCIĄŻENIE POCZĄTKOWE

0.02 N

OBCIĄŻENIE KOŃCOWE

10 N

PRĘDKOŚĆ ZAŁADUNKU

20 N/min

DŁUGOŚĆ SKRATKI

5 mm

TYP INDENTER

Sphero-Conical

Diament, promień 20 μm

WYNIKI I DYSKUSJA

RYSUNEK 1 przedstawia zarejestrowaną ewolucję głębokości penetracji, współczynnika tarcia (COF) oraz emisji akustycznej podczas badania. Pełne ślady mikro zarysowań na próbkach TiN pokazano na RYSUNKU 2. Zachowanie się powłoki przy różnych obciążeniach krytycznych pokazano na RYSUNKU 3, gdzie obciążenie krytyczne Lc1 jest zdefiniowane jako obciążenie, przy którym pojawia się pierwszy ślad pęknięcia kohezyjnego w śladzie zarysowania, Lc2 jest obciążeniem, po którym następują powtarzające się uszkodzenia spallacyjne, a Lc3 jest obciążeniem, przy którym powłoka zostaje całkowicie usunięta z podłoża. Wartości obciążenia krytycznego (Lc) dla powłok TiN zestawiono na RYS. 4.

Ewolucja głębokości penetracji, COF i emisji akustycznej zapewnia wgląd w mechanizm zniszczenia powłoki na różnych etapach, które w tym badaniu reprezentowane są przez obciążenia krytyczne. Można zauważyć, że próbka A i próbka B wykazują porównywalne zachowanie podczas testu zarysowania. Trzpień stopniowo zagłębia się w próbkę na głębokość ~0,06 mm, a COF stopniowo wzrasta do ~0,3 w miarę liniowego wzrostu obciążenia normalnego na początku próby zarysowania powłoki. Po osiągnięciu Lc1 wynoszącego ~3,3 N pojawiają się pierwsze oznaki awarii odpryskowej. Jest to również odzwierciedlone w pierwszych dużych skokach na wykresie głębokości penetracji, COF i emisji akustycznej. Wraz ze wzrostem obciążenia do wartości Lc2 równej ~3,8 N następują dalsze fluktuacje głębokości penetracji, COF i emisji akustycznej. Można zaobserwować ciągłe uszkodzenia odpryskowe obecne po obu stronach ścieżki zarysowania. Przy Lc3, powłoka całkowicie rozwarstwia się od metalowego podłoża pod wpływem dużego nacisku wywieranego przez trzpień, pozostawiając podłoże odsłonięte i niechronione.

Dla porównania, próbka C wykazuje niższe obciążenia krytyczne na różnych etapach badania zarysowania powłoki, co jest również odzwierciedlone w ewolucji głębokości penetracji, współczynnika tarcia (COF) i emisji akustycznej podczas badania zarysowania powłoki. Próbka C posiada międzywarstwę adhezyjną o niższej twardości i wyższym naprężeniu na styku górnej powłoki TiN i metalowego podłoża w porównaniu z próbką A i próbką B.

Badanie to pokazuje, jak ważne jest właściwe podparcie podłoża i architektura powłoki dla jakości systemu powłokowego. Mocniejsza międzywarstwa może lepiej opierać się deformacji pod wpływem dużego obciążenia zewnętrznego i naprężeń koncentracyjnych, a tym samym zwiększać wytrzymałość kohezyjną i adhezyjną systemu powłoka/podłoże.

RYSUNEK 1: Ewolucja głębokości penetracji, COF i emisji akustycznej próbek TiN.

RYSUNEK 2: Pełny ślad zarysowania powłok TiN po testach.

RYSUNEK 3: Uszkodzenia powłok TiN przy różnych obciążeniach krytycznych, Lc.

RYSUNEK 4: Zestawienie wartości obciążenia krytycznego (Lc) dla powłok TiN.

PODSUMOWANIE

W tym badaniu pokazaliśmy, że NANOVEA PB1000 Mechanical Tester wykonuje wiarygodne i dokładne testy zarysowania na próbkach pokrytych TiN w sposób kontrolowany i ściśle monitorowany. Pomiary zarysowań pozwalają użytkownikom szybko zidentyfikować krytyczne obciążenie, przy którym występują typowe uszkodzenia powłok kohezyjnych i adhezyjnych. Nasze urządzenia są doskonałymi narzędziami kontroli jakości, które mogą ilościowo zbadać i porównać wewnętrzną jakość powłoki i integralność międzyfazową systemu powłoka/podłoże. Powłoka z odpowiednią warstwą pośrednią może wytrzymać duże odkształcenia pod wpływem dużego obciążenia zewnętrznego i naprężeń koncentracyjnych, a także zwiększyć wytrzymałość kohezyjną i adhezyjną systemu powłoka/podłoże.

