EE.UU./GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTACTO

Categoría: Perfilometría | Geometría y forma

 

Inspección de superficies soldadas con un perfilómetro 3D portátil

Inspección de superficies soldadas

utilizando un perfilómetro 3D portátil

Preparado por

CRAIG LEISING

INTRODUCCIÓN

Puede ser fundamental que una soldadura concreta, normalmente inspeccionada visualmente, se examine con un nivel extremo de precisión. Las áreas específicas de interés para un análisis preciso incluyen las grietas superficiales, la porosidad y los cráteres sin rellenar, independientemente de los procedimientos de inspección posteriores. Las características de la soldadura, como la dimensión/forma, el volumen, la rugosidad, el tamaño, etc., pueden medirse para realizar una evaluación crítica.

IMPORTANCIA DEL PERFILÓMETRO 3D SIN CONTACTO PARA LA INSPECCIÓN DE SUPERFICIES SOLDADAS

A diferencia de otras técnicas, como las sondas táctiles o la interferometría, el NANOVEA Perfilómetro 3D sin contacto, mediante el cromatismo axial, puede medir casi cualquier superficie, los tamaños de las muestras pueden variar ampliamente debido a la disposición abierta y no es necesario preparar las muestras. Se obtiene un rango de nano a macro durante la medición del perfil de la superficie sin influencia alguna de la reflectividad o absorción de la muestra, tiene una capacidad avanzada para medir ángulos de superficie elevados y no hay manipulación de los resultados por parte del software. Mida fácilmente cualquier material: transparente, opaco, especular, difusivo, pulido, rugoso, etc. Las capacidades 2D y 2D de los perfilómetros portátiles NANOVEA los convierten en instrumentos ideales para la inspección completa de la superficie de soldadura, tanto en el laboratorio como en el campo.

OBJETIVO DE MEDICIÓN

En esta aplicación, se utiliza el perfilómetro portátil NANOVEA JR25 para medir la rugosidad de la superficie, la forma y el volumen de una soldadura, así como el área circundante. Esta información puede proporcionar datos fundamentales para investigar adecuadamente la calidad de la soldadura y el proceso de soldadura.

NANOVEA

JR25

RESULTADOS DE LAS PRUEBAS

La imagen siguiente muestra la vista 3D completa de la soldadura y la zona circundante, junto con los parámetros superficiales de la soldadura únicamente. A continuación se muestra el perfil de la sección transversal en 2D.

la muestra

Una vez eliminado el perfil transversal 2D anterior del 3D, se calcula la información dimensional de la soldadura a continuación. Área superficial y volumen del material calculados solo para la soldadura a continuación.

 AGUJEROMÁXIMO
SUPERFICIE1,01 mm214,0 mm2
VOLUMEN8,799e-5 mm323,27 mm3
PROFUNDIDAD/ALTURA MÁXIMA0,0276 mm0,6195 mm
PROFUNDIDAD/ALTURA MEDIA 0,004024 mm 0,2298 mm

CONCLUSIÓN

En esta aplicación, hemos mostrado cómo el perfilómetro sin contacto NANOVEA 3D puede caracterizar con precisión las características críticas de una soldadura y la superficie circundante. A partir de la rugosidad, las dimensiones y el volumen, se puede determinar y/o investigar más a fondo un método cuantitativo para la calidad y la repetibilidad. Las soldaduras de muestra, como el ejemplo de esta nota de aplicación, se pueden analizar fácilmente con un perfilómetro NANOVEA de mesa estándar o portátil para pruebas internas o de campo.

Análisis fractográfico mediante perfilometría 3D

ANÁLISIS FRACTOGRÁFICO

UTILIZANDO LA PERFILOMETRÍA 3D

Preparado por

CRAIG LEISING

INTRODUCCIÓN

La fractografía es el estudio de las características de las superficies fracturadas y, históricamente, se ha investigado mediante microscopio o SEM. Dependiendo del tamaño de la característica, se selecciona un microscopio (características macro) o un SEM (características nano y micro) para el análisis de la superficie. Ambos permiten, en última instancia, identificar el tipo de mecanismo de fractura. Aunque eficaz, el microscopio tiene claras limitaciones y, en la mayoría de los casos, salvo para el análisis a nivel atómico, el SEM no es práctico para la medición de superficies fracturadas y carece de una capacidad de uso más amplia. Con los avances en la tecnología de medición óptica, el NANOVEA Perfilómetro 3D sin contacto Ahora se considera el instrumento preferido, gracias a su capacidad para proporcionar mediciones de superficies en 2D y 3D a escala nano y macro.

IMPORTANCIA DEL PERFILÓMETRO 3D SIN CONTACTO PARA LA INSPECCIÓN DE FRACTURAS

A diferencia de un SEM, un perfilómetro 3D sin contacto puede medir casi cualquier superficie y tamaño de muestra, con una preparación mínima de la muestra, al tiempo que ofrece dimensiones verticales/horizontales superiores a las de un SEM. Con un perfilómetro, las características del rango nano a macro se capturan en una sola medición sin influencia alguna de la reflectividad de la muestra. Mida fácilmente cualquier material: transparente, opaco, especular, difusivo, pulido, rugoso, etc. El perfilómetro 3D sin contacto ofrece una amplia capacidad y es fácil de usar para maximizar los estudios de fractura de superficies a una fracción del costo de un SEM.

OBJETIVO DE MEDICIÓN

En esta aplicación, se utiliza el NANOVEA ST400 para medir la superficie fracturada de una muestra de acero. En este estudio, mostraremos un área 3D, la extracción del perfil 2D y el mapa direccional de la superficie.

NANOVEA

ST400

RESULTADOS

SUPERFICIE SUPERIOR

Dirección de la textura de la superficie 3D

Isotropía51.26%
Primera dirección123,2º
Segunda dirección116,3º
Tercera dirección0,1725º

El área superficial, el volumen, la rugosidad y muchos otros parámetros se pueden calcular automáticamente a partir de esta extracción.

Extracción de perfiles 2D

RESULTADOS

SUPERFICIE LATERAL

Dirección de la textura de la superficie 3D

Isotropía15.55%
Primera dirección0.1617º
Segunda dirección110.5º
Tercera dirección171.5º

El área superficial, el volumen, la rugosidad y muchos otros parámetros se pueden calcular automáticamente a partir de esta extracción.

Extracción de perfiles 2D

CONCLUSIÓN

En esta aplicación, hemos mostrado cómo el perfilómetro 3D sin contacto NANOVEA ST400 puede caracterizar con precisión la topografía completa (características nano, micro y macro) de una superficie fracturada. A partir del área 3D, la superficie se puede identificar claramente y se pueden extraer y analizar rápidamente subáreas o perfiles/secciones transversales con una lista interminable de cálculos de superficie. Las características de la superficie subnanométricas se pueden analizar más a fondo con un módulo AFM integrado.

Además, NANOVEA ha incluido una versión portátil en su línea de perfilómetros, especialmente importante para estudios de campo en los que la superficie de fractura es inamovible. Con esta amplia lista de capacidades de medición de superficies, el análisis de superficies de fractura nunca ha sido tan fácil y cómodo con un solo instrumento.

Desgaste y fricción de la correa de polímero con un tribómetro

CINTURONES DE POLÍMERO

DESGASTE Y FRICCIÓN CON UN TRIBÓMETRO

Preparado por

DUANJIE LI, Doctor

INTRODUCCIÓN

La transmisión por correa transmite potencia y sigue el movimiento relativo entre dos o más ejes giratorios. Como solución sencilla y económica con un mantenimiento mínimo, las transmisiones por correa se utilizan ampliamente en diversas aplicaciones, como sierras de disco, aserraderos, trilladoras, sopladores de silo y cintas transportadoras. Las transmisiones por correa pueden proteger la maquinaria de sobrecargas, así como amortiguar y aislar las vibraciones.

IMPORTANCIA DE LA EVALUACIÓN DEL DESGASTE DE LAS TRANSMISIONES POR CORREA

La fricción y el desgaste son inevitables en las correas de una máquina accionada por correa. Una fricción suficiente garantiza una transmisión eficaz de la potencia sin deslizamientos, pero una fricción excesiva puede desgastar rápidamente la correa. Durante el funcionamiento de la transmisión por correa se producen diferentes tipos de desgaste, como la fatiga, la abrasión y la fricción. Con el fin de prolongar la vida útil de la correa y reducir los costes y el tiempo de reparación y sustitución de la correa, es conveniente evaluar de forma fiable el desgaste de las correas para mejorar su vida útil, la eficacia de la producción y el rendimiento de la aplicación. La medición precisa del coeficiente de fricción y del índice de desgaste de la correa facilita la I+D y el control de calidad de la producción de correas.

OBJETIVO DE MEDICIÓN

En este estudio, simulamos y comparamos los comportamientos de desgaste de correas con diferentes texturas superficiales para mostrar la capacidad de la NANOVEA Tribómetro T2000 en la simulación del proceso de desgaste de la correa de forma controlada y monitorizada.

NANOVEA

T2000

PROCEDIMIENTOS DE PRUEBA

El coeficiente de fricción, COF, y la resistencia al desgaste de dos correas con diferente rugosidad y textura superficial se evaluaron mediante el NANOVEA Alta carga Tribómetro utilizando un módulo de desgaste alternativo lineal. Se utilizó una bola de acero 440 (10 mm de diámetro) como contramaterial. La rugosidad superficial y la huella de desgaste se examinaron utilizando un Perfilómetro 3D sin contacto. La tasa de desgaste, Kse evaluó mediante la fórmula K=Vl(Fxs)donde V es el volumen desgastado, F es la carga normal y s es la distancia de deslizamiento.

 

Tenga en cuenta que en este estudio se ha utilizado como ejemplo una bola lisa de acero 440, pero puede aplicarse cualquier material sólido con diferentes formas y acabados superficiales utilizando dispositivos personalizados para simular la situación de aplicación real.

RESULTADOS Y DEBATE

La banda texturizada y la banda lisa tienen una rugosidad superficial Ra de 33,5 y 8,7 um, respectivamente, según los perfiles superficiales analizados tomados con un NANOVEA Perfilador óptico 3D sin contacto. El COF y la tasa de desgaste de las dos correas probadas se midieron a 10 N y 100 N, respectivamente, para comparar el comportamiento de desgaste de las correas a diferentes cargas.

FIGURA 1 muestra la evolución del COF de las correas durante las pruebas de desgaste. Las correas con diferentes texturas muestran comportamientos de desgaste sustancialmente diferentes. Resulta interesante que, tras el periodo de rodaje durante el cual el COF aumenta progresivamente, la correa texturizada alcanza un COF inferior de ~0,5 en las dos pruebas realizadas con cargas de 10 N y 100 N. En comparación, la correa lisa sometida a la carga de 10 N muestra un COF significativamente superior de~ 1,4 cuando el COF se estabiliza y se mantiene por encima de este valor durante el resto de la prueba. La correa lisa sometida a la carga de 100 N se desgastó rápidamente por la bola de acero 440 y formó una gran huella de desgaste. Por lo tanto, la prueba se detuvo a 220 revoluciones.

FIGURA 1: Evolución del COF de las correas a diferentes cargas.

En la FIGURA 2 se comparan las imágenes 3D de las huellas de desgaste después de las pruebas a 100 N. El perfilómetro 3D sin contacto NANOVEA ofrece una herramienta para analizar la morfología detallada de las huellas de desgaste, proporcionando más información sobre la comprensión fundamental del mecanismo de desgaste.

TABLA 1: Resultado del análisis de la pista de desgaste.

FIGURA 2:  Vista en 3D de las dos cintas
después de las pruebas a 100 N.

El perfil 3D de la huella de desgaste permite determinar de forma directa y precisa el volumen de la huella de desgaste calculado por el software de análisis avanzado, como se muestra en la TABLA 1. En una prueba de desgaste de 220 revoluciones, la correa lisa presenta una huella de desgaste mucho mayor y más profunda, con un volumen de 75,7 mm3, en comparación con un volumen de desgaste de 14,0 mm3 para la correa texturada tras una prueba de desgaste de 600 revoluciones. La fricción significativamente mayor de la correa lisa contra la bola de acero da lugar a un índice de desgaste 15 veces superior al de la correa texturada.

 

Una diferencia tan drástica de COF entre la banda texturizada y la banda lisa está posiblemente relacionada con el tamaño del área de contacto entre la banda y la bola de acero, lo que también conduce a su diferente rendimiento frente al desgaste. La FIGURA 3 muestra las huellas de desgaste de las dos correas bajo el microscopio óptico. El examen de las huellas de desgaste concuerda con la observación de la evolución del COF: La correa texturizada, que mantiene un COF bajo de ~0,5, no muestra ningún signo de desgaste después de la prueba de desgaste con una carga de 10 N. La correa lisa muestra una pequeña huella de desgaste a 10 N. Las pruebas de desgaste realizadas a 100 N crean huellas de desgaste sustancialmente mayores tanto en la correa texturizada como en la lisa, y la tasa de desgaste se calculará utilizando perfiles 3D, como se verá en el párrafo siguiente.

FIGURA 3:  Huellas de desgaste al microscopio óptico.

CONCLUSIÓN

En este estudio, mostramos la capacidad del Tribómetro NANOVEA T2000 para evaluar el coeficiente de fricción y la tasa de desgaste de las correas de una manera bien controlada y cuantitativa. La textura de la superficie desempeña un papel crítico en la resistencia a la fricción y al desgaste de las correas durante su funcionamiento en servicio. La correa texturizada presenta un coeficiente de fricción estable de ~0,5 y posee una larga vida útil, lo que se traduce en una reducción del tiempo y los costes de reparación o sustitución de las herramientas. En comparación, la excesiva fricción de la correa lisa contra la bola de acero desgasta rápidamente la correa. Además, la carga sobre la correa es un factor vital de su vida útil. La sobrecarga crea una fricción muy elevada, lo que acelera el desgaste de la correa.

El tribómetro NANOVEA T2000 ofrece pruebas de desgaste y fricción precisas y repetibles utilizando modos rotativos y lineales conformes a ISO y ASTM, con módulos opcionales de desgaste a alta temperatura, lubricación y tribocorrosión disponibles en un sistema preintegrado. NANOVEA es una solución ideal para determinar toda la gama de propiedades tribológicas de revestimientos, películas y sustratos finos o gruesos, blandos o duros.

Microestructura fósil mediante perfilometría 3D

MICROESTRUCTURA FÓSIL

UTILIZANDO LA PERFILOMETRÍA 3D

Preparado por

DUANJIE LI, Doctor

INTRODUCCIÓN

Los fósiles son restos conservados de plantas, animales y otros organismos enterrados en sedimentos bajo antiguos mares, lagos y ríos. Los tejidos blandos del cuerpo suelen descomponerse tras la muerte, pero las conchas duras, los huesos y los dientes se fosilizan. Las características de la microestructura de la superficie suelen conservarse cuando se produce la sustitución mineral de las conchas y los huesos originales, lo que permite conocer la evolución del clima y el mecanismo de formación de los fósiles.

IMPORTANCIA DE UN PERFILÓMETRO 3D SIN CONTACTO PARA EL EXAMEN DE FÓSILES

Los perfiles 3D del fósil nos permiten observar las características detalladas de la superficie de la muestra fósil desde un ángulo más cercano. Es posible que la alta resolución y precisión del perfilómetro NANOVEA no sean perceptibles a simple vista. El software de análisis del perfilómetro ofrece una amplia gama de estudios aplicables a estas superficies únicas. A diferencia de otras técnicas, como las sondas táctiles, el NANOVEA Perfilómetro 3D sin contacto mide las características de la superficie sin tocar la muestra. Esto permite conservar las características reales de la superficie de ciertas muestras fósiles delicadas. Además, el perfilómetro portátil Jr25 permite realizar mediciones en 3D en yacimientos fósiles, lo que facilita considerablemente el análisis y la protección de los fósiles tras la excavación.

OBJETIVO DE MEDICIÓN

En este estudio, se utiliza el perfilómetro NANOVEA Jr25 para medir la superficie de dos muestras fósiles representativas. Se escaneó y analizó toda la superficie de cada fósil con el fin de caracterizar sus características superficiales, entre las que se incluyen la rugosidad, el contorno y la dirección de la textura.

NANOVEA

Jr25

FÓSIL DE BRACHIÓPODO

La primera muestra fósil que se presenta en este informe es un fósil de braquiópodo, un animal marino que tiene “valvas” (conchas) duras en sus superficies superior e inferior. Aparecieron por primera vez en el período Cámbrico, hace más de 550 millones de años.

La vista 3D del escaneo se muestra en la FIGURA 1 y la vista en falso color se muestra en la FIGURA 2. 

FIGURA 1: Vista en 3D de la muestra fósil de braquiópodo.

FIGURA 2: Vista en falso color de la muestra fósil de braquiópodo.

A continuación, se retiró el molde de la superficie para investigar la morfología local y el contorno del fósil de braquiópodo, como se muestra en la FIGURA 3. Ahora se puede observar una peculiar textura de surcos divergentes en la muestra del fósil de braquiópodo.

FIGURA 3: Vista en falso color y vista de líneas de contorno tras retirar el molde.

Se extrae un perfil lineal del área texturizada para mostrar una vista transversal de la superficie del fósil en la FIGURA 4. El estudio de la altura de los escalones mide las dimensiones precisas de las características de la superficie. Las ranuras tienen una anchura media de ~0,38 mm y una profundidad de ~0,25 mm.

FIGURA 4: Estudios del perfil lineal y la altura de los escalones de la superficie texturizada.

FÓSIL DE TALLO DE CRINOIDE

La segunda muestra fósil es un fósil de tallo de crinoideo. Los crinoideos aparecieron por primera vez en los mares del período Cámbrico Medio, unos 300 millones de años antes que los dinosaurios. 

 

La vista 3D del escaneo se muestra en la FIGURA 5 y la vista en falso color se muestra en la FIGURA 6. 

FIGURA 5: Vista en 3D de la muestra fósil de crinoideo.

En la FIGURA 7 se analizan la isotropía y la rugosidad de la textura superficial del fósil del tallo del crinoideo. 

 Este fósil tiene una dirección de textura preferencial en un ángulo cercano a los 90°, lo que da lugar a una isotropía de textura de 69%.

FIGURA 6: Vista en falso color del Tallo de crinoideo muestra.

 

FIGURA 7: Isotropía de la textura superficial y rugosidad del fósil del tallo de crinoideo.

El perfil 2D a lo largo de la dirección axial del fósil del tallo del crinoide se muestra en la FIGURA 8. 

El tamaño de los picos de la textura de la superficie es bastante uniforme.

FIGURA 8: Análisis del perfil 2D del fósil del tallo de crinoideo.

CONCLUSIÓN

En esta aplicación, hemos estudiado exhaustivamente las características de la superficie 3D de un fósil de braquiópodo y crinoideo utilizando el perfilómetro portátil sin contacto NANOVEA Jr25. Demostramos que el instrumento puede caracterizar con precisión la morfología 3D de las muestras fósiles. A continuación, se analizan con mayor detalle las interesantes características y texturas de la superficie de las muestras. La muestra de braquiópodo posee una textura de surcos divergentes, mientras que el fósil de tallo de crinoide muestra una textura isotrópica preferencial. Los escaneos tridimensionales detallados y precisos de la superficie resultan ser herramientas ideales para que los paleontólogos y geólogos estudien la evolución de la vida y la formación de los fósiles.

Los datos que se muestran aquí representan solo una parte de los cálculos disponibles en el software de análisis. Los perfilómetros NANOVEA miden prácticamente cualquier superficie en campos como el de los semiconductores, la microelectrónica, la energía solar, la fibra óptica, la automoción, la industria aeroespacial, la metalurgia, el mecanizado, los recubrimientos, la industria farmacéutica, la biomedicina, el medio ambiente y muchos otros.

Perfilometría de medición de límites superficiales en espuma de poliestireno

Medición de límites superficiales

Medición de límites superficiales mediante perfilometría 3D

Más información

MEDICIÓN DE LÍMITES DE SUPERFICIE

UTILIZANDO LA PERFILOMETRÍA 3D

Preparado por

Craig Leising

INTRODUCCIÓN

En estudios en los que se evalúa la orientación de las características, patrones, formas, etc. de la interfaz de la superficie, resulta útil identificar rápidamente las áreas de interés en todo el perfil de medición. Al segmentar una superficie en áreas significativas, el usuario puede evaluar rápidamente los límites, picos, hoyos, áreas, volúmenes y muchos otros elementos para comprender su función en todo el perfil de la superficie objeto de estudio. Por ejemplo, al igual que en la imagen de los límites de grano de los metales, la importancia del análisis radica en la interfaz de muchas estructuras y su orientación general. Al comprender cada área de interés, se pueden identificar los defectos y/o anomalías dentro del área general. Aunque la imagen de los límites de grano se estudia normalmente en un rango que supera la capacidad del perfilómetro, y solo se trata de un análisis de imágenes en 2D, es una referencia útil para ilustrar el concepto de lo que se mostrará aquí a mayor escala, junto con las ventajas de la medición de superficies en 3D.

IMPORTANCIA DEL PERFILÓMETRO 3D SIN CONTACTO PARA EL ESTUDIO DE LA SEPARACIÓN DE SUPERFICIES

A diferencia de otras técnicas, como las sondas táctiles o la interferometría, el Perfilómetro 3D sin contacto, mediante el cromatismo axial, puede medir casi cualquier superficie, los tamaños de las muestras pueden variar ampliamente debido a la disposición abierta y no es necesario preparar las muestras. Se obtiene un rango de nano a macro durante la medición del perfil de la superficie sin influencia alguna de la reflectividad o absorción de la muestra, tiene una capacidad avanzada para medir ángulos de superficie elevados y no hay manipulación de los resultados por parte del software. Mida fácilmente cualquier material: transparente, opaco, especular, difusivo, pulido, rugoso, etc. La técnica del perfilómetro sin contacto proporciona una capacidad ideal, amplia y fácil de usar para maximizar los estudios de superficie cuando se necesita un análisis de los límites de la superficie, junto con las ventajas de la capacidad combinada de 2D y 3D.

OBJETIVO DE MEDICIÓN

En esta aplicación, se utiliza el perfilómetro Nanovea ST400 para medir la superficie del poliestireno expandido. Los límites se establecieron combinando un archivo de intensidad reflejada con la topografía, que se obtuvieron simultáneamente utilizando el NANOVEA ST400. A continuación, estos datos se utilizaron para calcular la información sobre la forma y el tamaño de cada “grano” de poliestireno expandido.

NANOVEA

ST400

RESULTADOS Y DISCUSIÓN: Medición de límites superficiales en 2D

Imagen topográfica (abajo a la izquierda) enmascarada por una imagen de intensidad reflejada (abajo a la derecha) para definir claramente los límites de los granos. Todos los granos con un diámetro inferior a 565 µm se han ignorado mediante la aplicación de un filtro.

Número total de granos: 167
Área total proyectada ocupada por los granos: 166,917 mm² (64,5962 %)
Área total proyectada ocupada por los límites: (35.4038 %)
Densidad de granos: 0,646285 granos/mm2

Área = 0,999500 mm² +/- 0,491846 mm²
Perímetro = 9114,15 µm +/- 4570,38 µm
Diámetro equivalente = 1098,61 µm +/- 256,235 µm
Diámetro medio = 945,373 µm +/- 248,344 µm
Diámetro mínimo = 675,898 µm +/- 246,850 µm
Diámetro máximo = 1312,43 µm +/- 295,258 µm

RESULTADOS Y DISCUSIÓN: Medición de límites superficiales en 3D

Mediante el uso de los datos topográficos 3D obtenidos, se puede analizar el volumen, la altura, el pico, la relación de aspecto y la información sobre la forma general de cada grano. Área total ocupada en 3D: 2,525 mm3.

CONCLUSIÓN

En esta aplicación, hemos mostrado cómo el perfilómetro sin contacto NANOVEA 3D puede caracterizar con precisión la superficie del poliestireno expandido. Se puede obtener información estadística sobre toda la superficie de interés o sobre granos individuales, ya sean picos o depresiones. En este ejemplo, se utilizaron todos los granos mayores que un tamaño definido por el usuario para mostrar el área, el perímetro, el diámetro y la altura. Las características que se muestran aquí pueden ser fundamentales para la investigación y el control de calidad de superficies naturales y prefabricadas, desde aplicaciones biomédicas hasta micro mecanizado, entre muchas otras. 

Medición de contornos con el perfilómetro de NANOVEA

Medición de la profundidad del dibujo de los neumáticos y la rugosidad de la superficie de la goma | Perfilómetro óptico 3D

MEDICIÓN DE LA PROFUNDIDAD DEL BANDA DE RODADURA DEL NEUMÁTICO Y DE LA RUGOSIDAD DE LA SUPERFICIE DE GOMA utilizando un perfilómetro óptico 3D

Referencia para medir la profundidad del dibujo de los neumáticos que muestra varios patrones de dibujo de neumáticos de automóvil.

Preparado por

ANDREA HERRMANN

Aunque la profundidad del dibujo de los neumáticos se mide habitualmente con medidores manuales para garantizar la seguridad de los consumidores, los departamentos de I+D industriales y los fabricantes de neumáticos requieren métodos más avanzados. Esta nota de aplicación muestra cómo un perfilómetro óptico 3D proporciona mediciones precisas de la profundidad del dibujo de los neumáticos, mapas de contorno y análisis de la rugosidad de la superficie del caucho para estudios de alta precisión.

INTRODUCCIÓN

Al igual que todos los materiales, el coeficiente de fricción del caucho está relacionado en parte con la rugosidad de su superficie. En los neumáticos de los vehículos, tanto la profundidad del dibujo como la rugosidad de la superficie afectan directamente al rendimiento en cuanto a tracción, frenado y desgaste. En este estudio, se analizan la superficie del caucho y la rugosidad y las dimensiones del dibujo utilizando perfilometría 3D sin contacto.
Muestra de neumático utilizada para medir la profundidad del dibujo y la rugosidad de la superficie de goma.

LA MUESTRA

IMPORTANCIA DE LA PERFILOMETRÍA 3D SIN CONTACTO PARA LA MEDICIÓN DE LA PROFUNDIDAD DEL BANDA DE RODADURA DE LOS NEUMÁTICOS

A diferencia de otras técnicas, como las sondas táctiles o la interferometría, Perfiladores ópticos 3D sin contacto de NANOVEA Utilice el cromatismo axial para medir prácticamente cualquier superficie.

El sistema Profiler, con su estructura abierta, permite trabajar con muestras de muy diversos tamaños y no requiere ninguna preparación previa. Con un solo escaneo, los usuarios pueden capturar tanto la profundidad total de la banda de rodadura del neumático como la rugosidad de la superficie a nivel micro, sin que influya en absoluto la reflectividad o la absorción de la muestra. Además, estos perfiladores tienen la capacidad avanzada de medir ángulos de superficie elevados sin necesidad de manipular los resultados mediante software.

Esta versatilidad hace que los perfilómetros NANOVEA sean ideales tanto para pruebas de desgaste de la banda de rodadura de los neumáticos como para la investigación avanzada de materiales de caucho.

OBJETIVO DE MEDICIÓN

En esta aplicación, mostramos el NANOVEA ST400, un perfilómetro óptico 3D sin contacto que mide la profundidad del dibujo de los neumáticos, la geometría del contorno y la rugosidad de la superficie de la goma. Para este estudio, se seleccionó al azar una superficie de muestra lo suficientemente grande como para representar toda la superficie del neumático. Para cuantificar las características de la goma, utilizamos el software de análisis NANOVEA Ultra 3D para medir las dimensiones de los surcos, la profundidad del dibujo, la rugosidad de la superficie y el área desarrollada frente al área proyectada.

NANOVEA ST400 Estándar
Perfilómetro óptico 3D

ANÁLISIS: BANDA DE RODADURA DEL NEUMÁTICO
La vista 3D y la vista en falso color de las bandas de rodadura muestran el valor de mapear los diseños de superficies 3D. Esto proporciona a los ingenieros una herramienta sencilla para evaluar la uniformidad de la profundidad de la banda de rodadura, el diseño de los surcos y el desgaste desde múltiples ángulos. El análisis avanzado de contornos y el análisis de la altura de los escalones son herramientas extremadamente potentes para medir con precisión las dimensiones de las formas y el diseño de las muestras.
Perfilometría óptica 3D en falso color de la profundidad del dibujo de los neumáticos y la geometría de los surcos.
Vista de la superficie con perfilómetro 3D de la medición de la profundidad del dibujo de los neumáticos.

ANÁLISIS AVANZADO DEL CONTORNO

Análisis avanzado del contorno de las ranuras de la banda de rodadura de los neumáticos mediante perfilometría 3D.

ANÁLISIS DE LA ALTURA DE LOS ESCALONES

Análisis de la altura de los escalones para medir la profundidad del dibujo de los neumáticos con un perfilómetro óptico 3D.
Perfil de altura de escalones de perfilometría 3D que muestra la medición de la profundidad del dibujo de los neumáticos.
ANÁLISIS: SUPERFICIE DE GOMA
La superficie de caucho se puede cuantificar de numerosas formas utilizando herramientas de software integradas, como se muestra en las siguientes figuras. Se puede observar que la rugosidad de la superficie es de 2,688 μm, y que el área desarrollada frente al área proyectada es de 9,410 mm² frente a 8,997 mm². Estos resultados demuestran cómo la rugosidad de la superficie del caucho afecta a la tracción y al rendimiento, lo que permite realizar comparaciones entre diferentes formulaciones de caucho o distintos niveles de desgaste de la superficie.
Análisis de la rugosidad de la superficie del caucho con un perfilómetro óptico 3D
ISO 25178 Parámetros de altura de la superficie de caucho de los neumáticos
Vista de perfilometría óptica 3D de la rugosidad de la superficie de caucho y el área desarrollada.
Parámetros del perfilador de superficie de caucho de neumáticos

CONCLUSIÓN

En esta aplicación, hemos mostrado cómo el perfilómetro óptico sin contacto NANOVEA 3D puede caracterizar con precisión la profundidad de la banda de rodadura de los neumáticos, las dimensiones del contorno y la rugosidad de la superficie de la goma. Los datos muestran una rugosidad superficial de 2,69 µm y un área desarrollada de 9,41 mm² con un área proyectada de 9 mm². También se midieron varias dimensiones y radios de las bandas de rodadura de goma. Esta información puede ser utilizada por los fabricantes de neumáticos, los investigadores del sector automovilístico y los ingenieros de materiales para comparar diseños de bandas de rodadura, formulaciones de caucho o neumáticos con distintos grados de desgaste. Los datos que se muestran aquí representan solo una parte de los cálculos disponibles en el software de análisis Ultra 3D.
Control de calidad de piezas mecanizadas

Inspección de piezas mecanizadas

PIEZAS MECANIZADAS

Inspección a partir de un modelo CAD mediante perfilometría 3D.

Autor:

Doctor Duanjie Li

Revisado por

Jocelyn Esparza

Inspección de piezas mecanizadas con un perfilómetro

INTRODUCCIÓN

La demanda de mecanizados de precisión capaces de crear geometrías complejas ha ido en aumento en una amplia gama de industrias. Desde la industria aeroespacial, médica y automotriz, hasta los engranajes tecnológicos, la maquinaria y los instrumentos musicales, la innovación y la evolución continuas elevan las expectativas y los estándares de precisión a nuevas cotas. En consecuencia, asistimos al aumento de la demanda de técnicas e instrumentos de inspección rigurosos para garantizar la máxima calidad de los productos.

Importancia de la perfilometría 3D sin contacto para la inspección de piezas

Comparar las propiedades de las piezas mecanizadas con sus modelos CAD es esencial para verificar las tolerancias y el cumplimiento de las normas de producción. La inspección durante el tiempo de servicio también es crucial, ya que el desgaste de las piezas puede requerir su sustitución. La identificación oportuna de cualquier desviación de las especificaciones requeridas ayudará a evitar costosas reparaciones, paradas de producción y daños a la reputación.

A diferencia de la técnica de sonda táctil, el NANOVEA Perfiladores ópticos Realiza escaneos de superficies en 3D sin contacto, lo que permite realizar mediciones rápidas, precisas y no destructivas de formas complejas con la máxima precisión.

OBJETIVO DE MEDICIÓN

En esta aplicación, presentamos el NANOVEA HS2000, un perfilómetro 3D sin contacto con un sensor de alta velocidad, que realiza una inspección exhaustiva de la superficie en cuanto a dimensiones, radio y rugosidad. 

Todo en menos de 40 segundos.

NANOVEA

HS2000

MODELO CAD

Una medición precisa de las dimensiones y la rugosidad superficial de la pieza mecanizada es fundamental para garantizar que cumple con las especificaciones, tolerancias y acabados superficiales deseados. A continuación se presentan el modelo 3D y el dibujo técnico de la pieza que se va a inspeccionar. 

VISTA EN FALSO COLOR

En la FIGURA 3 se comparan la vista en falso color del modelo CAD y la superficie escaneada de la pieza mecanizada. La variación de altura en la superficie de la muestra se puede observar por el cambio de color.

Se extraen tres perfiles 2D del escaneo de superficie 3D, tal y como se indica en la FIGURA 2, para verificar aún más la tolerancia dimensional de la pieza mecanizada.

COMPARACIÓN DE PERFILES Y RESULTADOS

Los perfiles 1 a 3 se muestran en las FIGURAS 3 a 5. La inspección cuantitativa de la tolerancia se lleva a cabo comparando el perfil medido con el modelo CAD para mantener unos rigurosos estándares de fabricación. Los perfiles 1 y 2 miden el radio de diferentes áreas de la pieza mecanizada curvada. La variación de altura del perfil 2 es de 30 µm en una longitud de 156 mm, lo que cumple con el requisito de tolerancia deseado de ±125 µm. 

Al establecer un valor límite de tolerancia, el software de análisis puede determinar automáticamente si la pieza mecanizada es apta o no.

Inspección de piezas de máquinas con un perfilómetro

La rugosidad y la uniformidad de la superficie de la pieza mecanizada desempeñan un papel importante a la hora de garantizar su calidad y funcionalidad. La FIGURA 6 es un área superficial extraída del escaneo original de la pieza mecanizada que se utilizó para cuantificar el acabado superficial. Se calculó que la rugosidad superficial media (Sa) era de 2,31 µm.

CONCLUSIÓN

En este estudio, hemos mostrado cómo el perfilómetro sin contacto NANOVEA HS2000, equipado con un sensor de alta velocidad, realiza una inspección exhaustiva de la superficie en cuanto a dimensiones y rugosidad. 

Los escaneos de alta resolución permiten a los usuarios medir la morfología detallada y las características superficiales de las piezas mecanizadas y compararlas cuantitativamente con sus modelos CAD. El instrumento también es capaz de detectar cualquier defecto, incluyendo rayones y grietas. 

El análisis avanzado de contornos es una herramienta sin igual, no solo para determinar si las piezas mecanizadas cumplen con las especificaciones establecidas, sino también para evaluar los mecanismos de falla de los componentes desgastados.

Los datos que se muestran aquí representan solo una parte de los cálculos que se pueden realizar con el software de análisis avanzado que viene incluido con cada perfilómetro óptico NANOVEA.

 
Medición dimensional de tornillos dentales mediante perfilómetro 3D

Herramientas dentales: análisis dimensional y de rugosidad superficial



INTRODUCCIÓN

 

Contar con dimensiones precisas y una rugosidad superficial óptima es fundamental para la funcionalidad de los tornillos dentales. Muchas dimensiones de los tornillos dentales requieren una alta precisión, como radios, ángulos, distancias y alturas de paso. Comprender la rugosidad superficial local también es muy importante para cualquier herramienta o pieza médica que se inserte en el cuerpo humano, a fin de minimizar la fricción por deslizamiento.

 

 

PERFILOMETRÍA SIN CONTACTO PARA EL ESTUDIO DIMENSIONAL

 

Nanovea Perfiladores 3D sin contacto Utiliza una tecnología basada en luz cromática para medir cualquier superficie de material: transparente, opaca, especular, difusa, pulida o rugosa. A diferencia de la técnica de sonda táctil, la técnica sin contacto puede medir en áreas estrechas y no añade ningún error intrínseco debido a la deformación causada por la presión de la punta sobre un material plástico más blando.  La tecnología basada en luz cromática también ofrece una precisión lateral y de altura superior en comparación con la tecnología de variación de enfoque. Los perfiladores Nanovea pueden escanear grandes superficies directamente sin necesidad de unirlas y perfilar la longitud de una pieza en pocos segundos. Se pueden medir características superficiales de rango nano a macro y ángulos superficiales elevados gracias a la capacidad del perfilador para medir superficies sin algoritmos complejos que manipulen los resultados.

