EE.UU./GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTACTO

Categoría: Pruebas de laboratorio

 

Evaluación de arañazos y desgaste en revestimientos industriales

REVESTIMIENTO INDUSTRIAL

EVALUACIÓN DEL RAYADO Y EL DESGASTE MEDIANTE UN TRIBÓMETRO

Preparado por

DUANJIE LI, PhD & ANDREA HERRMANN

INTRODUCCIÓN

La pintura de uretano acrílico es un tipo de revestimiento protector de secado rápido muy utilizado en diversas aplicaciones industriales, como pintura para suelos, pintura para automóviles y otras. Cuando se utiliza como pintura para suelos, puede servir para zonas con mucho tráfico peatonal y de ruedas de goma, como pasarelas, bordillos y aparcamientos.

IMPORTANCIA DE LAS PRUEBAS DE RAYADO Y DESGASTE PARA EL CONTROL DE CALIDAD

Tradicionalmente, los ensayos de abrasión Taber se llevaban a cabo para evaluar la resistencia al desgaste de la pintura acrílica de uretano para suelos según la norma ASTM D4060. Sin embargo, como se menciona en la norma, "Para algunos materiales, los ensayos de abrasión que utilizan el abrasivo Taber pueden estar sujetos a variaciones debido a cambios en las características abrasivas de la rueda durante el ensayo".1 Esto puede dar lugar a una mala reproducibilidad de los resultados del ensayo y crear dificultades a la hora de comparar los valores comunicados por diferentes laboratorios. Además, en los ensayos de abrasión Taber, la resistencia a la abrasión se calcula como la pérdida de peso en un número determinado de ciclos de abrasión. Sin embargo, las pinturas acrílicas de uretano para suelos tienen un espesor de película seca recomendado de 37,5-50 μm2.

El agresivo proceso de abrasión de Taber Abraser puede desgastar rápidamente el revestimiento de uretano acrílico y crear pérdidas de masa en el sustrato, lo que provoca errores sustanciales en el cálculo de la pérdida de peso de la pintura. La implantación de partículas abrasivas en la pintura durante el ensayo de abrasión también contribuye a los errores. Por lo tanto, una medición cuantificable y fiable bien controlada es crucial para garantizar una evaluación reproducible del desgaste de la pintura. Además, la prueba de resistencia al rayado permite a los usuarios detectar fallos prematuros de adhesivo/adhesivo en aplicaciones reales.

OBJETIVO DE MEDICIÓN

En este estudio, demostramos que NANOVEA Tribómetros y Comprobadores mecánicos son ideales para la evaluación y el control de calidad de los revestimientos industriales.

El proceso de desgaste de las pinturas acrílicas de uretano para suelos con diferentes capas de acabado se simula de forma controlada y monitorizada utilizando el tribómetro NANOVEA. El ensayo de microarañazos se utiliza para medir la carga necesaria para provocar el fallo cohesivo o adhesivo de la pintura.

NANOVEA T100

El tribómetro neumático compacto

NANOVEA PB1000

Comprobador mecánico de gran plataforma

PROCEDIMIENTO DE PRUEBA

Este estudio evalúa cuatro revestimientos acrílicos al agua para suelos disponibles en el mercado que tienen la misma imprimación (capa base) y diferentes capas de acabado de la misma fórmula con una pequeña alternancia en las mezclas de aditivos con el fin de mejorar la durabilidad. Estos cuatro revestimientos se identifican como Muestras A, B, C y D.

PRUEBA DE DESGASTE

Se aplicó el tribómetro NANOVEA para evaluar el comportamiento tribológico, por ejemplo, el coeficiente de fricción, COF, y la resistencia al desgaste. Se aplicó una punta de bola SS440 (6 mm de diámetro, Grado 100) contra las pinturas ensayadas. El COF se registró in situ. La tasa de desgaste, K, se evaluó mediante la fórmula K=V/(F×s)=A/(F×n), donde V es el volumen desgastado, F es la carga normal, s es la distancia de deslizamiento, A es el área transversal de la pista de desgaste y n es el número de revoluciones. La rugosidad de la superficie y los perfiles de la pista de desgaste se evaluaron mediante el programa NANOVEA Perfilómetro ópticoy la morfología de la huella de desgaste se examinó con un microscopio óptico.

PARÁMETROS DE LA PRUEBA DE DESGASTE

FUERZA NORMAL

20 N

VELOCIDAD

15 m/min

DURACIÓN DE LA PRUEBA

100, 150, 300 y 800 ciclos

PRUEBA DE RAYADO

Se utilizó el NANOVEA Mechanical Tester equipado con un palpador de diamante Rockwell C (200 μm de radio) para realizar ensayos de rayado con carga progresiva en las muestras de pintura utilizando el modo Micro Scratch Tester. Se utilizaron dos cargas finales: 5 N de carga final para investigar la deslaminación de la pintura de la imprimación, y 35 N para investigar la deslaminación de la imprimación de los sustratos metálicos. Se repitieron tres pruebas en las mismas condiciones en cada muestra para garantizar la reproducibilidad de los resultados.

Se generaron automáticamente imágenes panorámicas de toda la longitud de los arañazos y el software del sistema correlacionó sus ubicaciones críticas de fallo con las cargas aplicadas. Esta función del software facilita a los usuarios la realización de análisis de las pistas de rayado en cualquier momento, en lugar de tener que determinar la carga crítica bajo el microscopio inmediatamente después de los ensayos de rayado.

PARÁMETROS DE LA PRUEBA DE RAYADO

TIPO DE CARGAProgresiva
CARGA INICIAL0,01 mN
CARGA FINAL5 N / 35 N
TASA DE CARGA10 / 70 N/min
LONGITUD DEL RASPADO3 mm
velocidad de rayado, dx/dt6,0 mm/min
GEOMETRÍA DEL PENETRADORCono de 120
MATERIAL INDENTADOR (punta)Diamante
RADIO DE LA PUNTA DEL PENETRADOR200 μm

RESULTADOS DE LAS PRUEBAS DE DESGASTE

Se realizaron cuatro ensayos de desgaste pin-on-disk a diferentes números de revoluciones (100, 150, 300 y 800 ciclos) en cada muestra para monitorizar la evolución del desgaste. La morfología superficial de las muestras se midió con un perfilador sin contacto NANOVEA 3D para cuantificar la rugosidad superficial antes de realizar las pruebas de desgaste. Todas las muestras tenían una rugosidad superficial comparable de aproximadamente 1 μm como se muestra en la FIGURA 1. El COF se registró in situ durante las pruebas de desgaste como se muestra en la FIGURA 2. En la FIGURA 4 se presenta la evolución de las huellas de desgaste después de 100, 150, 300 y 800 ciclos, y en la FIGURA 3 se resumió la tasa media de desgaste de las distintas muestras en diferentes etapas del proceso de desgaste.

 

En comparación con un valor de COF de ~0,07 para las otras tres muestras, la Muestra A exhibe un COF mucho más alto de ~0,15 al principio, que aumenta gradualmente y se estabiliza en ~0,3 después de 300 ciclos de desgaste. Un COF tan alto acelera el proceso de desgaste y crea una cantidad sustancial de restos de pintura como se indica en la FIGURA 4 - la capa superior de la Muestra A ha comenzado a ser eliminada en las primeras 100 revoluciones. Como se muestra en la FIGURA 3, la Muestra A presenta la mayor tasa de desgaste de ~5 μm2/N en los primeros 300 ciclos, que disminuye ligeramente a ~3,5 μm2/N debido a la mejor resistencia al desgaste del sustrato metálico. La capa superior de la Muestra C comienza a fallar después de 150 ciclos de desgaste, como se muestra en la FIGURA 4, lo que también se indica por el aumento de COF en la FIGURA 2.

 

En comparación, las muestras B y D muestran mejores propiedades tribológicas. La muestra B mantiene un COF bajo durante toda la prueba: el COF aumenta ligeramente de ~0,05 a ~0,1. Este efecto lubricante mejora sustancialmente su resistencia al desgaste. Este efecto lubricante mejora sustancialmente su resistencia al desgaste: la capa superior sigue proporcionando una protección superior a la imprimación subyacente después de 800 ciclos de desgaste. La tasa media de desgaste más baja de sólo ~0,77 μm2/N se mide para la Muestra B a 800 ciclos. La capa superior de la muestra D empieza a desprenderse después de 375 ciclos, como refleja el brusco aumento del COF en la FIGURA 2. La tasa media de desgaste de la muestra D sigue siendo superior a la de la imprimación después de 800 ciclos de desgaste. La tasa media de desgaste de la muestra D es de ~1,1 μm2/N a 800 ciclos.

 

En comparación con las mediciones de abrasión Taber convencionales, el tribómetro NANOVEA proporciona evaluaciones de desgaste cuantificables y fiables bien controladas que garantizan evaluaciones reproducibles y el control de calidad de las pinturas comerciales para suelos y automóviles. Además, la capacidad de las mediciones de COF in situ permite a los usuarios correlacionar las diferentes etapas de un proceso de desgaste con la evolución del COF, lo que resulta crítico para mejorar la comprensión fundamental del mecanismo de desgaste y las características tribológicas de diversos recubrimientos de pintura.

FIGURA 1: Morfología 3D y rugosidad de las muestras de pintura.

FIGURA 2: COF durante las pruebas pin-on-disk.

FIGURA 3: Evolución de la tasa de desgaste de diferentes pinturas.

FIGURA 4: Evolución de las huellas de desgaste durante las pruebas pin-on-disk.

RESULTADOS DE LA PRUEBA DE RAYADO

La FIGURA 5 muestra, a modo de ejemplo, el gráfico de la fuerza normal, la fuerza de fricción y la profundidad real en función de la longitud del arañazo para la Muestra A. Puede instalarse un módulo opcional de emisión acústica para obtener más información. A medida que la carga normal aumenta linealmente, la punta de indentación se hunde gradualmente en la muestra ensayada, tal como refleja el aumento progresivo de la profundidad verdadera. La variación en las pendientes de las curvas de fuerza de fricción y profundidad real puede utilizarse como una de las implicaciones de que empiezan a producirse fallos en el revestimiento.

FIGURA 5: Fuerza normal, fuerza de fricción y profundidad real en función de la longitud de rayado para ensayo de rayado de la muestra A con una carga máxima de 5 N.

Las FIGURAS 6 y 7 muestran los rayados completos de las cuatro muestras de pintura ensayadas con una carga máxima de 5 N y 35 N, respectivamente. La muestra D requirió una carga superior de 50 N para deslaminar la imprimación. Los ensayos de rayado con una carga final de 5 N (FIGURA 6) evalúan el fallo cohesivo/adhesivo de la pintura superior, mientras que los de 35 N (FIGURA 7) evalúan la deslaminación de la imprimación. Las flechas en las micrografías indican el punto en el que la pintura superior o la imprimación empiezan a desprenderse completamente de la imprimación o del sustrato. La carga en este punto, llamada Carga Crítica, Lc, se utiliza para comparar las propiedades cohesivas o adhesivas de la pintura como se resume en la Tabla 1.

 

Es evidente que la pintura de la Muestra D tiene la mejor adhesión interfacial - exhibiendo los valores más altos de Lc de 4,04 N en la delaminación de la pintura y 36,61 N en la delaminación de la imprimación. La muestra B muestra la segunda mejor resistencia al rayado. A partir del análisis del rayado, mostramos que la optimización de la fórmula de la pintura es crítica para los comportamientos mecánicos, o más específicamente, la resistencia al rayado y la propiedad de adhesión de las pinturas acrílicas para suelos.

Cuadro 1: Resumen de las cargas críticas.

FIGURA 6: Micrografías del rayado completo con una carga máxima de 5 N.

FIGURA 7: Micrografías del rayado completo con una carga máxima de 35 N.

CONCLUSIÓN

En comparación con las mediciones de abrasión Taber convencionales, el NANOVEA Mechanical Tester y el Tribometer son herramientas superiores para la evaluación y el control de calidad de revestimientos de suelos comerciales y de automoción. El NANOVEA Mechanical Tester en modo Scratch puede detectar problemas de adhesión/cohesión en un sistema de revestimiento. El Tribómetro NANOVEA proporciona un análisis tribológico cuantificable y repetible bien controlado sobre la resistencia al desgaste y el coeficiente de fricción de las pinturas.

 

Basándonos en los exhaustivos análisis tribológicos y mecánicos de los revestimientos acrílicos de base acuosa para suelos ensayados en este estudio, demostramos que la Muestra B posee el COF y el índice de desgaste más bajos y la segunda mejor resistencia al rayado, mientras que la Muestra D exhibe la mejor resistencia al rayado y la segunda mejor resistencia al desgaste. Esta evaluación nos permite valorar y seleccionar el mejor candidato en función de las necesidades en diferentes entornos de aplicación.

 

Los módulos Nano y Micro del Comprobador Mecánico NANOVEA incluyen modos de indentación, rayado y desgaste conformes a las normas ISO y ASTM, proporcionando la más amplia gama de pruebas disponibles para la evaluación de pinturas en un solo módulo. El Tribómetro NANOVEA ofrece ensayos de desgaste y fricción precisos y repetibles utilizando modos rotativos y lineales conformes a ISO y ASTM, con módulos opcionales de desgaste a alta temperatura, lubricación y tribo-corrosión disponibles en un sistema preintegrado. La gama inigualable de NANOVEA es una solución ideal para determinar toda la gama de propiedades mecánicas/tribológicas de revestimientos, películas y sustratos finos o gruesos, blandos o duros, incluida la dureza, el módulo de Young, la tenacidad a la fractura, la adherencia, la resistencia al desgaste y muchas otras. Los perfiladores ópticos sin contacto NANOVEA opcionales están disponibles para obtener imágenes 3D de alta resolución de arañazos y huellas de desgaste, además de otras mediciones de superficies como la rugosidad.

AHORA, HABLEMOS DE SU SOLICITUD

Medición de la dureza a los arañazos mediante un comprobador mecánico

MEDICIÓN DE LA DUREZA AL RAYADO

UTILIZANDO UN COMPROBADOR MECÁNICO

Preparado por

DUANJIE LI, Doctor

INTRODUCCIÓN

En general, los ensayos de dureza miden la resistencia de los materiales a la deformación permanente o plástica. Existen tres tipos de mediciones de la dureza: dureza al rayado, dureza por indentación y dureza por rebote. El ensayo de dureza al rayado mide la resistencia de un material al rayado y la abrasión debidos a la fricción de un objeto afilado1. Fue desarrollado originalmente por el mineralogista alemán Friedrich Mohs en 1820 y todavía se utiliza ampliamente para clasificar las propiedades físicas de los minerales2. Este método de ensayo también es aplicable a metales, cerámicas, polímeros y superficies recubiertas.

Durante una medición de la dureza al rayado, un palpador de diamante de geometría especificada raya la superficie de un material a lo largo de una trayectoria lineal bajo una fuerza normal constante con una velocidad constante. Se mide la anchura media del rayado y se utiliza para calcular el número de dureza al rayado (HSP). Esta técnica proporciona una solución sencilla para escalar la dureza de diferentes materiales.

OBJETIVO DE MEDICIÓN

En este estudio, el Probador Mecánico NANOVEA PB1000 se utiliza para medir la dureza al rayado de diferentes metales de acuerdo con ASTM G171-03.

Al mismo tiempo, este estudio muestra la capacidad del NANOVEA Comprobador mecánico en la medición de la dureza al rayado con gran precisión y reproducibilidad.

NANOVEA

PB1000

CONDICIONES DE ENSAYO

El comprobador mecánico NANOVEA PB1000 realizó ensayos de dureza al rayado en tres metales pulidos (Cu110, Al6061 y SS304). Se utilizó un palpador cónico de diamante con un ángulo de vértice de 120° y un radio de punta de 200 µm. Cada muestra se rayó tres veces con los mismos parámetros de ensayo para garantizar la reproducibilidad de los resultados. Los parámetros de prueba se resumen a continuación. Se realizó un barrido de perfil a una carga normal baja de 10 mN antes y después del prueba de resistencia al rayado para medir el cambio en el perfil de la superficie del arañazo.

PARÁMETROS DE PRUEBA

FUERZA NORMAL

10 N

TEMPERATURA

24°C (RT)

VELOCIDAD DE DESLIZAMIENTO

20 mm/min

DISTANCIA DE DESLIZAMIENTO

10 mm

ATMÓSFERA

Aire

RESULTADOS Y DEBATE

Las imágenes de las huellas de rayado de tres metales (Cu110, Al6061 y SS304) después de las pruebas se muestran en la FIGURA 1 con el fin de comparar la dureza de rayado de diferentes materiales. La función de mapeo del software NANOVEA Mechanical se utilizó para crear tres rayados paralelos ensayados bajo la misma condición en un protocolo automatizado. El ancho de la pista de rayado medido y el número de dureza de rayado calculado (HSP) se resumen y comparan en la TABLA 1. Los metales muestran diferentes anchos de pista de desgaste de 174, 220 y 89 µm para Al6061, Cu110 y SS304, respectivamente, dando como resultado un HSP calculado de 0,84, 0,52 y 3,2 GPa.

Además de la dureza al rayado calculada a partir de la anchura de la pista de rayado, se registraron in situ la evolución del coeficiente de fricción (COF), la profundidad real y la emisión acústica durante el ensayo de dureza al rayado. La profundidad real es la diferencia de profundidad entre la profundidad de penetración del palpador durante la prueba de rayado y el perfil de superficie medido en la exploración previa. En la FIGURA 2 se muestran, a modo de ejemplo, el COF, la profundidad real y la emisión acústica del Cu110. Dicha información proporciona información sobre los fallos mecánicos que tienen lugar durante el rayado, lo que permite a los usuarios detectar defectos mecánicos e investigar más a fondo el comportamiento al rayado del material ensayado.

Los ensayos de dureza al rayado pueden finalizarse en un par de minutos con gran precisión y repetibilidad. En comparación con los procedimientos de indentación convencionales, el ensayo de dureza al rayado de este estudio proporciona una solución alternativa para las mediciones de dureza, que resulta útil para el control de calidad y el desarrollo de nuevos materiales.

Al6061

Cu110

SS304

FIGURA 1: Imagen microscópica de las huellas de arañazos tras la prueba (aumento 100x).

 Anchura de la huella del arañazo (μm)HSp (GPa)
Al6061174±110.84
Cu110220±10.52
SS30489±53.20

TABLA 1: Resumen de la anchura de la pista de rayado y del número de dureza del rayado.

FIGURA 2: Evolución del coeficiente de fricción, de la profundidad real y de las emisiones acústicas durante el ensayo de dureza al rayado en Cu110.

CONCLUSIÓN

En este estudio, mostramos la capacidad del NANOVEA Mechanical Tester para realizar ensayos de dureza al rayado conforme a la norma ASTM G171-03. Además de la adherencia del revestimiento y la resistencia al rayado, el ensayo de rayado con carga constante proporciona una solución alternativa sencilla para comparar la dureza de los materiales. A diferencia de los durómetros de rayado convencionales, los Comprobadores Mecánicos NANOVEA ofrecen módulos opcionales para controlar in situ la evolución del coeficiente de fricción, la emisión acústica y la profundidad real.

Los módulos Nano y Micro de un NANOVEA Mechanical Tester incluyen modos de indentación, rayado y desgaste conformes a ISO y ASTM, proporcionando la gama de ensayos más amplia y fácil de usar disponible en un solo sistema. La gama inigualable de NANOVEA es una solución ideal para determinar la gama completa de propiedades mecánicas de revestimientos, películas y sustratos finos o gruesos, blandos o duros, incluyendo dureza, módulo de Young, tenacidad a la fractura, adhesión, resistencia al desgaste y muchos otros.

AHORA, HABLEMOS DE SU SOLICITUD

Prueba de rayado del revestimiento de nitruro de titanio

ENSAYO DE RAYADO DEL REVESTIMIENTO DE NITRURO DE TITANIO

INSPECCIÓN DE CONTROL DE CALIDAD

Preparado por

DUANJIE LI, Doctor

INTRODUCCIÓN

La combinación de alta dureza, excelente resistencia al desgaste, resistencia a la corrosión e inercia hace del nitruro de titanio (TiN) un recubrimiento protector ideal para componentes metálicos de diversas industrias. Por ejemplo, la retención de bordes y la resistencia a la corrosión de un revestimiento de TiN pueden aumentar sustancialmente la eficacia del trabajo y prolongar la vida útil de máquinas herramienta como cuchillas de afeitar, cortadoras de metal, moldes de inyección y sierras. Su gran dureza, inercia y no toxicidad hacen del TiN un gran candidato para aplicaciones en dispositivos médicos, como implantes e instrumentos quirúrgicos.

IMPORTANCIA DE LAS PRUEBAS DE RASGADO DEL RECUBRIMIENTO DE TiN

La tensión residual en los revestimientos protectores de PVD/CVD desempeña un papel fundamental en el rendimiento y la integridad mecánica del componente revestido. La tensión residual se deriva de varias fuentes principales, como la tensión de crecimiento, los gradientes térmicos, las limitaciones geométricas y la tensión de servicio¹. El desajuste de la expansión térmica entre el revestimiento y el sustrato creado durante la deposición del revestimiento a temperaturas elevadas provoca una elevada tensión residual térmica. Además, las herramientas recubiertas de TiN se utilizan a menudo bajo tensiones concentradas muy elevadas, por ejemplo, en brocas y cojinetes. Es fundamental desarrollar un proceso de control de calidad fiable para inspeccionar cuantitativamente la resistencia cohesiva y adhesiva de los revestimientos funcionales protectores.

[1] V. Teixeira, Vacuum 64 (2002) 393-399.

OBJETIVO DE MEDICIÓN

En este estudio, demostramos que el NANOVEA Comprobadores mecánicos en Modo Rascado son ideales para evaluar la fuerza cohesiva/adhesiva de los revestimientos protectores de TiN de forma controlada y cuantitativa.

NANOVEA

PB1000

CONDICIONES DE ENSAYO

Para realizar el recubrimiento se utilizó el Comprobador Mecánico NANOVEA PB1000 pruebas de resistencia al rayado en tres revestimientos de TiN utilizando los mismos parámetros de ensayo que se resumen a continuación:

MODO DE CARGA: Lineal progresivo

CARGA INICIAL

0.02 N

CARGA FINAL

10 N

TASA DE CARGA

20 N/min

LONGITUD DEL RASPADO

5 mm

TIPO INDENTADOR

Esfero-cónica

Diamante, 20 μm de radio

RESULTADOS Y DEBATE

La FIGURA 1 muestra la evolución registrada de la profundidad de penetración, el coeficiente de fricción (COF) y la emisión acústica durante el ensayo. En la FIGURA 2 se muestran las huellas completas de microarañazos en las muestras de TiN. Los comportamientos de fallo a diferentes cargas críticas se muestran en la FIGURA 3, donde la carga crítica Lc1 se define como la carga a la que se produce el primer signo de grieta cohesiva en la pista de rayado, Lc2 es la carga después de la cual se producen fallos repetidos por espalación, y Lc3 es la carga a la que el recubrimiento se desprende completamente del sustrato. Los valores de carga crítica (Lc) para los revestimientos de TiN se resumen en la FIGURA 4.

La evolución de la profundidad de penetración, del COF y de la emisión acústica permite comprender el mecanismo de fallo del recubrimiento en diferentes etapas, que en este estudio están representadas por las cargas críticas. Puede observarse que la Muestra A y la Muestra B presentan un comportamiento comparable durante el ensayo de rayado. El estilete penetra progresivamente en la muestra hasta una profundidad de ~0,06 mm y el COF aumenta gradualmente hasta ~0,3 a medida que la carga normal aumenta linealmente al principio del ensayo de rayado del revestimiento. Cuando se alcanza el Lc1 de ~3,3 N, se produce el primer signo de fallo por astillado. Esto también se refleja en los primeros picos grandes en el gráfico de profundidad de penetración, COF y emisión acústica. A medida que la carga sigue aumentando hasta Lc2 de ~3,8 N, se producen nuevas fluctuaciones de la profundidad de penetración, el COF y la emisión acústica. Podemos observar un fallo de espalación continuo presente a ambos lados de la pista de rayado. En el Lc3, el revestimiento se desprende completamente del sustrato metálico bajo la alta presión aplicada por el palpador, dejando el sustrato expuesto y desprotegido.

En comparación, la Muestra C presenta cargas críticas inferiores en diferentes etapas de los ensayos de rayado del revestimiento, lo que también se refleja en la evolución de la profundidad de penetración, el coeficiente de fricción (COF) y la emisión acústica durante el ensayo de rayado del revestimiento. La muestra C posee una capa intermedia de adherencia con menor dureza y mayor tensión en la interfaz entre el revestimiento superior de TiN y el sustrato metálico en comparación con las muestras A y B.

Este estudio demuestra la importancia de un soporte de sustrato y una arquitectura de revestimiento adecuados para la calidad del sistema de revestimiento. Una capa intermedia más fuerte puede resistir mejor la deformación bajo una carga externa y una tensión de concentración elevadas, y mejorar así la resistencia cohesiva y adhesiva del sistema de revestimiento/sustrato.

FIGURA 1: Evolución de la profundidad de penetración, del COF y de la emisión acústica de las muestras de TiN.

FIGURA 2: Rastro completo de arañazos de los revestimientos de TiN tras las pruebas.

FIGURA 3: Fallos del revestimiento de TiN bajo diferentes cargas críticas, Lc.

FIGURA 4: Resumen de los valores de carga crítica (Lc) para los revestimientos de TiN.

CONCLUSIÓN

En este estudio, demostramos que el comprobador mecánico NANOVEA PB1000 realiza ensayos de rayado fiables y precisos en muestras recubiertas con TiN de forma controlada y estrechamente supervisada. Las mediciones de arañazos permiten a los usuarios identificar rápidamente la carga crítica a la que se producen los típicos fallos del revestimiento cohesivo y adhesivo. Nuestros instrumentos son herramientas superiores de control de calidad que pueden inspeccionar y comparar cuantitativamente la calidad intrínseca de un revestimiento y la integridad interfacial de un sistema de revestimiento/sustrato. Un revestimiento con una capa intermedia adecuada puede resistir grandes deformaciones bajo una elevada carga externa y tensión de concentración, y mejorar la resistencia cohesiva y adhesiva de un sistema de revestimiento/sustrato.

Los módulos Nano y Micro de un NANOVEA Mechanical Tester incluyen todos modos de indentación, rayado y desgaste conformes con ISO y ASTM, proporcionando la gama de ensayos más amplia y fácil de usar disponible en un solo sistema. La gama inigualable de NANOVEA es una solución ideal para determinar la gama completa de propiedades mecánicas de revestimientos, películas y sustratos finos o gruesos, blandos o duros, incluyendo dureza, módulo de Young, tenacidad a la fractura, adhesión, resistencia al desgaste y muchos otros.

AHORA, HABLEMOS DE SU SOLICITUD

Análisis de fractografía mediante perfilometría 3D

ANÁLISIS FRACTOGRÁFICO

UTILIZANDO LA PERFILOMETRÍA 3D

Preparado por

CRAIG LEISING

INTRODUCCIÓN

La fractografía es el estudio de las características de las superficies fracturadas y se ha investigado históricamente mediante microscopio o SEM. Dependiendo del tamaño del rasgo, se selecciona un microscopio (rasgos macro) o un SEM (rasgos nano y micro) para el análisis de la superficie. En última instancia, ambos permiten identificar el tipo de mecanismo de fractura. Aunque eficaz, el microscopio tiene claras limitaciones y el SEM, en la mayoría de los casos, aparte del análisis a nivel atómico, es poco práctico para la medición de la superficie de la fractura y carece de una capacidad de uso más amplia. Con los avances en la tecnología de medición óptica, el NANOVEA Perfilómetro 3D sin contacto se considera actualmente el instrumento de elección, gracias a su capacidad para realizar mediciones de superficies 2D y 3D desde la nanoescala hasta la macroescala.

IMPORTANCIA DEL PERFILÓMETRO 3D SIN CONTACTO PARA LA INSPECCIÓN DE FRACTURAS

A diferencia de un SEM, un perfilómetro 3D sin contacto puede medir casi cualquier superficie y tamaño de muestra, con una preparación mínima de la muestra, a la vez que ofrece unas dimensiones verticales/horizontales superiores a las de un SEM. Con un perfilómetro, las características de rango nano a macro se capturan en una sola medición con influencia cero de la reflectividad de la muestra. Mida fácilmente cualquier material: transparente, opaco, especular, difusivo, pulido, rugoso, etc. El perfilómetro 3D sin contacto proporciona una capacidad amplia y fácil de usar para maximizar los estudios de fractura de superficies a una fracción del coste de un SEM.

OBJETIVO DE MEDICIÓN

En esta aplicación, el NANOVEA ST400 se utiliza para medir la superficie fracturada de una muestra de acero. En este estudio, mostraremos un área 3D, extracción de perfil 2D y mapa direccional de superficie de la superficie.

NANOVEA

ST400

RESULTADOS

SUPERFICIE SUPERIOR

Dirección de la textura de la superficie 3D

Isotropía51.26%
Primera dirección123.2º
Segunda dirección116.3º
Tercera dirección0.1725º

Superficie, Volumen, Rugosidad y muchos otros pueden calcularse automáticamente a partir de esta extracción.

Extracción de perfiles 2D

RESULTADOS

SUPERFICIE LATERAL

Dirección de la textura de la superficie 3D

Isotropía15.55%
Primera dirección0.1617º
Segunda dirección110.5º
Tercera dirección171.5º

Superficie, Volumen, Rugosidad y muchos otros pueden calcularse automáticamente a partir de esta extracción.

Extracción de perfiles 2D

CONCLUSIÓN

En esta aplicación, hemos mostrado cómo el perfilómetro 3D sin contacto NANOVEA ST400 puede caracterizar con precisión la topografía completa (características nano, micro y macro) de una superficie fracturada. A partir del área 3D, la superficie puede identificarse claramente y las subáreas o perfiles/secciones transversales pueden extraerse y analizarse rápidamente con una lista interminable de cálculos de superficie. Las características subnanométricas de la superficie pueden analizarse más a fondo con un módulo AFM integrado.

Además, NANOVEA ha incluido una versión portátil en su línea de perfilómetros, especialmente importante para estudios de campo en los que la superficie de la fractura es inamovible. Con esta amplia lista de capacidades de medición de superficies, el análisis de superficies de fracturas nunca ha sido tan fácil y cómodo con un solo instrumento.

AHORA, HABLEMOS DE SU SOLICITUD

Topografía de superficies de fibra de vidrio mediante perfilometría 3D

TOPOGRAFÍA DE LA SUPERFICIE DE FIBRA DE VIDRIO

UTILIZANDO LA PERFILOMETRÍA 3D

Preparado por

CRAIG LEISING

INTRODUCCIÓN

La fibra de vidrio es un material fabricado a partir de fibras de vidrio extremadamente finas. Se utiliza como agente de refuerzo en muchos productos poliméricos; el material compuesto resultante, conocido como polímero reforzado con fibra (FRP) o plástico reforzado con fibra de vidrio (GRP), recibe el nombre popular de "fibra de vidrio".

IMPORTANCIA DE LA INSPECCIÓN METROLÓGICA DE SUPERFICIES PARA EL CONTROL DE CALIDAD

Aunque los refuerzos de fibra de vidrio tienen muchos usos, en la mayoría de las aplicaciones es crucial que sean lo más resistentes posible. Los compuestos de fibra de vidrio tienen una de las mayores relaciones resistencia/peso disponibles y, en algunos casos, libra por libra son más resistentes que el acero. Además de su gran resistencia, también es importante que la superficie expuesta sea lo más pequeña posible. Las grandes superficies de fibra de vidrio pueden hacer que la estructura sea más vulnerable a los ataques químicos y, posiblemente, a la dilatación del material. Por lo tanto, la inspección de la superficie es fundamental para controlar la calidad de la producción.

OBJETIVO DE MEDICIÓN

En esta aplicación, el NANOVEA ST400 se utiliza para medir la rugosidad y planitud de la superficie de un compuesto de fibra de vidrio. Mediante la cuantificación de estas características superficiales es posible crear u optimizar un material compuesto de fibra de vidrio más resistente y duradero.

NANOVEA

ST400

PARÁMETROS DE MEDICIÓN

SONDA 1 mm
TASA DE ADQUISICIÓN300 Hz
PROMEDIO1
SUPERFICIE MEDIDA5 mm x 2 mm
TAMAÑO DEL PASO5 µm x 5 µm
MODO DE EXPLORACIÓNVelocidad constante

ESPECIFICACIONES DE LA SONDA

MEDICIÓN GAMA1 mm
RESOLUCIÓN Z 25 nm
Z PRECISIÓN200 nm
RESOLUCIÓN LATERAL 2 μm

RESULTADOS

VISTA EN FALSO COLOR

Planitud de la superficie 3D

Rugosidad superficial 3D

Sa15,716 μmAltura media aritmética
Sq19,905 μmAltura media cuadrática
Sp116,74 μmAltura máxima del pico
Sv136,09 μmAltura máxima del foso
Sz252,83 μmAltura máxima
Ssk0.556Skewness
Ssu3.654Kurtosis

CONCLUSIÓN

Como muestran los resultados, el NANOVEA ST400 Optical Perfilador fue capaz de medir con precisión la rugosidad y la planitud de la superficie del compuesto de fibra de vidrio. Los datos pueden medirse en múltiples lotes de materiales compuestos de fibra y o en un periodo de tiempo determinado para proporcionar información crucial sobre los diferentes procesos de fabricación de fibra de vidrio y cómo reaccionan con el tiempo. Así pues, el ST400 es una opción viable para reforzar el proceso de control de calidad de los materiales compuestos de fibra de vidrio.

AHORA, HABLEMOS DE SU SOLICITUD

Desgaste y fricción de la correa de polímero con un tribómetro

CINTURONES DE POLÍMERO

DESGASTE Y FRICCIÓN CON UN TRIBÓMETRO

Preparado por

DUANJIE LI, Doctor

INTRODUCCIÓN

La transmisión por correa transmite potencia y sigue el movimiento relativo entre dos o más ejes giratorios. Al ser una solución sencilla y económica con un mantenimiento mínimo, las transmisiones por correa se utilizan ampliamente en diversas aplicaciones, como sierras de disco, aserraderos, trilladoras, sopladores de silo y cintas transportadoras. Las transmisiones por correa pueden proteger la maquinaria de sobrecargas, así como amortiguar y aislar las vibraciones.

IMPORTANCIA DE LA EVALUACIÓN DEL DESGASTE DE LAS TRANSMISIONES POR CORREA

La fricción y el desgaste son inevitables en las correas de una máquina accionada por correa. Una fricción suficiente garantiza una transmisión eficaz de la potencia sin deslizamientos, pero una fricción excesiva puede desgastar rápidamente la correa. Durante el funcionamiento de la transmisión por correa se producen diferentes tipos de desgaste, como la fatiga, la abrasión y la fricción. Con el fin de prolongar la vida útil de la correa y reducir los costes y el tiempo de reparación y sustitución de la correa, es conveniente evaluar de forma fiable el desgaste de las correas para mejorar su vida útil, la eficacia de la producción y el rendimiento de la aplicación. La medición precisa del coeficiente de fricción y del índice de desgaste de la correa facilita la I+D y el control de calidad de la producción de correas.

OBJETIVO DE MEDICIÓN

En este estudio, simulamos y comparamos los comportamientos de desgaste de correas con diferentes texturas superficiales para mostrar la capacidad de la NANOVEA Tribómetro T2000 en la simulación del proceso de desgaste de la correa de forma controlada y monitorizada.

NANOVEA

T2000

PROCEDIMIENTOS DE PRUEBA

El coeficiente de fricción, COF, y la resistencia al desgaste de dos correas con diferente rugosidad y textura superficial se evaluaron mediante el NANOVEA Alta carga Tribómetro utilizando un módulo de desgaste alternativo lineal. Como contramaterial se utilizó una bola de acero 440 (10 mm de diámetro). La rugosidad superficial y la huella de desgaste se examinaron utilizando un Perfilómetro 3D sin contacto. La tasa de desgaste, Kse evaluó mediante la fórmula K=Vl(Fxs)donde V es el volumen desgastado, F es la carga normal y s es la distancia de deslizamiento.

 

Tenga en cuenta que en este estudio se ha utilizado como ejemplo una bola lisa de acero 440, pero puede aplicarse cualquier material sólido con diferentes formas y acabados superficiales utilizando fijaciones personalizadas para simular la situación de aplicación real.

RESULTADOS Y DEBATE

La banda texturizada y la banda lisa tienen una rugosidad superficial Ra de 33,5 y 8,7 um, respectivamente, según los perfiles superficiales analizados tomados con un NANOVEA Perfilador óptico 3D sin contacto. El COF y la tasa de desgaste de las dos correas probadas se midieron a 10 N y 100 N, respectivamente, para comparar el comportamiento de desgaste de las correas a diferentes cargas.

FIGURA 1 muestra la evolución del COF de las correas durante las pruebas de desgaste. Las correas con diferentes texturas muestran comportamientos de desgaste sustancialmente diferentes. Resulta interesante que, tras el periodo de rodaje durante el cual el COF aumenta progresivamente, la correa texturizada alcanza un COF inferior de ~0,5 en las dos pruebas realizadas con cargas de 10 N y 100 N. En comparación, la correa lisa sometida a la carga de 10 N muestra un COF significativamente superior de~ 1,4 cuando el COF se estabiliza y se mantiene por encima de este valor durante el resto de la prueba. La correa lisa sometida a la carga de 100 N se desgastó rápidamente por la bola de acero 440 y formó una gran huella de desgaste. Por lo tanto, la prueba se detuvo a 220 revoluciones.

FIGURA 1: Evolución del COF de las correas a diferentes cargas.

En la FIGURA 2 se comparan las imágenes 3D de las huellas de desgaste después de las pruebas a 100 N. El perfilómetro 3D sin contacto NANOVEA ofrece una herramienta para analizar la morfología detallada de las huellas de desgaste, proporcionando más información sobre la comprensión fundamental del mecanismo de desgaste.

TABLA 1: Resultado del análisis de la pista de desgaste.

FIGURA 2:  Vista en 3D de las dos cintas
después de las pruebas a 100 N.

El perfil 3D de la huella de desgaste permite determinar de forma directa y precisa el volumen de la huella de desgaste calculado por el software de análisis avanzado, como se muestra en la TABLA 1. En una prueba de desgaste de 220 revoluciones, la correa lisa presenta una huella de desgaste mucho mayor y más profunda, con un volumen de 75,7 mm3, en comparación con un volumen de desgaste de 14,0 mm3 para la correa texturada tras una prueba de desgaste de 600 revoluciones. La fricción significativamente mayor de la correa lisa contra la bola de acero da lugar a un índice de desgaste 15 veces superior al de la correa texturada.

 

Una diferencia tan drástica de COF entre la banda texturizada y la banda lisa está posiblemente relacionada con el tamaño del área de contacto entre la banda y la bola de acero, lo que también conduce a su diferente rendimiento frente al desgaste. La FIGURA 3 muestra las huellas de desgaste de las dos correas bajo el microscopio óptico. El examen de las huellas de desgaste concuerda con la observación de la evolución del COF: La correa texturizada, que mantiene un COF bajo de ~0,5, no muestra ningún signo de desgaste después de la prueba de desgaste con una carga de 10 N. La correa lisa muestra una pequeña huella de desgaste a 10 N. Las pruebas de desgaste realizadas a 100 N crean huellas de desgaste sustancialmente mayores tanto en la correa texturizada como en la lisa, y la tasa de desgaste se calculará utilizando perfiles 3D, como se verá en el párrafo siguiente.

FIGURA 3:  Huellas de desgaste al microscopio óptico.

CONCLUSIÓN

En este estudio, mostramos la capacidad del Tribómetro NANOVEA T2000 para evaluar el coeficiente de fricción y la tasa de desgaste de las correas de una manera bien controlada y cuantitativa. La textura de la superficie desempeña un papel crítico en la resistencia a la fricción y al desgaste de las correas durante su funcionamiento en servicio. La correa texturizada presenta un coeficiente de fricción estable de ~0,5 y posee una larga vida útil, lo que se traduce en una reducción del tiempo y los costes de reparación o sustitución de las herramientas. En comparación, la excesiva fricción de la correa lisa contra la bola de acero desgasta rápidamente la correa. Además, la carga sobre la correa es un factor vital de su vida útil. La sobrecarga crea una fricción muy elevada, lo que acelera el desgaste de la correa.

El tribómetro NANOVEA T2000 ofrece pruebas de desgaste y fricción precisas y repetibles utilizando modos rotativos y lineales conformes a ISO y ASTM, con módulos opcionales de desgaste a alta temperatura, lubricación y tribocorrosión disponibles en un sistema preintegrado. NANOVEA es una solución ideal para determinar toda la gama de propiedades tribológicas de revestimientos, películas y sustratos finos o gruesos, blandos o duros.

AHORA, HABLEMOS DE SU SOLICITUD

Microestructura fósil mediante perfilometría 3D

MICROESTRUCTURA FÓSIL

UTILIZANDO LA PERFILOMETRÍA 3D

Preparado por

DUANJIE LI, Doctor

INTRODUCCIÓN

Los fósiles son los restos conservados de rastros de plantas, animales y otros organismos enterrados en sedimentos bajo antiguos mares, lagos y ríos. El tejido blando del cuerpo suele descomponerse tras la muerte, pero las conchas duras, los huesos y los dientes se fosilizan. A menudo se conservan rasgos superficiales de microestructura cuando se produce la sustitución mineral de las conchas y huesos originales, lo que permite conocer la evolución del tiempo y el mecanismo de formación de los fósiles.

IMPORTANCIA DE UN PERFILÓMETRO 3D SIN CONTACTO PARA EL EXAMEN DE FÓSILES

Los perfiles 3D del fósil nos permiten observar las características detalladas de la superficie de la muestra fósil desde un ángulo más cercano. La alta resolución y precisión del perfilómetro NANOVEA pueden no ser perceptibles a simple vista. El software de análisis del perfilómetro ofrece una amplia gama de estudios aplicables a estas superficies únicas. A diferencia de otras técnicas como los palpadores, el NANOVEA Perfilómetro 3D sin contacto mide las características de la superficie sin tocar la muestra. Esto permite preservar las verdaderas características de la superficie de ciertas muestras fósiles delicadas. Además, el perfilómetro portátil modelo Jr25 permite realizar mediciones en 3D en yacimientos fósiles, lo que facilita sustancialmente el análisis y la protección de los fósiles tras la excavación.

OBJETIVO DE MEDICIÓN

En este estudio se utiliza el perfilómetro NANOVEA Jr25 para medir la superficie de dos muestras fósiles representativas. Se escaneó y analizó toda la superficie de cada fósil para caracterizar sus rasgos superficiales, que incluyen la rugosidad, el contorno y la dirección de la textura.

NANOVEA

Jr25

FÓSIL DE BRAQUIÓPODO

La primera muestra fósil presentada en este informe es un fósil de braquiópodo, procedente de un animal marino que tiene "válvulas" (conchas) duras en sus superficies superior e inferior. Aparecieron por primera vez en el periodo Cámbrico, hace más de 550 millones de años.

La vista en 3D del escáner se muestra en la FIGURA 1 y la vista en falso color se muestra en la FIGURA 2. 

FIGURA 1: Vista en 3D de la muestra fósil de braquiópodo.

FIGURA 2: Vista en falso color de la muestra fósil de braquiópodo.

A continuación, se retiró la forma general de la superficie para investigar la morfología local de la superficie y el contorno del fósil de braquiópodo, como se muestra en la FIGURA 3. Ahora puede observarse una peculiar textura de surco divergente en la muestra de fósil de braquiópodo.

FIGURA 3: Vista de falso color y vista de líneas de contorno tras la eliminación del formulario.

Se extrae un perfil de línea de la zona texturada para mostrar una vista transversal de la superficie fósil en la FIGURA 4. El estudio de la altura del escalón mide las dimensiones precisas de las características de la superficie. Los surcos poseen una anchura media de ~0,38 mm y una profundidad de ~0,25 mm.

FIGURA 4: Estudios del perfil de línea y de la altura de paso de la superficie texturizada.

FÓSIL DE TALLO DE CRINOIDEO

La segunda muestra fósil es un fósil de tallo de Crinoideo. Los crinoideos aparecieron por primera vez en los mares del Cámbrico Medio, unos 300 millones de años antes de los dinosaurios. 

 

La vista 3D del escáner se muestra en la FIGURA 5 y la vista en falso color se muestra en la FIGURA 6. 

FIGURA 5: Vista en 3D de la muestra de fósiles de crinoideos.

En la FIGURA 7 se analizan la isotropía y la rugosidad de la textura superficial del fósil de tallo de Crinoideo. 

 Este fósil tiene una dirección de textura preferencial en el ángulo cercano a 90°, lo que conduce a la isotropía de textura de 69%.

FIGURA 6: Vista en falso color del Tallo de crinoideo muestra.

 

FIGURA 7: Isotropía y rugosidad de la textura superficial del tallo fósil de Crinoideo.

En la FIGURA 8 se muestra el perfil 2D a lo largo de la dirección axial del tallo fósil de Crinoideo. 

El tamaño de los picos de la textura superficial es bastante uniforme.

FIGURA 8: Análisis del perfil 2D del fósil de tallo de Crinoideo.

CONCLUSIÓN

En esta aplicación, estudiamos exhaustivamente las características de la superficie en 3D de un fósil de tallo de braquiópodo y crinoideo utilizando el perfilómetro portátil sin contacto NANOVEA Jr25. Demostramos que el instrumento puede caracterizar con precisión la morfología 3D de las muestras fósiles. Las interesantes características de la superficie y la textura de las muestras se analizan posteriormente. La muestra de braquiópodo posee una textura de surco divergente, mientras que el fósil de tallo de crinoideo muestra una isotropía de textura preferente. Los detallados y precisos escaneados 3D de la superficie resultan ser herramientas ideales para que paleontólogos y geólogos estudien la evolución de la vida y la formación de los fósiles.

Los datos mostrados aquí representan sólo una parte de los cálculos disponibles en el software de análisis. Los perfilómetros NANOVEA miden prácticamente cualquier superficie en campos como los semiconductores, la microelectrónica, la energía solar, la fibra óptica, la automoción, la industria aeroespacial, la metalurgia, el mecanizado, los revestimientos, la industria farmacéutica, la biomedicina, el medio ambiente y muchos otros.

AHORA, HABLEMOS DE SU SOLICITUD

Rendimiento de la abrasión del papel de lija con un tribómetro

RENDIMIENTO DE ABRASIÓN DEL PAPEL DE LIJA

UTILIZANDO UN TRIBÓMETRO

Preparado por

DUANJIE LI, Doctor

INTRODUCCIÓN

El papel de lija consiste en partículas abrasivas pegadas a una cara de un papel o tela. Pueden utilizarse diversos materiales abrasivos para las partículas, como granate, carburo de silicio, óxido de aluminio y diamante. Las lijas se aplican ampliamente en diversos sectores industriales para crear acabados superficiales específicos en madera, metal y paneles de yeso. Suelen trabajar en contacto con alta presión aplicada a mano o con herramientas eléctricas.

IMPORTANCIA DE EVALUAR EL RENDIMIENTO A LA ABRASIÓN DEL PAPEL DE LIJA

La eficacia del papel de lija suele venir determinada por su rendimiento de abrasión en distintas condiciones. El tamaño de grano, es decir, el tamaño de las partículas abrasivas incrustadas en la lija, determina la velocidad de desgaste y el tamaño de rayado del material lijado. Las lijas con un número de grano más alto tienen partículas más pequeñas, lo que se traduce en velocidades de lijado más bajas y acabados superficiales más finos. Las lijas con el mismo número de grano pero fabricadas con materiales diferentes pueden tener comportamientos distintos en condiciones secas o húmedas. Se necesitan evaluaciones tribológicas fiables para garantizar que el papel de lija fabricado posee el comportamiento abrasivo deseado. Estas evaluaciones permiten a los usuarios comparar cuantitativamente los comportamientos de desgaste de diferentes tipos de lijas de forma controlada y monitorizada con el fin de seleccionar el mejor candidato para la aplicación deseada.

OBJETIVO DE MEDICIÓN

En este estudio, mostramos la capacidad del Tribómetro NANOVEA para evaluar cuantitativamente el rendimiento de abrasión de varias muestras de papel de lija en condiciones secas y húmedas.

NANOVEA

T2000

PROCEDIMIENTOS DE PRUEBA

El coeficiente de fricción (COF) y el rendimiento de abrasión de dos tipos de lijas se evaluaron con el tribómetro NANOVEA T100. Se utilizó una bola de acero inoxidable 440 como contramaterial. Las cicatrices de desgaste de la bola se examinaron después de cada prueba de desgaste utilizando el NANOVEA Perfilador óptico 3D sin contacto para garantizar mediciones precisas de la pérdida de volumen.

Tenga en cuenta que se eligió una bola de acero inoxidable 440 como contramaterial para crear un estudio comparativo, pero se podría sustituir por cualquier material sólido para simular una condición de aplicación diferente.

RESULTADOS DE LAS PRUEBAS Y DEBATE

La FIGURA 1 muestra una comparación del COF de los papeles de lija 1 y 2 en condiciones ambientales secas y húmedas. El papel de lija 1, en condiciones secas, muestra un COF de 0,4 al principio de la prueba, que disminuye progresivamente y se estabiliza en 0,3. En condiciones húmedas, esta muestra muestra un COF medio inferior, de 0,27. En condiciones húmedas, esta muestra presenta un COF medio inferior de 0,27. Por el contrario, los resultados del COF de la muestra 2 muestran un COF en seco de 0,27 y en húmedo de ~ 0,37. 

Obsérvese que la oscilación en los datos de todos los gráficos COF fue causada por las vibraciones generadas por el movimiento de deslizamiento de la bola contra las superficies rugosas del papel de lija.

FIGURA 1: Evolución del COF durante las pruebas de desgaste.

La FIGURA 2 resume los resultados del análisis de las cicatrices de desgaste. Las cicatrices de desgaste se midieron utilizando un microscopio óptico y un perfilador óptico sin contacto NANOVEA 3D. La FIGURA 3 y la FIGURA 4 comparan las cicatrices de desgaste de las bolas SS440 desgastadas después de las pruebas de desgaste en el papel de lija 1 y 2 (condiciones húmedas y secas). Como se muestra en la FIGURA 4, el Perfilador Óptico NANOVEA captura con precisión la topografía de la superficie de las cuatro bolas y sus respectivas huellas de desgaste que luego fueron procesadas con el software de Análisis Avanzado NANOVEA Mountains para calcular la pérdida de volumen y la tasa de desgaste. En la imagen microscópica y de perfil de la bola se puede observar que la bola utilizada para la prueba de lija 1 (seca) exhibió una cicatriz de desgaste aplanada más grande en comparación con las otras, con una pérdida de volumen de 0,313 mm3. En cambio, la pérdida de volumen del papel de lija 1 (húmedo) fue de 0,131 mm3. Para el papel de lija 2 (seco) la pérdida de volumen fue de 0,163 mm3 y para la lija 2 (húmeda) la pérdida de volumen aumentó a 0,237 mm3.

Además, es interesante observar que el COF desempeñó un papel importante en el rendimiento de abrasión de las lijas. La lija 1 presentaba un COF más elevado en seco, lo que se tradujo en un mayor índice de abrasión de la bola SS440 utilizada en la prueba. En comparación, el mayor COF de la lija 2 en húmedo dio lugar a un mayor índice de abrasión. Las huellas de desgaste de las lijas tras las mediciones se muestran en la FIGURA 5.

Ambas lijas, 1 y 2, afirman funcionar tanto en seco como en húmedo. Sin embargo, mostraron un rendimiento de abrasión significativamente diferente en seco y en húmedo. NANOVEA tribómetros proporcionan capacidades de evaluación del desgaste cuantificables y fiables, bien controladas, que garantizan evaluaciones del desgaste reproducibles. Además, la capacidad de medición in situ del COF permite a los usuarios correlacionar las diferentes etapas de un proceso de desgaste con la evolución del COF, lo que resulta crítico para mejorar la comprensión fundamental del mecanismo de desgaste y las características tribológicas del papel de lija

FIGURA 2: Volumen de la cicatriz de desgaste de las bolas y COF medio en diferentes condiciones.

FIGURA 3: Cicatrices de desgaste de las bolas después de las pruebas.

FIGURA 4: Morfología 3D de las cicatrices de desgaste en las bolas.

FIGURA 5: Huellas de desgaste en las lijas en diferentes condiciones.

CONCLUSIÓN

En este estudio se evaluó el rendimiento de abrasión de dos tipos de lijas del mismo número de grano en condiciones secas y húmedas. Las condiciones de servicio de la lija desempeñan un papel fundamental en la eficacia del rendimiento de trabajo. La lija 1 tuvo un comportamiento de abrasión significativamente mejor en condiciones secas, mientras que la lija 2 obtuvo mejores resultados en condiciones húmedas. La fricción durante el proceso de lijado es un factor importante a considerar cuando se evalúa el rendimiento de abrasión. El Perfilador Óptico NANOVEA mide con precisión la morfología 3D de cualquier superficie, como las cicatrices de desgaste en una bola, garantizando una evaluación fiable sobre el rendimiento de abrasión del papel de lija en este estudio. El Tribómetro NANOVEA mide el coeficiente de fricción in situ durante una prueba de desgaste, proporcionando una visión de las diferentes etapas de un proceso de desgaste. También ofrece pruebas repetibles de desgaste y fricción utilizando modos rotativos y lineales conformes a las normas ISO y ASTM, con módulos opcionales de desgaste y lubricación a alta temperatura disponibles en un sistema preintegrado. Esta gama inigualable permite a los usuarios simular diferentes entornos de trabajo severos de los rodamientos de bolas, incluyendo alta tensión, desgaste y alta temperatura, etc. También proporciona una herramienta ideal para evaluar cuantitativamente los comportamientos tribológicos de materiales superiores resistentes al desgaste bajo cargas elevadas.

AHORA, HABLEMOS DE SU SOLICITUD

Acabado superficial del cuero procesado mediante perfilometría 3D

CUERO PROCESADO

ACABADO SUPERFICIAL MEDIANTE PERFILOMETRÍA 3D

Preparado por

CRAIG LEISING

INTRODUCCIÓN

Una vez finalizado el proceso de curtido de la piel, la superficie del cuero puede someterse a varios procesos de acabado para obtener una gran variedad de aspectos y tactos. Estos procesos mecánicos pueden incluir estirado, pulido, lijado, repujado, recubrimiento, etc. Dependiendo del uso final de la piel, algunos pueden requerir un proceso más preciso, controlado y repetible.

IMPORTANCIA DE LA INSPECCIÓN POR PERFILOMETRÍA PARA I+D Y CONTROL DE CALIDAD

Debido a la gran variación y poca fiabilidad de los métodos de inspección visual, las herramientas capaces de cuantificar con precisión las características de micro y nanoescala pueden mejorar los procesos de acabado del cuero. Comprender el acabado de la superficie del cuero en un sentido cuantificable puede conducir a una mejor selección del procesamiento de la superficie basada en datos para lograr resultados óptimos de acabado. NANOVEA 3D sin contacto Perfilómetros utilizan tecnología confocal cromática para medir superficies de cuero acabadas y ofrecen la mayor repetibilidad y precisión del mercado. Donde otras técnicas no consiguen proporcionar datos fiables, debido al contacto de la sonda, la variación de la superficie, el ángulo, la absorción o la reflectividad, los perfilómetros NANOVEA lo consiguen.

OBJETIVO DE MEDICIÓN

En esta aplicación, el NANOVEA ST400 se utiliza para medir y comparar el acabado superficial de dos muestras de cuero diferentes pero estrechamente procesadas. Varios parámetros de superficie se calculan automáticamente a partir del perfil de superficie.

Aquí nos centraremos en la rugosidad de la superficie, la profundidad del hoyuelo, el paso del hoyuelo y el diámetro del hoyuelo para la evaluación comparativa.

NANOVEA

ST400

RESULTADOS: MUESTRA 1

ISO 25178

PARÁMETROS DE ALTURA

OTROS PARÁMETROS 3D

RESULTADOS: MUESTRA 2

ISO 25178

PARÁMETROS DE ALTURA

OTROS PARÁMETROS 3D

PROFUNDIDAD COMPARATIVA

Distribución en profundidad de cada muestra.
Se observó un gran número de hoyuelos profundos en
MUESTRA 1.