Moduły Nano i Micro urządzenia NANOVEA Mechanical Tester zawierają tryby pracy zgodne z normami ISO i ASTM - wgłębianie, zarysowanie i ścieranie, zapewniając najszerszy i najbardziej przyjazny dla użytkownika zakres badań dostępny w jednym systemie. Niezrównana oferta NANOVEA stanowi idealne rozwiązanie do wyznaczania pełnego zakresu właściwości mechanicznych cienkich lub grubych, miękkich lub twardych powłok, filmów i podłoży, w tym twardości, modułu Younga, odporności na pękanie, przyczepności, odporności na ścieranie i wielu innych.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Analiza fraktografii z wykorzystaniem profilometrii 3D

ANALIZA FRAKTOGRAFICZNA

STOSOWANIE PROFILOMETRII 3D

Przygotowane przez

CRAIG LEISING

WPROWADZENIE

Fraktografia to badanie cech pękniętych powierzchni, które w przeszłości było badane za pomocą mikroskopu lub SEM. W zależności od wielkości cechy do analizy powierzchni wybiera się mikroskop (cechy makro) lub SEM (cechy nano i mikro). Obydwa ostatecznie pozwalają na identyfikację rodzaju mechanizmu pękania. Chociaż mikroskop jest skuteczny, ma wyraźne ograniczenia, a SEM w większości przypadków, z wyjątkiem analizy na poziomie atomowym, jest niepraktyczny do pomiaru powierzchni pęknięć i nie ma szerszych możliwości wykorzystania. Dzięki postępowi w technologii pomiarów optycznych, NANOVEA Bezkontaktowy profilometr 3D jest obecnie uważany za instrument z wyboru, umożliwiający pomiary powierzchni w skali nano w makroskali 2D i 3D

ZNACZENIE PROFILOMETRU BEZKONTAKTOWEGO 3D W KONTROLI PĘKNIĘĆ

W przeciwieństwie do SEM, bezkontaktowy profilometr 3D może mierzyć prawie każdą powierzchnię, wielkość próbki, przy minimalnym przygotowaniu próbki, oferując jednocześnie lepsze wymiary pionowe/poziome niż SEM. Dzięki profilometrowi, cechy w zakresie od nano do makro są rejestrowane w jednym pomiarze, bez wpływu odbicia próbki. Łatwo mierzyć dowolny materiał: przezroczysty, nieprzezroczysty, spekularny, dyfuzyjny, polerowany, chropowaty, itp. Profilometr bezdotykowy 3D zapewnia szerokie i przyjazne dla użytkownika możliwości maksymalizacji badań nad pękaniem powierzchni za ułamek kosztów SEM.

CEL POMIARU

W tej aplikacji, NANOVEA ST400 jest używana do pomiaru spękanej powierzchni próbki stalowej. W tym opracowaniu zaprezentujemy obszar 3D, ekstrakcję profilu 2D oraz mapę kierunkową powierzchni.

NANOVEA

ST400

WYNIKI

POWIERZCHNIA GÓRNA

Tekstura powierzchni 3D Kierunek

Izotropia51.26%
Pierwszy kierunek123.2º
Drugi kierunek116.3º
Trzeci Kierunek0.1725º

Powierzchnia, Objętość, Chropowatość i wiele innych mogą być automatycznie obliczone z tego wyciągu.

Wydobywanie profili 2D

WYNIKI

POWIERZCHNIA BOCZNA

Tekstura powierzchni 3D Kierunek

Izotropia15.55%
Pierwszy kierunek0.1617º
Drugi kierunek110.5º
Trzeci Kierunek171.5º

Powierzchnia, Objętość, Chropowatość i wiele innych mogą być automatycznie obliczone z tego wyciągu.

