EE.UU./GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTACTO

Categoría: Pruebas de rayado | Fallo del adhesivo

 

Prueba de desgaste del revestimiento de PTFE

ENSAYO DE DESGASTE DEL REVESTIMIENTO DE PTFE

UTILIZANDO TRIBÓMETROS Y COMPROBADORES MECÁNICOS

ENSAYO DE DESGASTE DEL REVESTIMIENTO DE PTFE

Preparado por

DUANJIE LI, Doctor

INTRODUCCIÓN

El politetrafluoroetileno (PTFE), conocido comúnmente como teflón, es un polímero con un coeficiente de fricción (COF) excepcionalmente bajo y una excelente resistencia al desgaste, en función de las cargas aplicadas. El PTFE presenta una inercia química superior, un alto punto de fusión de 327°C (620°F) y mantiene una alta resistencia, tenacidad y autolubricación a bajas temperaturas. La excepcional resistencia al desgaste de los revestimientos de PTFE hace que sean muy solicitados en una amplia gama de aplicaciones industriales, como la automoción, la industria aeroespacial, la medicina y, sobre todo, los utensilios de cocina.

IMPORTANCIA DE LA EVALUACIÓN CUANTITATIVA DE LOS REVESTIMIENTOS DE PTFE

La combinación de un coeficiente de fricción (COF) superbajo, una excelente resistencia al desgaste y una excepcional inercia química a altas temperaturas hace del PTFE una opción ideal para los revestimientos antiadherentes de sartenes. Para mejorar aún más sus procesos mecánicos durante la I+D, así como para garantizar un control óptimo sobre la prevención de fallos y las medidas de seguridad en el proceso de control de calidad, es crucial disponer de una técnica fiable para evaluar cuantitativamente los procesos tribomecánicos de los revestimientos de PTFE. El control preciso de la fricción superficial, el desgaste y la adherencia de los revestimientos es esencial para garantizar su rendimiento previsto.

OBJETIVO DE MEDICIÓN

En esta aplicación, se simula el proceso de desgaste de un revestimiento de PTFE para una sartén antiadherente utilizando el Tribómetro NANOVEA en modo lineal alternativo.

NANOVEA T50 Compacto
Tribómetro de peso libre

Además, se utilizó el comprobador mecánico NANOVEA para realizar un ensayo de adhesión por microarañazos con el fin de determinar la carga crítica del fallo de adhesión del revestimiento de PTFE.

NANOVEA PB1000 Plataforma grande Comprobador mecánico

PROCEDIMIENTO DE PRUEBA

PRUEBA DE DESGASTE

DESGASTE LINEAL ALTERNATIVO MEDIANTE TRIBÓMETRO

El comportamiento tribológico de la muestra de revestimiento de PTFE, incluyendo el coefficient de fricción (COF) y la resistencia al desgaste, se evaluó utilizando el NANOVEA Tribómetro en modo alternativo lineal. Se utilizó una punta esférica de acero inoxidable 440 con un diámetro de 3 mm (Grado 100) contra el revestimiento. Durante la prueba de desgaste del revestimiento de PTFE se controló continuamente el COF.

 

La tasa de desgaste, K, se calculó mediante la fórmula K=V/(F×s)=A/(F×n), donde V representa el volumen desgastado, F es la carga normal, s es la distancia de deslizamiento, A es el área transversal de la pista de desgaste y n es el número de carreras. Los perfiles de desgaste se evaluaron con el programa NANOVEA Profilómetro ópticoy se examinó la morfología de la huella de desgaste con un microscopio óptico.

PARÁMETROS DE LA PRUEBA DE DESGASTE

CARGAR 30 N
DURACIÓN DE LA PRUEBA 5 minutos
TASA DE DESLIZAMIENTO 80 rpm
AMPLITUD DE VÍA 8 mm
REVOLUCIONES 300
DIÁMETRO DE LA BOLA 3 mm
MATERIAL DE LA BOLA Acero inoxidable 440
LUBRICANTE Ninguno
ATMÓSFERA Aire
TEMPERATURA 230C (RT)
HUMEDAD 43%

PROCEDIMIENTO DE PRUEBA

PRUEBA DE RAYADO

PRUEBA DE ADHERENCIA AL MICROARAÑAZO CON UN COMPROBADOR MECÁNICO

La medición de la adherencia al rayado del PTFE se realizó utilizando el NANOVEA Comprobador mecánico con un palpador de diamante de 1200 Rockwell C (200 μm de radio) en el modo Micro Scratch Tester.

Para garantizar la reproducibilidad de los resultados, se realizaron tres pruebas en condiciones idénticas.

PARÁMETROS DE LA PRUEBA DE RAYADO

TIPO DE CARGA Progresiva
CARGA INICIAL 0,01 mN
CARGA FINAL 20 mN
VELOCIDAD DE CARGA 40 mN/min
LONGITUD DEL RASPADO 3 mm
velocidad de rayado, dx/dt 6,0 mm/min
GEOMETRÍA DEL PENETRADOR 120o Rockwell C
MATERIAL INDENTADOR (punta) Diamante
RADIO DE LA PUNTA DEL PENETRADOR 200 μm

RESULTADOS Y DEBATE

DESGASTE LINEAL ALTERNATIVO MEDIANTE TRIBÓMETRO

El COF registrado in situ se muestra en la FIGURA 1. La muestra de ensayo mostró un COF de ~0,18 durante las 130 primeras revoluciones, debido a la baja pegajosidad del PTFE. Sin embargo, se produjo un aumento repentino del COF a ~1 una vez que el revestimiento se rompió, dejando al descubierto el sustrato subyacente. Tras las pruebas de movimiento alternativo lineal, se midió el perfil de desgaste con el NANOVEA Profilómetro óptico sin contactocomo se muestra en la FIGURA 2. A partir de los datos obtenidos, la tasa de desgaste correspondiente se calculó en ~2,78 × 10-3 mm3/Nm, mientras que la profundidad de la huella de desgaste se determinó en 44,94 µm.

ESTUDIO DEL DESGASTE DEL REVESTIMIENTO DE PTFE
Configuración de la prueba de desgaste del revestimiento de PTFE en el tribómetro NANOVEA T50.
TEFLÓN COF

FIGURA 1: Evolución del COF durante el ensayo de desgaste del revestimiento de PTFE.

PRUEBA DE DESGASTE DE PTFE

FIGURA 2: Profile de extracción de la pista de desgaste PTFE.

PTFE Antes del avance

COF máximo 0.217
Mín COF 0.125
COF medio 0.177

PTFE Después de la ruptura

COF máximo 0.217
Mín COF 0.125
COF medio 0.177

TABLA 1: COF antes y después de la rotura durante la prueba de desgaste.