PASO COMPARATIVO

Paso entre hoyuelos en MUESTRA 1 es ligeramente inferior
que
MUESTRA 2pero ambos tienen una distribución similar

 DIÁMETRO MEDIO COMPARATIVO

Distribuciones similares del diámetro medio de los hoyuelos,
con
MUESTRA 1 mostrando diámetros medios ligeramente inferiores por término medio.

CONCLUSIÓN

En esta aplicación, hemos demostrado cómo el perfilómetro 3D NANOVEA ST400 puede caracterizar con precisión el acabado superficial de la piel procesada. En este estudio, tener la capacidad de medir la rugosidad de la superficie, la profundidad del hoyuelo, el paso del hoyuelo y el diámetro del hoyuelo nos permitió cuantificar las diferencias entre el acabado y la calidad de las dos muestras que pueden no ser evidentes mediante inspección visual.

En general, no se observaron diferencias visibles en el aspecto de los escaneados 3D entre la MUESTRA 1 y la MUESTRA 2. Sin embargo, en el análisis estadístico hay una clara distinción entre las dos muestras. En comparación con la MUESTRA 2, la MUESTRA 1 contiene una mayor cantidad de hoyuelos de menor diámetro, mayor profundidad y menor distancia entre hoyuelos.

Tenga en cuenta que hay estudios adicionales disponibles. Las áreas especiales de interés podrían haberse analizado más a fondo con un módulo integrado de AFM o Microscopio. Las velocidades del Perfilómetro 3D NANOVEA van de 20 mm/s a 1 m/s para laboratorio o investigación para satisfacer las necesidades de inspección de alta velocidad; se puede construir con tamaño personalizado, velocidades, capacidades de escaneo, cumplimiento de sala limpia Clase 1, transportador de indexación o para integración en línea o en línea.

AHORA, HABLEMOS DE SU SOLICITUD

Propiedades mecánicas del hidrogel

PROPIEDADES MECÁNICAS DEL HIDROGEL

MEDIANTE NANOINDENTACIÓN

Preparado por

DUANJIE LI, PhD & JORGE RAMIREZ

INTRODUCCIÓN

El hidrogel es conocido por su gran capacidad de absorción de agua, que le confiere una flexibilidad muy similar a la de los tejidos naturales. Este parecido ha convertido al hidrogel en una elección habitual no sólo en biomateriales, sino también en aplicaciones electrónicas, medioambientales y de bienes de consumo, como las lentes de contacto. Cada aplicación requiere unas propiedades mecánicas específicas.

IMPORTANCIA DE LA NANOINDENTACIÓN PARA EL HIDROGEL

Los hidrogeles plantean retos únicos para la nanoindentación, como la selección de los parámetros de ensayo y la preparación de las muestras. Muchos sistemas de nanoindentación tienen importantes limitaciones, ya que no fueron diseñados originalmente para materiales tan blandos. Algunos de los sistemas de nanoindentación utilizan un conjunto de bobina/imán para aplicar fuerza sobre la muestra. No se mide la fuerza real, lo que provoca una carga imprecisa y no lineal al ensayar materiales blandos. materiales. Determinar el punto de contacto es extremadamente difícil, ya que el La profundidad es el único parámetro que se mide realmente. Es casi imposible observar el cambio de pendiente en el Profundidad vs Tiempo parcela durante el cuando la punta del penetrador se acerca al material de hidrogel.

Para superar las limitaciones de estos sistemas, el nanomódulo del NANOVEA Comprobador mecánico mide la retroalimentación de fuerza con una célula de carga individual para garantizar una alta precisión en todo tipo de materiales, blandos o duros. El desplazamiento piezo-controlado es extremadamente preciso y rápido. Esto permite una medición inigualable de las propiedades viscoelásticas al eliminar muchas suposiciones teóricas que deben tener en cuenta los sistemas con un conjunto de bobina/imán y sin realimentación de fuerza.

OBJETIVO DE MEDICIÓN

En esta aplicación, el NANOVEA El probador mecánico, en modo de nanoindentación, se utiliza para estudiar la dureza, el módulo elástico y la fluencia de una muestra de hidrogel.

NANOVEA

PB1000

CONDICIONES DE ENSAYO

Una muestra de hidrogel colocada sobre un portaobjetos de vidrio se sometió a ensayo mediante la técnica de nanoindentación utilizando un NANOVEA Probador mecánico. Para este material blando se utilizó una punta esférica de 3 mm de diámetro. La carga aumentó linealmente de 0,06 a 10 mN durante el periodo de carga. A continuación, se midió la fluencia mediante el cambio de la profundidad de indentación con la carga máxima de 10 mN durante 70 segundos.

VELOCIDAD DE APROXIMACIÓN: 100 μm/min

CARGA DE CONTACTOS
0,06 mN
CARGA MÁX
10 mN
TASA DE CARGA

20 mN/min

CREEP
70 s
RESULTADOS Y DEBATE

La evolución de la carga y la profundidad en función del tiempo se muestra en FUGURA 1. Se puede observar que en el gráfico del Profundidad vs TiempoSin embargo, es muy difícil determinar el punto de cambio de pendiente al principio del período de carga, que suele servir como indicación del lugar en el que el penetrador empieza a entrar en contacto con el material blando. Sin embargo, el gráfico de la Carga vs Tiempo muestra el comportamiento peculiar del hidrogel bajo una carga aplicada. A medida que el hidrogel comienza a entrar en contacto con el indentador esférico, el hidrogel tira del indentador esférico debido a su tensión superficial, lo que tiende a disminuir el área superficial. Este comportamiento hace que la carga medida al principio de la fase de carga sea negativa. La carga aumenta progresivamente a medida que el penetrador se hunde en el hidrogel y, a continuación, se controla para que sea constante en la carga máxima de 10 mN durante 70 segundos para estudiar el comportamiento de fluencia del hidrogel.

FIGURA 1: Evolución de la carga y la profundidad en función del tiempo.

La trama del Profundidad de fluencia en función del tiempo se muestra en FIGURA 2y el Carga vs. Desplazamiento del ensayo de nanoindentación se muestra en FIGURA 3. El hidrogel de este estudio posee una dureza de 16,9 KPa y un módulo de Young de 160,2 KPa, calculados a partir de la curva de desplazamiento de carga mediante el método de Oliver-Pharr.

La fluencia es un factor importante para el estudio de las propiedades mecánicas de los hidrogeles. El control de retroalimentación en bucle cerrado entre la célula piezoeléctrica y la célula de carga ultrasensible garantiza una carga constante real durante el tiempo de fluencia a la carga máxima. Como se muestra en FIGURA 2, el hidrogel se hunde ~42 μm como resultado de la fluencia en 70 segundos bajo la carga máxima de 10 mN aplicada por la punta esférica de 3 mm.

FIGURA 2: Fluencia a una carga máxima de 10 mN durante 70 segundos.

FIGURA 3: Gráfico de carga frente a desplazamiento del hidrogel.

CONCLUSIÓN

En este estudio, demostramos que la NANOVEA Mechanical Tester, en modo de nanoindentación, proporciona una medición precisa y repetible de las propiedades mecánicas de un hidrogel, incluidas la dureza, el módulo de Young y la fluencia. La gran punta esférica de 3 mm garantiza un contacto adecuado con la superficie del hidrogel. La etapa de muestra motorizada de alta precisión permite el posicionamiento exacto de la cara plana de la muestra de hidrogel bajo la punta esférica. El hidrogel de este estudio presenta una dureza de 16,9 KPa y un módulo de Young de 160,2 KPa. La profundidad de fluencia es de ~42 μm bajo una carga de 10 mN durante 70 segundos.

NANOVEA Los comprobadores mecánicos ofrecen módulos Nano y Micro multifunción inigualables en una única plataforma. Ambos módulos incluyen un comprobador de arañazos, un comprobador de dureza y un modo de comprobación de desgaste, lo que ofrece la gama de pruebas más amplia y fácil de usar disponible en una sola plataforma.
sistema.

AHORA, HABLEMOS DE SU SOLICITUD