Wydobywanie profili 2D

PODSUMOWANIE

W tej aplikacji pokazaliśmy, jak bezkontaktowy profilometr NANOVEA ST400 3D może precyzyjnie scharakteryzować pełną topografię (nano, mikro i makro cechy) spękanej powierzchni. Z obszaru 3D, powierzchnia może być wyraźnie zidentyfikowana, a podobszary lub profile/przekroje mogą być szybko wyodrębnione i przeanalizowane z nieskończoną listą obliczeń powierzchni. Sub-nanometrowe cechy powierzchni mogą być dalej analizowane za pomocą zintegrowanego modułu AFM.

Dodatkowo, NANOVEA wprowadziła do swojej oferty przenośną wersję Profilometru, szczególnie istotną w badaniach terenowych, gdzie powierzchnia szczelin jest nieruchoma. Dzięki tak szerokiej liście możliwości pomiaru powierzchni, analiza powierzchni szczelin nigdy nie była łatwiejsza i wygodniejsza przy użyciu jednego urządzenia.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Topografia powierzchni włókna szklanego z wykorzystaniem profilometrii 3D

TOPOGRAFIA POWIERZCHNI WŁÓKNA SZKLANEGO

STOSOWANIE PROFILOMETRII 3D

Przygotowane przez

CRAIG LEISING

WPROWADZENIE

Fiberglass to materiał wykonany z niezwykle drobnych włókien szklanych. Jest on stosowany jako środek wzmacniający w wielu produktach polimerowych; powstały w ten sposób materiał kompozytowy, prawidłowo znany jako polimer wzmocniony włóknem (FRP) lub tworzywo sztuczne wzmocnione włóknem szklanym (GRP), jest w powszechnym użyciu nazywany "włóknem szklanym".

ZNACZENIE KONTROLI METROLOGICZNEJ POWIERZCHNI DLA KONTROLI JAKOŚCI

Chociaż istnieje wiele zastosowań dla wzmocnień z włókna szklanego, w większości przypadków najważniejsze jest, aby były one jak najmocniejsze. Kompozyty z włókna szklanego mają jeden z najwyższych dostępnych współczynników wytrzymałości do wagi, a w niektórych przypadkach są mocniejsze od stali. Poza wysoką wytrzymałością ważne jest również, aby ich powierzchnia była jak najmniejsza. Duże powierzchnie włókna szklanego mogą sprawić, że konstrukcja będzie bardziej podatna na atak chemiczny i ewentualne rozszerzanie się materiału. Dlatego kontrola powierzchni ma kluczowe znaczenie dla kontroli jakości produkcji.

CEL POMIARU

W tej aplikacji, NANOVEA ST400 jest używana do pomiaru chropowatości i płaskości powierzchni kompozytu z włókna szklanego. Poprzez ilościowe określenie tych cech powierzchni możliwe jest stworzenie lub optymalizacja mocniejszego, bardziej trwałego materiału kompozytowego z włókna szklanego.

NANOVEA

ST400

PARAMETRY POMIAROWE

PROBE 1 mm
WSKAŹNIK NABYCIA300 Hz
AVERAGING1
MIERZONA POWIERZCHNIA5 mm x 2 mm
ROZMIAR KROKU5 µm x 5 µm
TRYB SKANOWANIAStała prędkość

SPECYFIKACJA SONDY

POMIAR RANGE1 mm
Z REZOLUCJI 25 nm
Z DOKŁADNOŚĆ200 nm
ROZDZIELCZOŚĆ POPRZECZNA 2 μm

WYNIKI

WIDOK FAŁSZYWEGO KOLORU

Płaskość powierzchni 3D

Chropowatość powierzchni 3D

Sa15,716 μmŚrednia arytmetyczna Wysokość
Sq19,905 μmRoot Mean Square Height
Sp116,74 μmMaksymalna wysokość szczytowa
Sv136,09 μmMaksymalna wysokość szybu
Sz252,83 μmMaksymalna wysokość
Ssk0.556Skośność
Ssu3.654Kurtoza

PODSUMOWANIE

Jak pokazano w wynikach, NANOVEA ST400 Optical Profiler był w stanie dokładnie zmierzyć chropowatość i płaskość powierzchni kompozytu z włókna szklanego. Dane można mierzyć dla wielu partii kompozytów z włókien szklanych i/lub w danym okresie, aby dostarczyć kluczowych informacji na temat różnych procesów produkcji włókna szklanego i ich reakcji w czasie. Zatem ST400 jest realną opcją wzmacniającą proces kontroli jakości materiałów kompozytowych z włókna szklanego.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI