EE.UU./GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTACTO

Categoría: Perfilometría | Geometría y forma

 

Inspección de superficies soldadas con un perfilómetro 3D portátil

Inspección de superficies WELd

uso de un perfilómetro 3d portátil

Preparado por

CRAIG LEISING

INTRODUCCIÓN

Puede llegar a ser crítico que una soldadura concreta, realizada normalmente mediante inspección visual, se investigue con un nivel de precisión extremo. Entre las áreas específicas de interés para un análisis preciso se incluyen las grietas superficiales, la porosidad y los cráteres sin rellenar, independientemente de los procedimientos de inspección posteriores. Las características de la soldadura, como la dimensión/forma, el volumen, la rugosidad, el tamaño, etc., pueden medirse para una evaluación crítica.

IMPORTANCIA DEL PERFILÓMETRO 3D SIN CONTACTO PARA LA INSPECCIÓN DE SUPERFICIES SOLDADAS

A diferencia de otras técnicas como los palpadores o la interferometría, el NANOVEA Perfilómetro 3D sin contactoMediante el cromatismo axial, puede medirse prácticamente cualquier superficie, el tamaño de las muestras puede variar ampliamente gracias a la puesta en escena abierta y no es necesaria la preparación de la muestra. Durante la medición del perfil de superficie se obtiene un rango de nano a macro con influencia cero de la reflectividad o absorción de la muestra, tiene capacidad avanzada para medir ángulos de superficie elevados y no hay manipulación de los resultados por software. Mide fácilmente cualquier material: transparente, opaco, especular, difusivo, pulido, rugoso, etc. Las capacidades 2D y 2D de los Perfilómetros Portátiles NANOVEA los convierten en instrumentos ideales para la inspección completa de superficies de soldadura tanto en laboratorio como en campo.

OBJETIVO DE MEDICIÓN

En esta aplicación, el perfilómetro portátil NANOVEA JR25 se utiliza para medir la rugosidad de la superficie, la forma y el volumen de una soldadura, así como el área circundante. Esta información puede proporcionar información crítica para investigar adecuadamente la calidad de la soldadura y el proceso de soldadura.

NANOVEA

JR25

RESULTADOS DE LAS PRUEBAS

La imagen inferior muestra la vista completa en 3D de la soldadura y la zona circundante junto con los parámetros superficiales de la soldadura únicamente. A continuación se muestra el perfil de la sección transversal 2D.

la muestra

Con el perfil de sección transversal 2D anterior eliminado del 3D, la información dimensional de la soldadura se calcula a continuación. Superficie y volumen de material calculados sólo para la soldadura a continuación.

 AGUJEROPICO
SUPERFICIE1,01 mm214,0 mm2
VOLUMEN8,799e-5 mm323,27 mm3
PROFUNDIDAD/ALTURA MÁXIMAS0,0276 mm0,6195 mm
PROFUNDIDAD/ALTURA MEDIA 0,004024 mm 0,2298 mm

CONCLUSIÓN

En esta aplicación, hemos demostrado cómo el perfilador 3D sin contacto NANOVEA puede caracterizar con precisión las características críticas de una soldadura y la superficie circundante. A partir de la rugosidad, las dimensiones y el volumen, se puede determinar un método cuantitativo para la calidad y la repetibilidad y/o investigar más a fondo. Las soldaduras de muestra, como el ejemplo en esta nota de aplicación, se pueden analizar fácilmente, con un NANOVEA Profiler estándar de sobremesa o portátil para pruebas internas o de campo.

AHORA, HABLEMOS DE SU SOLICITUD

Análisis de fractografía mediante perfilometría 3D

ANÁLISIS FRACTOGRÁFICO

UTILIZANDO LA PERFILOMETRÍA 3D

Preparado por

CRAIG LEISING

INTRODUCCIÓN

La fractografía es el estudio de las características de las superficies fracturadas y se ha investigado históricamente mediante microscopio o SEM. Dependiendo del tamaño del rasgo, se selecciona un microscopio (rasgos macro) o un SEM (rasgos nano y micro) para el análisis de la superficie. En última instancia, ambos permiten identificar el tipo de mecanismo de fractura. Aunque eficaz, el microscopio tiene claras limitaciones y el SEM, en la mayoría de los casos, aparte del análisis a nivel atómico, es poco práctico para la medición de la superficie de la fractura y carece de una capacidad de uso más amplia. Con los avances en la tecnología de medición óptica, el NANOVEA Perfilómetro 3D sin contacto se considera actualmente el instrumento de elección, gracias a su capacidad para realizar mediciones de superficies 2D y 3D desde la nanoescala hasta la macroescala.

IMPORTANCIA DEL PERFILÓMETRO 3D SIN CONTACTO PARA LA INSPECCIÓN DE FRACTURAS

A diferencia de un SEM, un perfilómetro 3D sin contacto puede medir casi cualquier superficie y tamaño de muestra, con una preparación mínima de la muestra, a la vez que ofrece unas dimensiones verticales/horizontales superiores a las de un SEM. Con un perfilómetro, las características de rango nano a macro se capturan en una sola medición con influencia cero de la reflectividad de la muestra. Mida fácilmente cualquier material: transparente, opaco, especular, difusivo, pulido, rugoso, etc. El perfilómetro 3D sin contacto proporciona una capacidad amplia y fácil de usar para maximizar los estudios de fractura de superficies a una fracción del coste de un SEM.

OBJETIVO DE MEDICIÓN

En esta aplicación, el NANOVEA ST400 se utiliza para medir la superficie fracturada de una muestra de acero. En este estudio, mostraremos un área 3D, extracción de perfil 2D y mapa direccional de superficie de la superficie.

NANOVEA

ST400

RESULTADOS

SUPERFICIE SUPERIOR

Dirección de la textura de la superficie 3D

Isotropía51.26%
Primera dirección123.2º
Segunda dirección116.3º
Tercera dirección0.1725º

Superficie, Volumen, Rugosidad y muchos otros pueden calcularse automáticamente a partir de esta extracción.

Extracción de perfiles 2D

RESULTADOS

SUPERFICIE LATERAL

Dirección de la textura de la superficie 3D

Isotropía15.55%
Primera dirección0.1617º
Segunda dirección110.5º
Tercera dirección171.5º

Superficie, Volumen, Rugosidad y muchos otros pueden calcularse automáticamente a partir de esta extracción.

Extracción de perfiles 2D

CONCLUSIÓN

En esta aplicación, hemos mostrado cómo el perfilómetro 3D sin contacto NANOVEA ST400 puede caracterizar con precisión la topografía completa (características nano, micro y macro) de una superficie fracturada. A partir del área 3D, la superficie puede identificarse claramente y las subáreas o perfiles/secciones transversales pueden extraerse y analizarse rápidamente con una lista interminable de cálculos de superficie. Las características subnanométricas de la superficie pueden analizarse más a fondo con un módulo AFM integrado.

Además, NANOVEA ha incluido una versión portátil en su línea de perfilómetros, especialmente importante para estudios de campo en los que la superficie de la fractura es inamovible. Con esta amplia lista de capacidades de medición de superficies, el análisis de superficies de fracturas nunca ha sido tan fácil y cómodo con un solo instrumento.

AHORA, HABLEMOS DE SU SOLICITUD

Desgaste y fricción de la correa de polímero con un tribómetro

CINTURONES DE POLÍMERO

DESGASTE Y FRICCIÓN CON UN TRIBÓMETRO

Preparado por

DUANJIE LI, Doctor

INTRODUCCIÓN

La transmisión por correa transmite potencia y sigue el movimiento relativo entre dos o más ejes giratorios. Al ser una solución sencilla y económica con un mantenimiento mínimo, las transmisiones por correa se utilizan ampliamente en diversas aplicaciones, como sierras de disco, aserraderos, trilladoras, sopladores de silo y cintas transportadoras. Las transmisiones por correa pueden proteger la maquinaria de sobrecargas, así como amortiguar y aislar las vibraciones.

IMPORTANCIA DE LA EVALUACIÓN DEL DESGASTE DE LAS TRANSMISIONES POR CORREA

La fricción y el desgaste son inevitables en las correas de una máquina accionada por correa. Una fricción suficiente garantiza una transmisión eficaz de la potencia sin deslizamientos, pero una fricción excesiva puede desgastar rápidamente la correa. Durante el funcionamiento de la transmisión por correa se producen diferentes tipos de desgaste, como la fatiga, la abrasión y la fricción. Con el fin de prolongar la vida útil de la correa y reducir los costes y el tiempo de reparación y sustitución de la correa, es conveniente evaluar de forma fiable el desgaste de las correas para mejorar su vida útil, la eficacia de la producción y el rendimiento de la aplicación. La medición precisa del coeficiente de fricción y del índice de desgaste de la correa facilita la I+D y el control de calidad de la producción de correas.

OBJETIVO DE MEDICIÓN

En este estudio, simulamos y comparamos los comportamientos de desgaste de correas con diferentes texturas superficiales para mostrar la capacidad de la NANOVEA Tribómetro T2000 en la simulación del proceso de desgaste de la correa de forma controlada y monitorizada.

NANOVEA

T2000

PROCEDIMIENTOS DE PRUEBA

El coeficiente de fricción, COF, y la resistencia al desgaste de dos correas con diferente rugosidad y textura superficial se evaluaron mediante el NANOVEA Alta carga Tribómetro utilizando un módulo de desgaste alternativo lineal. Como contramaterial se utilizó una bola de acero 440 (10 mm de diámetro). La rugosidad superficial y la huella de desgaste se examinaron utilizando un Perfilómetro 3D sin contacto. La tasa de desgaste, Kse evaluó mediante la fórmula K=Vl(Fxs)donde V es el volumen desgastado, F es la carga normal y s es la distancia de deslizamiento.

 

Tenga en cuenta que en este estudio se ha utilizado como ejemplo una bola lisa de acero 440, pero puede aplicarse cualquier material sólido con diferentes formas y acabados superficiales utilizando fijaciones personalizadas para simular la situación de aplicación real.

RESULTADOS Y DEBATE

La banda texturizada y la banda lisa tienen una rugosidad superficial Ra de 33,5 y 8,7 um, respectivamente, según los perfiles superficiales analizados tomados con un NANOVEA Perfilador óptico 3D sin contacto. El COF y la tasa de desgaste de las dos correas probadas se midieron a 10 N y 100 N, respectivamente, para comparar el comportamiento de desgaste de las correas a diferentes cargas.

FIGURA 1 muestra la evolución del COF de las correas durante las pruebas de desgaste. Las correas con diferentes texturas muestran comportamientos de desgaste sustancialmente diferentes. Resulta interesante que, tras el periodo de rodaje durante el cual el COF aumenta progresivamente, la correa texturizada alcanza un COF inferior de ~0,5 en las dos pruebas realizadas con cargas de 10 N y 100 N. En comparación, la correa lisa sometida a la carga de 10 N muestra un COF significativamente superior de~ 1,4 cuando el COF se estabiliza y se mantiene por encima de este valor durante el resto de la prueba. La correa lisa sometida a la carga de 100 N se desgastó rápidamente por la bola de acero 440 y formó una gran huella de desgaste. Por lo tanto, la prueba se detuvo a 220 revoluciones.

FIGURA 1: Evolución del COF de las correas a diferentes cargas.

En la FIGURA 2 se comparan las imágenes 3D de las huellas de desgaste después de las pruebas a 100 N. El perfilómetro 3D sin contacto NANOVEA ofrece una herramienta para analizar la morfología detallada de las huellas de desgaste, proporcionando más información sobre la comprensión fundamental del mecanismo de desgaste.

TABLA 1: Resultado del análisis de la pista de desgaste.

FIGURA 2:  Vista en 3D de las dos cintas
después de las pruebas a 100 N.

El perfil 3D de la huella de desgaste permite determinar de forma directa y precisa el volumen de la huella de desgaste calculado por el software de análisis avanzado, como se muestra en la TABLA 1. En una prueba de desgaste de 220 revoluciones, la correa lisa presenta una huella de desgaste mucho mayor y más profunda, con un volumen de 75,7 mm3, en comparación con un volumen de desgaste de 14,0 mm3 para la correa texturada tras una prueba de desgaste de 600 revoluciones. La fricción significativamente mayor de la correa lisa contra la bola de acero da lugar a un índice de desgaste 15 veces superior al de la correa texturada.

 

Una diferencia tan drástica de COF entre la banda texturizada y la banda lisa está posiblemente relacionada con el tamaño del área de contacto entre la banda y la bola de acero, lo que también conduce a su diferente rendimiento frente al desgaste. La FIGURA 3 muestra las huellas de desgaste de las dos correas bajo el microscopio óptico. El examen de las huellas de desgaste concuerda con la observación de la evolución del COF: La correa texturizada, que mantiene un COF bajo de ~0,5, no muestra ningún signo de desgaste después de la prueba de desgaste con una carga de 10 N. La correa lisa muestra una pequeña huella de desgaste a 10 N. Las pruebas de desgaste realizadas a 100 N crean huellas de desgaste sustancialmente mayores tanto en la correa texturizada como en la lisa, y la tasa de desgaste se calculará utilizando perfiles 3D, como se verá en el párrafo siguiente.

FIGURA 3:  Huellas de desgaste al microscopio óptico.

CONCLUSIÓN

En este estudio, mostramos la capacidad del Tribómetro NANOVEA T2000 para evaluar el coeficiente de fricción y la tasa de desgaste de las correas de una manera bien controlada y cuantitativa. La textura de la superficie desempeña un papel crítico en la resistencia a la fricción y al desgaste de las correas durante su funcionamiento en servicio. La correa texturizada presenta un coeficiente de fricción estable de ~0,5 y posee una larga vida útil, lo que se traduce en una reducción del tiempo y los costes de reparación o sustitución de las herramientas. En comparación, la excesiva fricción de la correa lisa contra la bola de acero desgasta rápidamente la correa. Además, la carga sobre la correa es un factor vital de su vida útil. La sobrecarga crea una fricción muy elevada, lo que acelera el desgaste de la correa.

El tribómetro NANOVEA T2000 ofrece pruebas de desgaste y fricción precisas y repetibles utilizando modos rotativos y lineales conformes a ISO y ASTM, con módulos opcionales de desgaste a alta temperatura, lubricación y tribocorrosión disponibles en un sistema preintegrado. NANOVEA es una solución ideal para determinar toda la gama de propiedades tribológicas de revestimientos, películas y sustratos finos o gruesos, blandos o duros.

AHORA, HABLEMOS DE SU SOLICITUD

Microestructura fósil mediante perfilometría 3D

MICROESTRUCTURA FÓSIL

UTILIZANDO LA PERFILOMETRÍA 3D

Preparado por

DUANJIE LI, Doctor

INTRODUCCIÓN

Los fósiles son los restos conservados de rastros de plantas, animales y otros organismos enterrados en sedimentos bajo antiguos mares, lagos y ríos. El tejido blando del cuerpo suele descomponerse tras la muerte, pero las conchas duras, los huesos y los dientes se fosilizan. A menudo se conservan rasgos superficiales de microestructura cuando se produce la sustitución mineral de las conchas y huesos originales, lo que permite conocer la evolución del tiempo y el mecanismo de formación de los fósiles.