 

 

OBJETIVO DE MEDICIÓN

 

En esta aplicación, se utilizó el perfilómetro óptico Nanovea ST400 para medir un tornillo dental a lo largo de las características planas y roscadas en una sola medición. Se calculó la rugosidad de la superficie a partir del área plana y se determinaron varias dimensiones de las características roscadas.

 

Control de calidad de tornillos dentales

Muestra de tornillo dental analizada por NANOVEA Perfilador óptico.

 

Muestra de tornillo dental analizada.

 

RESULTADOS

 

Superficie 3D

La vista en 3D y la vista en falso color del tornillo dental muestran una zona plana con roscas a ambos lados. Proporciona a los usuarios una herramienta sencilla para observar directamente la morfología del tornillo desde diferentes ángulos. La zona plana se extrajo del escaneo completo para medir la rugosidad de su superficie.

 

 

Análisis de superficies 2D

También se pueden extraer perfiles de línea de la superficie para mostrar una vista transversal del tornillo. Se utilizaron los estudios de análisis de contorno y altura de paso para medir las dimensiones precisas en una ubicación determinada del tornillo.

 

 

CONCLUSIÓN

 

En esta aplicación, mostramos la capacidad del perfilómetro 3D sin contacto Nanovea para calcular con precisión la rugosidad local de la superficie y medir características dimensionales de gran tamaño en un solo escaneo.

Los datos muestran una rugosidad superficial local de 0,9637 μm. Se determinó que el radio del tornillo entre roscas era de 1,729 mm, y que las roscas tenían una altura media de 0,413 mm. Se determinó que el ángulo medio entre las roscas era de 61,3°.

Los datos que se muestran aquí representan solo una parte de los cálculos disponibles en el software de análisis.

 

Preparado por
Duanjie Li, PhD., Jonathan Thomas y Pierre Leroux

Evaluación del desgaste y el rayado del alambre de cobre tratado superficialmente

Importancia de la evaluación del desgaste y el rayado del alambre de cobre

El cobre tiene una larga historia de uso en el cableado eléctrico desde la invención del electroimán y el telégrafo. Los hilos de cobre se utilizan en una amplia gama de equipos electrónicos, como paneles, contadores, ordenadores, máquinas comerciales y electrodomésticos, gracias a su resistencia a la corrosión, soldabilidad y rendimiento a temperaturas elevadas de hasta 150°C. Aproximadamente la mitad del cobre extraído se destina a la fabricación de alambres y cables eléctricos.

La calidad de la superficie de los alambres de cobre es fundamental para el rendimiento y la vida útil de las aplicaciones. Los microdefectos en los alambres pueden provocar un desgaste excesivo, el inicio y la propagación de grietas, una disminución de la conductividad y una soldabilidad inadecuada. Un tratamiento adecuado de la superficie de los alambres de cobre elimina los defectos superficiales generados durante el trefilado, mejorando la resistencia a la corrosión, los arañazos y el desgaste. Muchas aplicaciones aeroespaciales con alambres de cobre requieren un comportamiento controlado para evitar fallos inesperados del equipo. Se necesitan mediciones cuantificables y fiables para evaluar adecuadamente la resistencia al desgaste y al rayado de la superficie del alambre de cobre.

 
 

 

Objetivo de medición

En esta aplicación simulamos un proceso de desgaste controlado de diferentes tratamientos superficiales de alambre de cobre. Prueba del rasguño mide la carga necesaria para provocar un fallo en la capa superficial tratada. Este estudio muestra la capacidad de Nanovea Tribómetro y Comprobador mecánico como herramientas ideales para la evaluación y el control de calidad de los cables eléctricos.

 

 

Procedimiento de ensayo y procedimientos

El coeficiente de fricción (COF) y la resistencia al desgaste de dos tratamientos superficiales diferentes en alambres de cobre (Alambre A y Alambre B) se evaluaron mediante el tribómetro Nanovea utilizando un módulo de desgaste alternativo lineal. Una bola de Al₂O₃ (6 mm de diámetro) es el contramaterial utilizado en esta aplicación. La pista de desgaste se examinó utilizando el tribómetro de Nanovea Perfilómetro 3D sin contacto. Los parámetros de la prueba se resumen en la Tabla 1.

En este estudio se utilizó como ejemplo una bola lisa de Al₂O₃ como contramaterial. Puede aplicarse cualquier material sólido con diferente forma y acabado superficial utilizando una fijación personalizada para simular la situación de aplicación real.

 

 

El comprobador mecánico de Nanovea equipado con un palpador de diamante Rockwell C (100 μm de radio) realizó ensayos de rayado de carga progresiva en los hilos recubiertos utilizando el modo de micro rayado. Los parámetros del ensayo de rayado y la geometría de la punta se muestran en la Tabla 2.
 

 

 

 

Resultados y debate

Desgaste del hilo de cobre:

La figura 2 muestra la evolución del COF de los hilos de cobre durante las pruebas de desgaste. El alambre A muestra un COF estable de ~0,4 durante todo el ensayo de desgaste, mientras que el alambre B exhibe un COF de ~0,35 en las primeras 100 revoluciones y aumenta progresivamente hasta ~0,4.

 

La figura 3 compara las huellas de desgaste de los hilos de cobre tras las pruebas. El perfilómetro 3D sin contacto de Nanovea ofreció un análisis superior de la morfología detallada de las huellas de desgaste. Permite determinar de forma directa y precisa el volumen de la huella de desgaste proporcionando una comprensión fundamental del mecanismo de desgaste. La superficie del alambre B presenta daños significativos en la huella de desgaste tras una prueba de desgaste de 600 revoluciones. La vista en 3D del perfilómetro muestra la capa tratada de la superficie del alambre B completamente eliminada, lo que aceleró sustancialmente el proceso de desgaste. Esto dejó una huella de desgaste aplanada en el alambre B, donde el sustrato de cobre está expuesto. Esto puede acortar significativamente la vida útil de los equipos eléctricos en los que se utiliza el cable B. En comparación, el alambre A presenta un desgaste relativamente leve, que se manifiesta por una huella de desgaste poco profunda en la superficie. La capa tratada superficialmente en el alambre A no se eliminó como la capa del alambre B en las mismas condiciones.