RESULTADOS Y DEBATE

PRUEBA DE ADHERENCIA AL MICROARAÑAZO CON UN COMPROBADOR MECÁNICO

La adherencia del revestimiento de PTFE al sustrato se mide mediante ensayos de rayado con un estilete de diamante de 200 µm. La micrografía se muestra en la FIGURA 3 y FIGURA 4, la evolución del COF, y la profundidad de penetración en la FIGURA 5. Los resultados de la prueba de rayado del recubrimiento de PTFE se resumen en la TABLA 4. A medida que aumentaba la carga sobre el estilete de diamante, éste penetraba progresivamente en el revestimiento, lo que provocaba un aumento del COF. Cuando se alcanzó una carga de ~8,5 N, se produjo la ruptura del revestimiento y la exposición del sustrato bajo alta presión, lo que condujo a un COF elevado de ~0,3. El bajo St Dev mostrado en la TABLA 2 demuestra la repetibilidad del ensayo de rayado del revestimiento de PTFE realizado con el Probador Mecánico NANOVEA.

ENSAYO DE REVESTIMIENTO DE PTFE

FIGURA 3: Micrografía del rayado completo sobre PTFE (10X).

ENSAYO DE RAYADO DEL REVESTIMIENTO DE PTFE

FIGURA 4: Micrografía del rayado completo sobre PTFE (10X).

ENSAYO DE FRICCIÓN DEL REVESTIMIENTO DE PTFE

FIGURA 5: Gráfico de fricción que muestra la línea del punto crítico de fallo para el PTFE.

Rasca Punto de fallo [N] Fuerza de rozamiento [N] COF
1 0.335 0.124 0.285
2 0.337 0.207 0.310
3 0.380 0.229 0.295
Media 8.52 2.47 0.297
St dev 0.17 0.16 0.012

TABLA 2: Resumen de la carga crítica, la fuerza de fricción y el COF durante la prueba de rayado.

CONCLUSIÓN

En este estudio, realizamos una simulación del proceso de desgaste de un revestimiento de PTFE para sartenes antiadherentes utilizando el tribómetro NANOVEA T50 en modo lineal alternativo. El recubrimiento de PTFE exhibió un bajo COF de ~0,18 el recubrimiento experimentó una ruptura alrededor de las 130 revoluciones. La evaluación cuantitativa de la adhesión del revestimiento de PTFE al sustrato metálico se realizó utilizando el comprobador mecánico NANOVEA, que determinó que la carga crítica del fallo de adhesión del revestimiento era de ~8,5 N en esta prueba.

 

Los tribómetros NANOVEA ofrecen capacidades de ensayo de desgaste y fricción precisas y repetibles mediante modos rotativos y lineales conformes con las normas ISO y ASTM. Ofrecen módulos opcionales para desgaste a alta temperatura, lubricación y tribocorrosión, todo integrado en un único sistema. Esta versatilidad permite a los usuarios simular entornos de aplicación reales con mayor precisión y comprender mejor los mecanismos de desgaste y las propiedades tribológicas de distintos materiales.

 

Los comprobadores mecánicos NANOVEA cuentan con módulos Nano, Micro y Macro, cada uno de los cuales incluye modos de ensayo de indentación, rayado y desgaste conformes a las normas ISO y ASTM, proporcionando la gama más amplia y fácil de usar de capacidades de ensayo disponibles en un solo sistema.

Ensayo Nano Scratch & Mar de pintura sobre sustrato metálico

Pruebas Nano Scratch & Mar

de pintura sobre sustrato metálico

Preparado por

SUSANA CABELLO

INTRODUCCIÓN

La pintura con o sin revestimiento duro es uno de los revestimientos más utilizados. La vemos en coches, paredes, electrodomésticos y prácticamente cualquier cosa que necesite un revestimiento protector o simplemente con fines estéticos. Las pinturas destinadas a la protección del sustrato subyacente suelen tener sustancias químicas que evitan que la pintura se incendie o simplemente que pierda su color o se agriete. A menudo, la pintura utilizada con fines estéticos viene en varios colores, pero puede no estar necesariamente destinada a la protección de su sustrato o para una larga vida útil.

No obstante, todas las pinturas sufren cierto desgaste con el paso del tiempo. A menudo, el desgaste de la pintura puede alterar sus propiedades. Puede desconcharse más rápido, descascararse con el calor, perder color o agrietarse. Los diferentes cambios en las propiedades de la pintura con el paso del tiempo son la razón por la que los fabricantes ofrecen una selección tan amplia. Las pinturas se adaptan a las necesidades de cada cliente.

IMPORTANCIA DE LAS PRUEBAS DE NANORRAYADO PARA EL CONTROL DE CALIDAD

Una de las principales preocupaciones de los fabricantes de pintura es la capacidad de su producto para resistir el agrietamiento. Cuando la pintura empieza a agrietarse, deja de proteger el sustrato sobre el que se aplicó y, por tanto, no satisface al cliente. Por ejemplo, si una rama golpea el lateral de un coche e inmediatamente después la pintura empieza a desconcharse, los fabricantes de la pintura perderían negocio debido a la mala calidad de su pintura. La calidad de la pintura es muy importante porque si el metal bajo la pintura queda expuesto puede empezar a oxidarse o corroerse debido a su nueva exposición.

 

Razones como ésta se aplican a varios otros espectros, como suministros domésticos y de oficina y productos electrónicos, juguetes, herramientas de investigación y más. Aunque la pintura puede ser resistente al agrietamiento cuando se aplica por primera vez a los revestimientos metálicos, las propiedades pueden cambiar con el tiempo cuando se ha producido cierta meteorización en la muestra. Por eso es muy importante que las muestras de pintura se prueben en su fase de envejecimiento. Aunque el agrietamiento bajo una gran carga de tensión puede ser inevitable, el fabricante debe predecir hasta qué punto pueden debilitarse los cambios con el tiempo y la profundidad del arañazo affectante para poder ofrecer a sus consumidores los mejores productos posibles.

OBJETIVO DE MEDICIÓN

Debemos simular el proceso de rayado de forma controlada y monitorizada para observar los effectos del comportamiento de la muestra. En esta aplicación, el NANOVEA PB1000 Mechanical Tester en modo Nano Scratch Testing se utiliza para medir la carga necesaria para provocar el fallo de una muestra de pintura de aproximadamente 7 años de 30-50 μm de espesor sobre un sustrato metálico.

Se utiliza un palpador con punta de diamante de 2 μm con una carga progresiva que oscila entre 0,015 mN y 20,00 mN para rayar el revestimiento. Realizamos una exploración previa y posterior de la pintura con una carga de 0,2 mN para determinar el valor de la profundidad verdadera del rayado. La profundidad real analiza la deformación plástica y elástica de la muestra durante la prueba; mientras que el escaneado posterior sólo analiza la deformación plástica del arañazo. El punto en el que el revestimiento falla por agrietamiento se toma como punto de fallo. Utilizamos la ASTMD7187 como guía para determinar nuestros parámetros de ensayo.

 

Podemos concluir que al haber utilizado una muestra envejecida; por lo tanto, el ensayo de una muestra de pintura en su fase más débil, nos presentaba menores puntos de fallo.

 

Se realizaron cinco pruebas con esta muestra para

determinar con exactitud las cargas críticas de fallo.

NANOVEA

PB1000

PARÁMETROS DE PRUEBA

siguiente ASTM D7027

La superficie de un patrón de rugosidad se escaneó utilizando un NANOVEA ST400 equipado con un sensor de alta velocidad que genera una línea brillante de 192 puntos, como se muestra en la FIGURA 1. Estos 192 puntos escanean la superficie de la muestra al mismo tiempo, lo que conlleva un aumento significativo de la velocidad de escaneado.

TIPO DE CARGA Progresiva
CARGA INICIAL 0,015 mN
CARGA FINAL 20 mN
VELOCIDAD DE CARGA 20 mN/min
LONGITUD DEL RASPADO 1,6 mm
VELOCIDAD SCRATCH, dx/dt 1.601 mm/min
CARGA PREVIA AL ESCANEO 0,2 mN
CARGA POST-SCAN 0,2 mN
Indentador cónico 90° Cono 2 µm radio punta

tipo de penetrador

Cónica

Cono diamante 90

Radio de punta de 2 µm

Indentador cónico Diamante Cono 90° Radio de punta 2 µm

RESULTADOS

Esta sección presenta los datos recogidos sobre los fallos durante la prueba scratch. La primera sección describe los fallos observados en el scratch y define las cargas críticas que se registraron. La siguiente parte contiene una tabla resumen de las cargas críticas para todas las muestras y una representación gráfica. La última parte presenta los resultados detallados de cada muestra: las cargas críticas de cada rayado, las micrografías de cada fallo y el gráfico de la prueba.

FALLOS OBSERVADOS Y DEFINICIÓN DE CARGAS CRÍTICAS

FALLO CRÍTICO:

DAÑOS INICIALES

Este es el primer punto en el que se observa el daño a lo largo de la pista de rayado.

nano arañazo fallo crítico daño inicial

FALLO CRÍTICO:

DAÑO TOTAL

En este punto, el daño es más significativo donde la pintura se está astillando y agrietando a lo largo de la pista de arañazos.

nano arañazo fallo crítico daño completo

RESULTADOS DETALLADOS

* Valores de fallo tomados en el punto de agrietamiento del sustrato.

CARGAS CRÍTICAS
ROZADURA DAÑO INICIAL [mN] DAÑO COMPLETO [µm]
1 14.513 4.932
2 3.895 4.838
3 3.917 4.930
MEDIA 3.988 4.900
DEV STD 0.143 0.054
Micrografía de arañazo completo del ensayo de nano arañazo (magnificación 1000x).

FIGURA 2: Micrografía de rasguño completo (magnificación 1000x).

Micrografía del daño inicial del ensayo de nanorrayado (magnificación 1000x)

FIGURA 3: Micrografía del daño inicial (magnificación 1000x).

Micrografía del daño completo del ensayo de nanorrayado (magnificación 1000x).

FIGURA 4: Micrografía de daño completo (magnificación 1000x).

Fuerza de fricción y coeficiente de fricción en el ensayo lineal de nanorrayado

FIGURA 5: Fuerza de fricción y Coefficiente de fricción.

Perfil lineal de superficie de nano arañazos

FIGURA 6: Perfil de la superficie.

Linear Nano Scratch Test Profundidad real y profundidad residual

FIGURA 7: Profundidad real y profundidad residual.

CONCLUSIÓN

La NANOVEA Comprobador mecánico en el Nano comprobador de arañazos permite simular muchos fallos reales de revestimientos de pintura y capas duras. Aplicando cargas crecientes de forma controlada y estrechamente vigilada, el instrumento permite identificar a qué carga se producen los fallos. Esto puede utilizarse para determinar valores cuantitativos de resistencia al rayado. Se sabe que el revestimiento ensayado, sin intemperie, presenta una primera fisura a unos 22 mN. Con valores más próximos a 5 mN, es evidente que el lapso de 7 años ha degradado la pintura.

La compensación del perfil original permite obtener la profundidad corregida durante el rayado y medir la profundidad residual después del rayado. Esto proporciona información adicional sobre el comportamiento plástico frente al elástico del revestimiento bajo una carga creciente. Tanto el rayado como la información sobre la deformación pueden ser de gran utilidad para mejorar el revestimiento duro. Las muy pequeñas desviaciones estándar también muestran la reproducibilidad de la técnica del instrumento, que puede ayudar a los fabricantes a mejorar la calidad de su revestimiento duro/pintura y estudiar los effectos de la intemperie.

Evaluación de arañazos y desgaste en revestimientos industriales

RECUBRIMIENTO INDUSTRIAL

EVALUACIÓN DEL RAYADO Y EL DESGASTE MEDIANTE UN TRIBÓMETRO

Preparado por

DUANJIE LI, Doctorado, y ANDREA HERRMANN

INTRODUCCIÓN

La pintura de uretano acrílico es un tipo de recubrimiento protector de secado rápido ampliamente utilizado en diversas aplicaciones industriales, como pintura para pisos, pintura para automóviles y otras. Cuando se utiliza como pintura para pisos, puede servir en áreas con mucho tránsito peatonal y de ruedas de goma, como pasillos, bordillos y estacionamientos.

IMPORTANCIA DE LAS PRUEBAS DE RAYADURAS Y DESGASTE PARA EL CONTROL DE CALIDAD

Tradicionalmente, las pruebas de abrasión Taber se realizaban para evaluar la resistencia al desgaste de la pintura acrílica de uretano para pisos de acuerdo con la norma ASTM D4060. Sin embargo, como se menciona en la norma, “Para algunos materiales, las pruebas de abrasión que utilizan el abrasómetro Taber pueden estar sujetas a variaciones debido a cambios en las características abrasivas de la rueda durante la prueba”.1 Esto puede dar lugar a una mala reproducibilidad de los resultados de las pruebas y crear dificultades para comparar los valores comunicados por diferentes laboratorios. Además, en las pruebas de abrasión Taber, la resistencia a la abrasión se calcula como la pérdida de peso en un número específico de ciclos de abrasión. Sin embargo, las pinturas acrílicas de uretano para suelos tienen un espesor de película seca recomendado de 37,5-50 μm².

El agresivo proceso de abrasión del abrasómetro Taber puede desgastar rápidamente el recubrimiento de uretano acrílico y provocar una pérdida de masa en el sustrato, lo que da lugar a errores sustanciales en el cálculo de la pérdida de peso de la pintura. La implantación de partículas abrasivas en la pintura durante la prueba de abrasión también contribuye a los errores. Por lo tanto, es fundamental realizar una medición cuantificable y fiable bien controlada para garantizar una evaluación reproducible del desgaste de la pintura. Además, el prueba de resistencia al rayado permite a los usuarios detectar fallos prematuros en la adhesión/cohesión en aplicaciones reales.

OBJETIVO DE MEDICIÓN

En este estudio, demostramos que NANOVEA Tribómetros y Comprobadores mecánicos Son ideales para la evaluación y el control de calidad de recubrimientos industriales.

El proceso de desgaste de las pinturas acrílicas de uretano para pisos con diferentes capas de acabado se simula de manera controlada y supervisada utilizando el tribómetro NANOVEA. Se utilizan pruebas de microarañazos para medir la carga necesaria para provocar un fallo cohesivo o adhesivo en la pintura.

NANOVEA T100

El tribómetro neumático compacto

NANOVEA PB1000

El probador mecánico de plataforma grande

PROCEDIMIENTO DE PRUEBA

Este estudio evalúa cuatro recubrimientos acrílicos para pisos a base de agua disponibles en el mercado que tienen la misma imprimación (capa base) y diferentes capas de acabado de la misma fórmula, con una pequeña alteración en las mezclas de aditivos con el fin de mejorar la durabilidad. Estos cuatro recubrimientos se identifican como muestras A, B, C y D.

PRUEBA DE DESGASTE

Se utilizó el tribómetro NANOVEA para evaluar el comportamiento tribológico, por ejemplo, el coeficiente de fricción (COF) y la resistencia al desgaste. Se aplicó una punta de bola SS440 (6 mm de diámetro, grado 100) contra las pinturas sometidas a prueba. El COF se registró in situ. La tasa de desgaste, K, se evaluó utilizando la fórmula K=V/(F×s)=A/(F×n), donde V es el volumen desgastado, F es la carga normal, s es la distancia de deslizamiento, A es el área transversal de la huella de desgaste y n es el número de revoluciones. La rugosidad de la superficie y los perfiles de las huellas de desgaste se evaluaron con el NANOVEA. Perfilómetro óptico, y se examinó la morfología de la pista de desgaste con un microscopio óptico.

PARÁMETROS DE LA PRUEBA DE DESGASTE

FUERZA NORMAL

20 N

VELOCIDAD

15 m/min

DURACIÓN DE LA PRUEBA

100, 150, 300 y 800 ciclos

PRUEBA DE RAYADO

Se utilizó el probador mecánico NANOVEA equipado con una aguja de diamante Rockwell C (radio de 200 μm) para realizar pruebas de rayado con carga progresiva en las muestras de pintura utilizando el modo Micro Scratch Tester. Se utilizaron dos cargas finales: una carga final de 5 N para investigar la delaminación de la pintura de la imprimación y una de 35 N para investigar la delaminación de la imprimación de los sustratos metálicos. Se repitieron tres pruebas en las mismas condiciones de ensayo en cada muestra para garantizar la reproducibilidad de los resultados.

El software del sistema generó automáticamente imágenes panorámicas de toda la longitud de los rayones y correlacionó sus puntos críticos de falla con las cargas aplicadas. Esta función del software permite a los usuarios realizar análisis de las marcas de los rayones en cualquier momento, en lugar de tener que determinar la carga crítica bajo el microscopio inmediatamente después de las pruebas de rayado.

PARÁMETROS DE LA PRUEBA DE RAYADO

TIPO DE CARGAProgresiva
CARGA INICIAL0,01 mN
CARGA FINAL5 N / 35 N
VELOCIDAD DE CARGA10 / 70 N/min
LONGITUD DEL RASPADO3 mm
velocidad de rayado, dx/dt6,0 mm/min
GEOMETRÍA DEL PENETRADORcono de 120º
MATERIAL INDENTADOR (punta)Diamante
RADIO DE LA PUNTA DEL PENETRADOR200 μm

RESULTADOS DE LA PRUEBA DE DESGASTE

Se realizaron cuatro pruebas de desgaste con pasador sobre disco a diferentes números de revoluciones (100, 150, 300 y 800 ciclos) en cada muestra con el fin de supervisar la evolución del desgaste. La morfología de la superficie de las muestras se midió con un perfilómetro 3D sin contacto NANOVEA para cuantificar la rugosidad de la superficie antes de realizar las pruebas de desgaste. Todas las muestras tenían una rugosidad superficial comparable de aproximadamente 1 μm, como se muestra en la FIGURA 1. El COF se registró in situ durante las pruebas de desgaste, como se muestra en la FIGURA 2. La FIGURA 4 presenta la evolución de las huellas de desgaste después de 100, 150, 300 y 800 ciclos, y la FIGURA 3 resume la tasa de desgaste media de diferentes muestras en diferentes etapas del proceso de desgaste.

 

En comparación con un valor de COF de ~0,07 para las otras tres muestras, la muestra A presenta un COF mucho más alto de ~0,15 al principio, que aumenta gradualmente y se estabiliza en ~0,3 después de 300 ciclos de desgaste. Un COF tan alto acelera el proceso de desgaste y genera una cantidad considerable de residuos de pintura, como se indica en la FIGURA 4: la capa superior de la muestra A ha comenzado a desprenderse en las primeras 100 revoluciones. Como se muestra en la FIGURA 3, la muestra A presenta la tasa de desgaste más alta, de ~5 μm2/N, en los primeros 300 ciclos, que disminuye ligeramente hasta ~3,5 μm2/N debido a la mejor resistencia al desgaste del sustrato metálico. La capa superior de la muestra C comienza a fallar después de 150 ciclos de desgaste, como se muestra en la FIGURA 4, lo que también se indica por el aumento del COF en la FIGURA 2.

 

En comparación, las muestras B y D muestran propiedades tribológicas mejoradas. La muestra B mantiene un bajo coeficiente de fricción (COF) durante toda la prueba: el COF aumenta ligeramente de ~0,05 a ~0,1. Este efecto lubricante mejora sustancialmente su resistencia al desgaste: la capa superior sigue proporcionando una protección superior a la imprimación subyacente después de 800 ciclos de desgaste. La tasa de desgaste promedio más baja, de solo ~0,77 μm2/N, se mide para la muestra B a los 800 ciclos. La capa superior de la muestra D comienza a deslaminarse después de 375 ciclos, como se refleja en el aumento abrupto del COF en la FIGURA 2. La tasa de desgaste promedio de la muestra D es de ~1,1 μm2/N a los 800 ciclos.

 

En comparación con las mediciones de abrasión Taber convencionales, el tribómetro NANOVEA proporciona evaluaciones de desgaste cuantificables y fiables bien controladas que garantizan evaluaciones reproducibles y el control de calidad de las pinturas comerciales para suelos y automóviles. Además, la capacidad de realizar mediciones de COF in situ permite a los usuarios correlacionar las diferentes etapas de un proceso de desgaste con la evolución del COF, lo cual es fundamental para mejorar la comprensión básica del mecanismo de desgaste y las características tribológicas de diversos recubrimientos de pintura.

FIGURA 1: Morfología 3D y rugosidad de las muestras de pintura.

FIGURA 2: COF durante las pruebas de pin-on-disk.

FIGURA 3: Evolución de la tasa de desgaste de diferentes pinturas.

FIGURA 4: Evolución de las marcas de desgaste durante las pruebas de pasador sobre disco.

RESULTADOS DE LA PRUEBA DE RAYADO

La FIGURA 5 muestra el gráfico de la fuerza normal, la fuerza de fricción y la profundidad real en función de la longitud del rayón para la muestra A, a modo de ejemplo. Se puede instalar un módulo opcional de emisión acústica para proporcionar más información. A medida que la carga normal aumenta linealmente, la punta de la indentación se hunde gradualmente en la muestra sometida a prueba, lo que se refleja en el aumento progresivo de la profundidad real. La variación en las pendientes de las curvas de fuerza de fricción y profundidad real puede utilizarse como uno de los indicios de que comienzan a producirse fallos en el recubrimiento.

FIGURA 5: Fuerza normal, fuerza de fricción y profundidad real en función de la longitud del rayón para la prueba de rayado de la muestra A con una carga máxima de 5 N.

Las FIGURAS 6 y 7 muestran los rayones completos de las cuatro muestras de pintura probadas con una carga máxima de 5 N y 35 N, respectivamente. La muestra D requirió una carga mayor, de 50 N, para deslaminar la imprimación. Las pruebas de rayado con una carga final de 5 N (FIGURA 6) evalúan el fallo cohesivo/adhesivo de la pintura superior, mientras que las realizadas con 35 N (FIGURA 7) evalúan la deslaminación de la imprimación. Las flechas de las micrografías indican el punto en el que la capa superior o la imprimación comienzan a desprenderse completamente de la imprimación o del sustrato. La carga en este punto, denominada carga crítica, Lc, se utiliza para comparar las propiedades cohesivas o adhesivas de la pintura, tal y como se resume en la Tabla 1.

 

Es evidente que la muestra de pintura D tiene la mejor adhesión interfacial, ya que presenta los valores Lc más altos, de 4,04 N en la delaminación de la pintura y 36,61 N en la delaminación de la imprimación. La muestra B muestra la segunda mejor resistencia al rayado. A partir del análisis de rayado, demostramos que la optimización de la fórmula de la pintura es fundamental para el comportamiento mecánico o, más concretamente, para la resistencia al rayado y la propiedad de adhesión de las pinturas acrílicas para suelos.

Cuadro 1: Resumen de cargas críticas.

FIGURA 6: Micrografías de rayado completo con una carga máxima de 5 N.

FIGURA 7: Micrografías de rayado completo con una carga máxima de 35 N.

CONCLUSIÓN

En comparación con las mediciones de abrasión Taber convencionales, el probador mecánico y el tribómetro NANOVEA son herramientas superiores para la evaluación y el control de calidad de los recubrimientos comerciales para pisos y automóviles. El probador mecánico NANOVEA en modo Rasguño puede detectar problemas de adhesión/cohesión en un sistema de recubrimiento. El tribómetro NANOVEA proporciona un análisis tribológico cuantificable y repetible bien controlado sobre la resistencia al desgaste y el coeficiente de fricción de las pinturas.

 

Basándonos en los análisis tribológicos y mecánicos exhaustivos realizados a los recubrimientos acrílicos para suelos a base de agua probados en este estudio, demostramos que la muestra B posee el menor coeficiente de fricción y la menor tasa de desgaste, así como la segunda mejor resistencia al rayado, mientras que la muestra D presenta la mejor resistencia al rayado y la segunda mejor resistencia al desgaste. Esta evaluación nos permite valorar y seleccionar el mejor candidato en función de las necesidades de los diferentes entornos de aplicación.

 

Los módulos Nano y Micro del probador mecánico NANOVEA incluyen modos de prueba de indentación, rayado y desgaste que cumplen con las normas ISO y ASTM, lo que proporciona la gama más amplia de pruebas disponibles para la evaluación de pinturas en un solo módulo. El tribómetro NANOVEA ofrece pruebas de desgaste y fricción precisas y repetibles utilizando modos rotativos y lineales que cumplen con las normas ISO y ASTM, con módulos opcionales de desgaste a alta temperatura, lubricación y tribocorrosión disponibles en un sistema preintegrado. La inigualable gama de NANOVEA es una solución ideal para determinar todas las propiedades mecánicas y tribológicas de recubrimientos, películas y sustratos finos o gruesos, blandos o duros, incluyendo la dureza, el módulo de Young, la resistencia a la fractura, la adhesión, la resistencia al desgaste y muchas otras. Los perfilómetros ópticos sin contacto opcionales de NANOVEA están disponibles para la obtención de imágenes 3D de alta resolución de arañazos y marcas de desgaste, además de otras mediciones de superficie, como la rugosidad.

AHORA, HABLEMOS DE SU SOLICITUD

Prueba de rayado del revestimiento de nitruro de titanio

PRUEBA DE RAYADO DEL RECUBRIMIENTO DE NITRURO DE TITANIO

INSPECCIÓN DE CONTROL DE CALIDAD

Preparado por

DUANJIE LI, Doctor

INTRODUCCIÓN

La combinación de alta dureza, excelente resistencia al desgaste, resistencia a la corrosión e inercia hace que el nitruro de titanio (TiN) sea un recubrimiento protector ideal para componentes metálicos en diversas industrias. Por ejemplo, la retención de los bordes y la resistencia a la corrosión de un recubrimiento de TiN pueden aumentar sustancialmente la eficiencia del trabajo y prolongar la vida útil de las herramientas mecánicas, como las cuchillas de afeitar, los cortadores de metal, los moldes de inyección y las sierras. Su alta dureza, inercia y no toxicidad hacen del TiN un excelente candidato para aplicaciones en dispositivos médicos, incluidos implantes e instrumentos quirúrgicos.

IMPORTANCIA DE LAS PRUEBAS DE RAYADO DEL RECUBRIMIENTO DE TiN

La tensión residual en los recubrimientos protectores PVD/CVD desempeña un papel fundamental en el rendimiento y la integridad mecánica del componente recubierto. La tensión residual se deriva de varias fuentes principales, entre las que se incluyen la tensión de crecimiento, los gradientes térmicos, las restricciones geométricas y la tensión de servicio¹. La discrepancia en la expansión térmica entre el recubrimiento y el sustrato que se produce durante la deposición del recubrimiento a temperaturas elevadas da lugar a una alta tensión residual térmica. Además, las herramientas recubiertas de TiN se utilizan a menudo bajo tensiones muy concentradas, por ejemplo, brocas y rodamientos. Es fundamental desarrollar un proceso de control de calidad fiable para inspeccionar cuantitativamente la resistencia cohesiva y adhesiva de los recubrimientos funcionales protectores.

[1] V. Teixeira, Vacuum 64 (2002) 393-399.

OBJETIVO DE MEDICIÓN

En este estudio, mostramos que el NANOVEA Comprobadores mecánicos en modo Scratch son ideales para evaluar la resistencia cohesiva/adhesiva de los recubrimientos protectores de TiN de forma controlada y cuantitativa.

NANOVEA

PB1000

CONDICIONES DE ENSAYO

Se utilizó el comprobador mecánico NANOVEA PB1000 para realizar el recubrimiento. pruebas de rascado en tres recubrimientos de TiN utilizando los mismos parámetros de prueba que se resumen a continuación:

MODO DE CARGA: Lineal progresivo

CARGA INICIAL

0,02 N

CARGA FINAL

10 N

VELOCIDAD DE CARGA

20 N/min

LONGITUD DEL RASPADO

5 mm

TIPO DE INDENTADOR

Esférico-cónico

Diamante, radio de 20 μm

RESULTADOS Y DEBATE

La FIGURA 1 muestra la evolución registrada de la profundidad de penetración, el coeficiente de fricción (COF) y la emisión acústica durante la prueba. Las microrayaduras completas en las muestras de TiN se muestran en la FIGURA 2. Los comportamientos de fallo a diferentes cargas críticas se muestran en la FIGURA 3, donde la carga crítica Lc1 se define como la carga a la que se produce el primer signo de grieta cohesiva en la traza de rayado, Lc2 es la carga a partir de la cual se producen fallos repetidos por espalación, y Lc3 es la carga a la que el recubrimiento se desprende completamente del sustrato. Los valores de carga crítica (Lc) para los recubrimientos de TiN se resumen en la FIGURA 4.

La evolución de la profundidad de penetración, el COF y la emisión acústica proporcionan información sobre el mecanismo de fallo del recubrimiento en diferentes etapas, que se representan mediante las cargas críticas en este estudio. Se puede observar que la muestra A y la muestra B muestran un comportamiento similar durante la prueba de rayado. El lápiz penetra progresivamente en la muestra hasta una profundidad de ~0,06 mm y el COF aumenta gradualmente hasta ~0,3 a medida que la carga normal aumenta linealmente al comienzo de la prueba de rayado del recubrimiento. Cuando se alcanza el Lc1 de ~3,3 N, se produce el primer signo de fallo por astillamiento. Esto también se refleja en los primeros picos importantes en el gráfico de profundidad de penetración, COF y emisión acústica. A medida que la carga sigue aumentando hasta Lc2 de ~3,8 N, se produce una mayor fluctuación de la profundidad de penetración, el COF y la emisión acústica. Podemos observar un fallo por espalación continuo presente en ambos lados de la pista de rayado. En Lc3, el recubrimiento se deslamina completamente del sustrato metálico bajo la alta presión aplicada por el estilete, dejando el sustrato expuesto y sin protección.

En comparación, la muestra C presenta cargas críticas más bajas en diferentes etapas de las pruebas de rayado del recubrimiento, lo que también se refleja en la evolución de la profundidad de penetración, el coeficiente de fricción (COF) y la emisión acústica durante la prueba de rayado del recubrimiento. La muestra C posee una capa intermedia de adhesión con menor dureza y mayor tensión en la interfaz entre el recubrimiento superior de TiN y el sustrato metálico en comparación con la muestra A y la muestra B.

Este estudio demuestra la importancia de un soporte adecuado del sustrato y una arquitectura adecuada del recubrimiento para la calidad del sistema de recubrimiento. Una capa intermedia más resistente puede resistir mejor la deformación bajo una carga externa elevada y una tensión de concentración, lo que mejora la fuerza cohesiva y adhesiva del sistema de recubrimiento/sustrato.

FIGURA 1: Evolución de la profundidad de penetración, el COF y la emisión acústica de las muestras de TiN.

FIGURA 2: Rastro completo de rayaduras de los recubrimientos TiN después de las pruebas.

FIGURA 3: Fallos del recubrimiento TiN bajo diferentes cargas críticas, Lc.

FIGURA 4: Resumen de los valores de carga crítica (Lc) para los recubrimientos de TiN.

CONCLUSIÓN

En este estudio, demostramos que el probador mecánico NANOVEA PB1000 realiza pruebas de rayado fiables y precisas en muestras recubiertas de TiN de forma controlada y estrechamente supervisada. Las mediciones de rayado permiten a los usuarios identificar rápidamente la carga crítica a la que se producen los fallos típicos de cohesión y adhesión del recubrimiento. Nuestros instrumentos son herramientas de control de calidad superiores que pueden inspeccionar y comparar cuantitativamente la calidad intrínseca de un recubrimiento y la integridad interfacial de un sistema de recubrimiento/sustrato. Un recubrimiento con una capa intermedia adecuada puede resistir grandes deformaciones bajo una alta carga externa y una tensión de concentración, y mejorar la fuerza de cohesión y adhesión de un sistema de recubrimiento/sustrato.

Los módulos Nano y Micro de un medidor mecánico NANOVEA incluyen modos de medición de indentación, rayado y desgaste que cumplen con las normas ISO y ASTM, lo que proporciona la gama de pruebas más amplia y fácil de usar disponible en un solo sistema. La inigualable gama de NANOVEA es la solución ideal para determinar todas las propiedades mecánicas de recubrimientos, películas y sustratos finos o gruesos, blandos o duros, incluyendo la dureza, el módulo de Young, la resistencia a la fractura, la adhesión, la resistencia al desgaste y muchas otras.

Propiedades de adhesión del recubrimiento de oro sobre sustrato de cristal de cuarzo

Propiedades de adhesión del recubrimiento de oro

sobre sustrato de cristal de cuarzo

Preparado por

DUANJIE LI, Doctorado

INTRODUCCIÓN

La microbalanza de cristal de cuarzo (QCM) es un sensor de masa extremadamente sensible capaz de realizar mediciones precisas de masas pequeñas en el rango de los nanogramos. La QCM mide el cambio de masa en la superficie mediante la detección de variaciones en la frecuencia de resonancia del cristal de cuarzo con dos electrodos fijados a cada lado de la placa. Su capacidad para medir pesos extremadamente pequeños lo convierte en un componente clave en una variedad de instrumentos industriales y de investigación para detectar y monitorear la variación de la masa, la adsorción, la densidad y la corrosión, entre otros.

IMPORTANCIA DE LA PRUEBA DE RAYADO PARA QCM

Como dispositivo extremadamente preciso, el QCM mide el cambio de masa hasta 0,1 nanogramos. Cualquier pérdida de masa o delaminación de los electrodos en la placa de cuarzo será detectada por el cristal de cuarzo y causará errores de medición significativos. Como resultado, la calidad intrínseca del recubrimiento del electrodo y la integridad interfacial del sistema de recubrimiento/sustrato desempeñan un papel esencial en la realización de mediciones de masa precisas y repetibles. La prueba de microarañazos es una medición comparativa muy utilizada para evaluar las propiedades relativas de cohesión o adhesión de los recubrimientos basándose en la comparación de las cargas críticas en las que aparecen fallos. Es una herramienta superior para el control de calidad fiable de los QCM.

OBJETIVO DE MEDICIÓN

En esta aplicación, el NANOVEA Comprobador mecánico, en modo Micro Scratch, se utiliza para evaluar la fuerza cohesiva y adhesiva del recubrimiento de oro sobre el sustrato de cuarzo de una muestra QCM. Nos gustaría mostrar la capacidad del NANOVEA Probador mecánico para realizar pruebas de microarañazos en muestras delicadas con alta precisión y repetibilidad.

NANOVEA

PB1000

CONDICIONES DE ENSAYO

El NANOVEA Se utilizó el probador mecánico PB1000 para realizar las pruebas de microarañazos en una muestra de QCM utilizando los parámetros de prueba que se resumen a continuación. Se realizaron tres arañazos para garantizar la reproducibilidad de los resultados.

TIPO DE CARGA: Progresiva

CARGA INICIAL

0,01 N

CARGA FINAL

30 N

AMBIENTE: Aire 24 °C

VELOCIDAD DE DESLIZAMIENTO

2 mm/min

DISTANCIA DE DESLIZAMIENTO

2 mm

RESULTADOS Y DISCUSIÓN

La pista completa de microarañazos en la muestra QCM se muestra en FIGURA 1. Los comportamientos de fallo a diferentes cargas críticas se muestran en la FIGURA 2., donde la carga crítica, LC1 se define como la carga a la que se produce el primer signo de fallo adhesivo en la pista de rayado, L.C2 es la carga a partir de la cual se producen fallos adhesivos repetitivos, y LC3 es la carga a la que el recubrimiento se desprende completamente del sustrato. Se puede observar que se producen pocos desconchones a LC1 de 11,15 N, el primer indicio de fallo del recubrimiento. 

A medida que la carga normal sigue aumentando durante la prueba de microarañazos, se producen fallos adhesivos repetitivos después de L.C2 de 16,29 N. Cuando LC3 de 19,09 N, el recubrimiento se desprende completamente del sustrato de cuarzo. Estas cargas críticas pueden utilizarse para comparar cuantitativamente la fuerza cohesiva y adhesiva del recubrimiento y seleccionar el mejor candidato para las aplicaciones específicas.

FIGURA 1: Microarañazo completo en la muestra QCM.

FIGURA 2: Microarañazos en diferentes cargas críticas.

FIGURA 3 representa gráficamente la evolución del coeficiente de fricción y la profundidad, lo que puede proporcionar más información sobre la progresión de los fallos del recubrimiento durante la prueba de microarañazos.

FIGURA 3: Evolución del COF y la profundidad durante la prueba de microarañazos.

CONCLUSIÓN

En este estudio, demostramos que el NANOVEA El probador mecánico realiza pruebas de microarañazos fiables y precisas en una muestra QCM. Mediante la aplicación de cargas incrementadas linealmente de forma controlada y estrechamente supervisada, la medición de arañazos permite a los usuarios identificar la carga crítica a la que se produce el fallo típico de los recubrimientos cohesivos y adhesivos. Proporciona una herramienta superior para evaluar cuantitativamente y comparar la calidad intrínseca del recubrimiento y la integridad interfacial del sistema de recubrimiento/sustrato para QCM.

Los módulos Nano, Micro o Macro del NANOVEA Todos los probadores mecánicos incluyen modos de prueba de indentación, rayado y desgaste que cumplen con las normas ISO y ASTM, lo que proporciona la gama de pruebas más amplia y fácil de usar disponible en un solo sistema. NANOVEA‘Su incomparable gama es la solución ideal para determinar todas las propiedades mecánicas de recubrimientos, películas y sustratos finos o gruesos, blandos o duros, incluyendo dureza, módulo de Young, resistencia a la fractura, adhesión, resistencia al desgaste y muchas otras.

Además, hay disponibles un perfilador 3D sin contacto y un módulo AFM opcionales para obtener imágenes 3D de alta resolución de hendiduras, rayones y marcas de desgaste, además de otras mediciones de la superficie, como la rugosidad y la deformación.

Evaluación del desgaste y el rayado del alambre de cobre tratado superficialmente

Importancia de la evaluación del desgaste y el rayado del alambre de cobre

El cobre tiene una larga historia de uso en el cableado eléctrico desde la invención del electroimán y el telégrafo. Los hilos de cobre se utilizan en una amplia gama de equipos electrónicos, como paneles, contadores, ordenadores, máquinas comerciales y electrodomésticos, gracias a su resistencia a la corrosión, soldabilidad y rendimiento a temperaturas elevadas de hasta 150°C. Aproximadamente la mitad del cobre extraído se destina a la fabricación de alambres y cables eléctricos.

La calidad de la superficie de los alambres de cobre es fundamental para el rendimiento y la vida útil de las aplicaciones. Los microdefectos en los alambres pueden provocar un desgaste excesivo, el inicio y la propagación de grietas, una disminución de la conductividad y una soldabilidad inadecuada. Un tratamiento adecuado de la superficie de los alambres de cobre elimina los defectos superficiales generados durante el trefilado, mejorando la resistencia a la corrosión, los arañazos y el desgaste. Muchas aplicaciones aeroespaciales con alambres de cobre requieren un comportamiento controlado para evitar fallos inesperados del equipo. Se necesitan mediciones cuantificables y fiables para evaluar adecuadamente la resistencia al desgaste y al rayado de la superficie del alambre de cobre.

 
 

 

Objetivo de medición

En esta aplicación simulamos un proceso de desgaste controlado de diferentes tratamientos superficiales de alambre de cobre. Prueba del rasguño mide la carga necesaria para provocar un fallo en la capa superficial tratada. Este estudio muestra la capacidad de Nanovea Tribómetro y Comprobador mecánico como herramientas ideales para la evaluación y el control de calidad de los cables eléctricos.

 

 

Procedimiento de ensayo y procedimientos

El coeficiente de fricción (COF) y la resistencia al desgaste de dos tratamientos superficiales diferentes en alambres de cobre (Alambre A y Alambre B) se evaluaron mediante el tribómetro Nanovea utilizando un módulo de desgaste alternativo lineal. Una bola de Al₂O₃ (6 mm de diámetro) es el contramaterial utilizado en esta aplicación. La pista de desgaste se examinó utilizando el tribómetro de Nanovea Perfilómetro 3D sin contacto. Los parámetros de la prueba se resumen en la Tabla 1.

En este estudio se utilizó como ejemplo una bola lisa de Al₂O₃ como contramaterial. Puede aplicarse cualquier material sólido con diferente forma y acabado superficial utilizando una fijación personalizada para simular la situación de aplicación real.

 

 

El comprobador mecánico de Nanovea equipado con un palpador de diamante Rockwell C (100 μm de radio) realizó ensayos de rayado de carga progresiva en los hilos recubiertos utilizando el modo de micro rayado. Los parámetros del ensayo de rayado y la geometría de la punta se muestran en la Tabla 2.
 

 

 

 

Resultados y debate

Desgaste del hilo de cobre:

La figura 2 muestra la evolución del COF de los hilos de cobre durante las pruebas de desgaste. El alambre A muestra un COF estable de ~0,4 durante todo el ensayo de desgaste, mientras que el alambre B exhibe un COF de ~0,35 en las primeras 100 revoluciones y aumenta progresivamente hasta ~0,4.

 

La figura 3 compara las huellas de desgaste de los hilos de cobre tras las pruebas. El perfilómetro 3D sin contacto de Nanovea ofreció un análisis superior de la morfología detallada de las huellas de desgaste. Permite determinar de forma directa y precisa el volumen de la huella de desgaste proporcionando una comprensión fundamental del mecanismo de desgaste. La superficie del alambre B presenta daños significativos en la huella de desgaste tras una prueba de desgaste de 600 revoluciones. La vista en 3D del perfilómetro muestra la capa tratada de la superficie del alambre B completamente eliminada, lo que aceleró sustancialmente el proceso de desgaste. Esto dejó una huella de desgaste aplanada en el alambre B, donde el sustrato de cobre está expuesto. Esto puede acortar significativamente la vida útil de los equipos eléctricos en los que se utiliza el cable B. En comparación, el alambre A presenta un desgaste relativamente leve, que se manifiesta por una huella de desgaste poco profunda en la superficie. La capa tratada superficialmente en el alambre A no se eliminó como la capa del alambre B en las mismas condiciones.

Resistencia al rayado de la superficie del hilo de cobre:

La figura 4 muestra las huellas de arañazos en los cables después de la prueba. La capa protectora del cable A muestra una resistencia al rayado muy buena. Se deslamina a una carga de ~12,6 N. En comparación, la capa protectora del alambre B falló a una carga de ~1,0 N. Una diferencia tan significativa en la resistencia al rayado de estos alambres contribuye a su rendimiento frente al desgaste, donde el alambre A posee una resistencia al desgaste sustancialmente mayor. La evolución de la fuerza normal, el COF y la profundidad durante las pruebas de rayado mostradas en la Fig. 5 proporciona más información sobre el fallo del revestimiento durante las pruebas.

Conclusión

En este estudio controlado mostramos el tribómetro de Nanovea, que realiza una evaluación cuantitativa de la resistencia al desgaste de los alambres de cobre tratados superficialmente, y el comprobador mecánico de Nanovea, que proporciona una evaluación fiable de la resistencia al rayado de los alambres de cobre. El tratamiento superficial del alambre desempeña un papel fundamental en las propiedades tribo-mecánicas durante su vida útil. El tratamiento adecuado de la superficie del alambre A mejoró significativamente la resistencia al desgaste y a los arañazos, lo que es fundamental para el rendimiento y la vida útil de los cables eléctricos en entornos difíciles.

El tribómetro de Nanovea ofrece pruebas de desgaste y fricción precisas y repetibles mediante modos rotativos y lineales conformes con las normas ISO y ASTM, con módulos opcionales de desgaste a alta temperatura, lubricación y tribo-corrosión disponibles en un sistema preintegrado. La incomparable gama de Nanovea es una solución ideal para determinar toda la gama de propiedades tribológicas de revestimientos, películas y sustratos finos o gruesos, blandos o duros.

Comprensión de los fallos en los recubrimientos mediante pruebas de rayado

Introducción:

La ingeniería de superficies de los materiales desempeña un papel importante en diversas aplicaciones funcionales, que van desde la apariencia decorativa hasta la protección de los sustratos contra el desgaste, la corrosión y otras formas de agresión. Un factor importante y determinante que influye en la calidad y la vida útil de los recubrimientos es su fuerza cohesiva y adhesiva.

¡Haga clic aquí para leer!

Automatización de múltiples rayaduras en muestras similares utilizando el probador mecánico PB1000

Introducción :

Los recubrimientos se utilizan ampliamente en diversas industrias debido a sus propiedades funcionales. La dureza, la resistencia a la erosión, la baja fricción y la alta resistencia al desgaste de un recubrimiento son solo algunas de las muchas propiedades que hacen que los recubrimientos sean importantes. Un método comúnmente utilizado para cuantificar estas propiedades es la prueba de rayado, que permite una medición repetible de las propiedades adhesivas y/o cohesivas de un recubrimiento. Al comparar las cargas críticas en las que se produce el fallo, se pueden evaluar las propiedades intrínsecas de un recubrimiento.

¡Haga clic para obtener más información!

Pruebas de rayado en películas finas multicapa

Los recubrimientos se utilizan ampliamente en múltiples industrias para preservar las capas subyacentes, crear dispositivos electrónicos o mejorar las propiedades superficiales de los materiales. Debido a sus numerosos usos, los recubrimientos son objeto de numerosos estudios, pero sus propiedades mecánicas pueden ser difíciles de comprender. El fallo de los recubrimientos puede producirse en el rango micro/nanométrico debido a la interacción entre la superficie y la atmósfera, al fallo cohesivo y a la mala adhesión de la interfaz del sustrato. Un método consistente para comprobar los fallos de los recubrimientos es la prueba de rayado. Aplicando una carga que aumenta progresivamente, se pueden comparar cuantitativamente los fallos cohesivos (por ejemplo, agrietamiento) y adhesivos (por ejemplo, delaminación) de los recubrimientos.

Pruebas de rayado en películas finas multicapa

Propiedades mecánicas de los recubrimientos de obleas de carburo de silicio

Es fundamental comprender las propiedades mecánicas de los recubrimientos de las obleas de carburo de silicio. El proceso de fabricación de dispositivos microelectrónicos puede constar de más de 300 pasos diferentes y durar entre seis y ocho semanas. Durante este proceso, el sustrato de la oblea debe ser capaz de soportar las condiciones extremas de la fabricación, ya que un fallo en cualquier paso supondría una pérdida de tiempo y dinero. Las pruebas de dureza, La adhesión/resistencia a los rayones y el COF/índice de desgaste de la oblea deben cumplir ciertos requisitos para soportar las condiciones impuestas durante el proceso de fabricación y aplicación, a fin de garantizar que no se produzcan fallas.

Propiedades mecánicas de los recubrimientos de obleas de carburo de silicio