EEUU/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTÁCTENOS

Efecto de la humedad en la tribología del revestimiento de DLC

Importancia de la evaluación del desgaste del DLC en la humedad

Los recubrimientos de carbono tipo diamante (DLC) poseen propiedades tribológicas mejoradas, concretamente una excelente resistencia al desgaste y un coeficiente de fricción (COF) muy bajo. Los recubrimientos DLC imparten características de diamante cuando se depositan sobre diferentes materiales. Las propiedades tribomecánicas favorables hacen que los recubrimientos DLC sean preferibles en diversas aplicaciones industriales, como piezas aeroespaciales, hojas de afeitar, herramientas de corte de metales, cojinetes, motores de motocicletas e implantes médicos.

Los recubrimientos DLC exhiben un COF muy bajo (por debajo de 0,1) frente a bolas de acero en condiciones secas y de alto vacío.12. Sin embargo, los revestimientos de DLC son sensibles a los cambios de las condiciones ambientales, en particular a la humedad relativa (RH)3. Los entornos con alta humedad y concentración de oxígeno pueden provocar un aumento significativo del COF4. La evaluación confiable del desgaste en humedad controlada simula condiciones ambientales realistas de los recubrimientos DLC para aplicaciones tribológicas. Los usuarios seleccionan los mejores recubrimientos DLC para aplicaciones específicas con una comparación adecuada
de los comportamientos de desgaste del DLC expuestos a diferentes humedades.



Objetivo de medición

Este estudio muestra la Nanovea Tribómetro equipado con un controlador de humedad es la herramienta ideal para investigar el comportamiento de desgaste de los recubrimientos DLC con diversas humedades relativas.

 

 



Procedimiento de prueba

La resistencia a la fricción y al desgaste de los recubrimientos DLC se evaluó mediante el tribómetro Nanovea. Los parámetros de prueba se resumen en la Tabla 1. Un controlador de humedad conectado a la cámara tribo controló con precisión la humedad relativa (RH) con una precisión de ±1%. Después de las pruebas, se examinaron las huellas de desgaste en los recubrimientos de DLC y las cicatrices de desgaste en las bolas de SiN mediante un microscopio óptico.

Nota: Se puede aplicar cualquier material de bola sólida para simular el rendimiento de acoplamientos de diferentes materiales en condiciones ambientales como lubricantes o altas temperaturas.







Resultados y discusión

Los recubrimientos de DLC son excelentes para las aplicaciones tribológicas debido a su baja fricción y a su mayor resistencia al desgaste. La fricción del recubrimiento de DLC muestra un comportamiento dependiente de la humedad que se muestra en la Figura 2. El recubrimiento de DLC muestra un COF muy bajo de ~0,05 durante toda la prueba de desgaste en condiciones relativamente secas (10% RH). El recubrimiento de DLC muestra un COF constante de ~0,1 durante la prueba a medida que la HR aumenta hasta 30%. La fase inicial de rodaje del COF se observa en las primeras 2000 revoluciones cuando la HR se eleva por encima de 50%. El revestimiento de DLC muestra un COF máximo de ~0,20, ~0,26 y ~0,33 en RH de 50, 70 y 90%, respectivamente. Tras el periodo de rodaje, el COF del revestimiento de DLC se mantiene constante en ~0,11, 0,13 y 0,20 en RH de 50, 70 y 90%, respectivamente.

 



En la figura 3 se comparan las cicatrices de desgaste de las bolas de SiN y en la figura 4 se comparan las huellas de desgaste del recubrimiento de DLC después de las pruebas de desgaste. El diámetro de la cicatriz de desgaste era menor cuando el recubrimiento de DLC se exponía a un entorno con poca humedad. La capa de DLC de transferencia se acumula en la superficie de la bola de SiN durante el proceso de deslizamiento repetitivo en la superficie de contacto. En esta etapa, el recubrimiento de DLC se desliza contra su propia capa de transferencia que actúa como un lubricante eficaz para facilitar el movimiento relativo y frenar la pérdida de masa adicional causada por la deformación por cizallamiento. Se observa una película de transferencia en la cicatriz de desgaste de la bola de SiN en entornos de baja HR (por ejemplo, 10% y 30%), lo que da lugar a un proceso de desgaste desacelerado en la bola. Este proceso de desgaste se refleja en la morfología de la pista de desgaste del recubrimiento de DLC, como se muestra en la figura 4. El recubrimiento de DLC muestra una pista de desgaste más pequeña en ambientes secos, debido a la formación de una película de transferencia de DLC estable en la interfaz de contacto que reduce significativamente la fricción y la tasa de desgaste.


 


Conclusión:




La humedad juega un papel vital en el rendimiento tribológico de los recubrimientos DLC. El recubrimiento DLC posee una resistencia al desgaste significativamente mejorada y una baja fricción superior en condiciones secas debido a la formación de una capa de grafito estable transferida a la contraparte deslizante (una bola de SiN en este estudio). El recubrimiento DLC se desliza contra su propia capa de transferencia, que actúa como un lubricante eficaz para facilitar el movimiento relativo y frenar una mayor pérdida de masa causada por la deformación por cizallamiento. No se observa una película en la bola de SiN al aumentar la humedad relativa, lo que lleva a una mayor tasa de desgaste en la bola de SiN y el recubrimiento de DLC.

El tribómetro Nanovea ofrece pruebas repetibles de desgaste y fricción utilizando modos rotativos y lineales que cumplen con ISO y ASTM, con módulos de humedad opcionales disponibles en un sistema preintegrado. Permite a los usuarios simular el entorno de trabajo con diferente humedad, proporcionando a los usuarios una herramienta ideal para evaluar cuantitativamente el comportamiento tribológico de los materiales en diferentes condiciones de trabajo.



Más información sobre el tribómetro Nanovea y el servicio de laboratorio

1 C. Donnet, Surf. Coat. Technol. 100-101 (1998) 180.

2 K. Miyoshi, B. Pohlchuck, K.W. Street, J.S. Zabinski, J.H. Sanders, A.A. Voevodin, R.L.C. Wu, Wear 225-229 (1999) 65.

3 R. Gilmore, R. Hauert, Surf. Coat. Technol. 133-134 (2000) 437.

4 R. Memming, H.J. Tolle, P.E. Wierenga, Thin Solid Coatings 143 (1986) 31


AHORA, HABLEMOS DE SU SOLICITUD

Análisis de la superficie en 3D de un centavo con perfilometría sin contacto

Importancia de la perfilometría sin contacto para las monedas

La moneda es muy valorada en la sociedad moderna porque se intercambia por bienes y servicios. Las monedas y los billetes circulan por las manos de muchas personas. La transferencia constante de moneda física crea deformaciones en la superficie. El 3D de Nanovea Perfilómetro escanea la topografía de monedas acuñadas en diferentes años para investigar las diferencias superficiales.

Las características de las monedas son fácilmente reconocibles para el público en general ya que son objetos comunes. Un centavo es ideal para presentar la fortaleza del software avanzado de análisis de superficies de Nanovea: Mountains 3D. Los datos de superficie recopilados con nuestro perfilómetro 3D permiten análisis de alto nivel en geometría compleja con resta de superficie y extracción de contornos 2D. La sustracción de superficies con una máscara, sello o molde controlado compara la calidad de los procesos de fabricación, mientras que la extracción de contornos identifica tolerancias con análisis dimensional. El software 3D Profilometer y Mountains 3D de Nanovea investiga la topografía submicrónica de objetos aparentemente simples, como monedas de un centavo.



Objetivo de medición

Se escaneó toda la superficie superior de cinco céntimos utilizando el sensor de líneas de alta velocidad de Nanovea. El radio interior y exterior de cada penique se midió con el software de análisis avanzado de Mountains. Una extracción de la superficie de cada penique en un área de interés con sustracción directa de la superficie cuantificó la deformación de la superficie.

 



Resultados y discusión

Superficie 3D

El perfilómetro Nanovea HS2000 tardó sólo 24 segundos en escanear 4 millones de puntos en un área de 20 mm x 20 mm con un tamaño de paso de 10um x 10um para adquirir la superficie de un centavo. A continuación se muestra un mapa de alturas y una visualización en 3D del escaneado. La vista en 3D muestra la capacidad del sensor de alta velocidad para captar pequeños detalles imperceptibles para el ojo. En la superficie de la moneda de un céntimo se aprecian muchos pequeños arañazos. En la vista 3D se investigan la textura y la rugosidad de la moneda.

 










Análisis dimensional

Se extrajeron los contornos del centavo y mediante un análisis dimensional se obtuvieron los diámetros interior y exterior de la característica del borde. El radio exterior tenía una media de 9,500 mm ± 0,024, mientras que el radio interior tenía una media de 8,960 mm ± 0,032. Otros análisis dimensionales que Mountains 3D puede realizar en fuentes de datos 2D y 3D son las mediciones de distancia, la altura de los escalones, la planaridad y los cálculos de ángulos.







Sustracción de Superficies

La figura 5 muestra la zona de interés para el análisis de sustracción de superficies. El centavo de 2007 se utilizó como superficie de referencia para los cuatro centavos más antiguos. La sustracción de la superficie del centavo de 2007 muestra las diferencias entre los centavos con agujeros/picos. La diferencia de volumen total de la superficie se obtiene sumando los volúmenes de los agujeros/picos. El error RMS se refiere a la concordancia entre las superficies de los peniques.


 









Conclusión:





El High-Speed HS2000L de Nanovea escaneó cinco monedas de un centavo acuñadas en diferentes años. El software Mountains 3D comparó las superficies de cada moneda mediante la extracción de contornos, el análisis dimensional y la sustracción de superficies. El análisis define claramente el radio interior y exterior entre los peniques, a la vez que compara directamente las diferencias de las características de la superficie. Con la capacidad del perfilómetro 3D de Nanovea para medir cualquier superficie con una resolución a nivel nanométrico, combinada con las capacidades de análisis de Mountains 3D, las posibles aplicaciones de investigación y control de calidad son infinitas.

 


AHORA, HABLEMOS DE SU SOLICITUD