Resistencia al rayado de la superficie del hilo de cobre:

La figura 4 muestra las huellas de arañazos en los cables después de la prueba. La capa protectora del cable A muestra una resistencia al rayado muy buena. Se deslamina a una carga de ~12,6 N. En comparación, la capa protectora del alambre B falló a una carga de ~1,0 N. Una diferencia tan significativa en la resistencia al rayado de estos alambres contribuye a su rendimiento frente al desgaste, donde el alambre A posee una resistencia al desgaste sustancialmente mayor. La evolución de la fuerza normal, el COF y la profundidad durante las pruebas de rayado mostradas en la Fig. 5 proporciona más información sobre el fallo del revestimiento durante las pruebas.

Conclusión

En este estudio controlado mostramos el tribómetro de Nanovea, que realiza una evaluación cuantitativa de la resistencia al desgaste de los alambres de cobre tratados superficialmente, y el comprobador mecánico de Nanovea, que proporciona una evaluación fiable de la resistencia al rayado de los alambres de cobre. El tratamiento superficial del alambre desempeña un papel fundamental en las propiedades tribo-mecánicas durante su vida útil. El tratamiento adecuado de la superficie del alambre A mejoró significativamente la resistencia al desgaste y a los arañazos, lo que es fundamental para el rendimiento y la vida útil de los cables eléctricos en entornos difíciles.

El tribómetro de Nanovea ofrece pruebas de desgaste y fricción precisas y repetibles mediante modos rotativos y lineales conformes con las normas ISO y ASTM, con módulos opcionales de desgaste a alta temperatura, lubricación y tribo-corrosión disponibles en un sistema preintegrado. La incomparable gama de Nanovea es una solución ideal para determinar toda la gama de propiedades tribológicas de revestimientos, películas y sustratos finos o gruesos, blandos o duros.

Análisis tridimensional de la superficie de un centavo con perfilometría sin contacto

Importancia de la perfilometría sin contacto para monedas

La moneda tiene un gran valor en la sociedad moderna, ya que se utiliza para intercambiar bienes y servicios. Las monedas y los billetes circulan por las manos de muchas personas. La transferencia constante de moneda física provoca deformaciones en la superficie. Nanovea 3D Perfilómetro escanea la topografía de monedas acuñadas en diferentes años para investigar las diferencias en la superficie.

Las características de las monedas son fácilmente reconocibles para el público en general, ya que son objetos comunes. Una moneda de un centavo es ideal para presentar la potencia del software de análisis avanzado de superficies de Nanovea: Mountains 3D. Los datos de superficie recopilados con nuestro perfilómetro 3D permiten realizar análisis de alto nivel sobre geometrías complejas con sustracción de superficies y extracción de contornos 2D. La sustracción de superficies con una máscara, un sello o un molde controlados compara la calidad de los procesos de fabricación, mientras que la extracción de contornos identifica las tolerancias con análisis dimensionales. El perfilómetro 3D y el software Mountains 3D de Nanovea investigan la topografía submicrométrica de objetos aparentemente simples, como las monedas de un centavo.



Objetivo de medición

Se escaneó toda la superficie superior de cinco monedas de un centavo utilizando el sensor lineal de alta velocidad de Nanovea. Se midieron los radios interior y exterior de cada moneda utilizando el software de análisis avanzado Mountains. Se cuantificó la deformación de la superficie mediante la extracción de cada superficie de moneda en un área de interés con sustracción directa de la superficie.

 



Resultados y debate

Superficie 3D

El perfilómetro Nanovea HS2000 tardó solo 24 segundos en escanear 4 millones de puntos en un área de 20 mm x 20 mm con un tamaño de paso de 10 um x 10 um para adquirir la superficie de un centavo. A continuación se muestra un mapa de altura y una visualización en 3D del escaneo. La vista en 3D muestra la capacidad del sensor de alta velocidad para captar pequeños detalles imperceptibles a simple vista. Se pueden ver muchos pequeños arañazos en la superficie de la moneda. Se investigan la textura y la rugosidad de la moneda que se observan en la vista en 3D.

 










Análisis dimensional

Se extrajeron los contornos de la moneda y, mediante un análisis dimensional, se obtuvieron los diámetros interior y exterior del borde. El radio exterior promedió 9,500 mm ± 0,024, mientras que el radio interior promedió 8,960 mm ± 0,032. Otros análisis dimensionales que Mountains 3D puede realizar con fuentes de datos 2D y 3D son mediciones de distancia, altura de escalón, planitud y cálculos de ángulos.







Resta de superficies

La figura 5 muestra el área de interés para el análisis de sustracción de superficie. Se utilizó la moneda de un centavo de 2007 como superficie de referencia para las cuatro monedas más antiguas. La sustracción de superficie de la moneda de un centavo de 2007 muestra diferencias entre las monedas con agujeros/picos. La diferencia total de volumen de superficie se obtiene sumando los volúmenes de los agujeros/picos. El error RMS se refiere a la precisión con la que coinciden las superficies de las monedas entre sí.


 









Conclusión





El escáner de alta velocidad HS2000L de Nanovea escaneó cinco monedas de cinco centavos acuñadas en diferentes años. El software Mountains 3D comparó las superficies de cada moneda utilizando la extracción de contornos, el análisis dimensional y la sustracción de superficies. El análisis define claramente el radio interior y exterior entre las monedas de un centavo, al tiempo que compara directamente las diferencias en las características de la superficie. Gracias a la capacidad del perfilómetro 3D de Nanovea para medir cualquier superficie con una resolución a nivel nanométrico, combinada con las capacidades de análisis de Mountains 3D, las posibles aplicaciones en investigación y control de calidad son infinitas.

 


AHORA, HABLEMOS DE SU SOLICITUD