IMPORTANCIA DE UN PERFILÓMETRO 3D SIN CONTACTO PARA EL EXAMEN DE FÓSILES

Los perfiles 3D del fósil nos permiten observar las características detalladas de la superficie de la muestra fósil desde un ángulo más cercano. La alta resolución y precisión del perfilómetro NANOVEA pueden no ser perceptibles a simple vista. El software de análisis del perfilómetro ofrece una amplia gama de estudios aplicables a estas superficies únicas. A diferencia de otras técnicas como los palpadores, el NANOVEA Perfilómetro 3D sin contacto mide las características de la superficie sin tocar la muestra. Esto permite preservar las verdaderas características de la superficie de ciertas muestras fósiles delicadas. Además, el perfilómetro portátil modelo Jr25 permite realizar mediciones en 3D en yacimientos fósiles, lo que facilita sustancialmente el análisis y la protección de los fósiles tras la excavación.

OBJETIVO DE MEDICIÓN

En este estudio se utiliza el perfilómetro NANOVEA Jr25 para medir la superficie de dos muestras fósiles representativas. Se escaneó y analizó toda la superficie de cada fósil para caracterizar sus rasgos superficiales, que incluyen la rugosidad, el contorno y la dirección de la textura.

NANOVEA

Jr25

FÓSIL DE BRAQUIÓPODO

La primera muestra fósil presentada en este informe es un fósil de braquiópodo, procedente de un animal marino que tiene "válvulas" (conchas) duras en sus superficies superior e inferior. Aparecieron por primera vez en el periodo Cámbrico, hace más de 550 millones de años.

La vista en 3D del escáner se muestra en la FIGURA 1 y la vista en falso color se muestra en la FIGURA 2. 

FIGURA 1: Vista en 3D de la muestra fósil de braquiópodo.

FIGURA 2: Vista en falso color de la muestra fósil de braquiópodo.

A continuación, se retiró la forma general de la superficie para investigar la morfología local de la superficie y el contorno del fósil de braquiópodo, como se muestra en la FIGURA 3. Ahora puede observarse una peculiar textura de surco divergente en la muestra de fósil de braquiópodo.

FIGURA 3: Vista de falso color y vista de líneas de contorno tras la eliminación del formulario.

Se extrae un perfil de línea de la zona texturada para mostrar una vista transversal de la superficie fósil en la FIGURA 4. El estudio de la altura del escalón mide las dimensiones precisas de las características de la superficie. Los surcos poseen una anchura media de ~0,38 mm y una profundidad de ~0,25 mm.

FIGURA 4: Estudios del perfil de línea y de la altura de paso de la superficie texturizada.

FÓSIL DE TALLO DE CRINOIDEO

La segunda muestra fósil es un fósil de tallo de Crinoideo. Los crinoideos aparecieron por primera vez en los mares del Cámbrico Medio, unos 300 millones de años antes de los dinosaurios. 

 

La vista 3D del escáner se muestra en la FIGURA 5 y la vista en falso color se muestra en la FIGURA 6. 

FIGURA 5: Vista en 3D de la muestra de fósiles de crinoideos.

En la FIGURA 7 se analizan la isotropía y la rugosidad de la textura superficial del fósil de tallo de Crinoideo. 

 Este fósil tiene una dirección de textura preferencial en el ángulo cercano a 90°, lo que conduce a la isotropía de textura de 69%.

FIGURA 6: Vista en falso color del Tallo de crinoideo muestra.

 

FIGURA 7: Isotropía y rugosidad de la textura superficial del tallo fósil de Crinoideo.

En la FIGURA 8 se muestra el perfil 2D a lo largo de la dirección axial del tallo fósil de Crinoideo. 

El tamaño de los picos de la textura superficial es bastante uniforme.

FIGURA 8: Análisis del perfil 2D del fósil de tallo de Crinoideo.

CONCLUSIÓN

En esta aplicación, estudiamos exhaustivamente las características de la superficie en 3D de un fósil de tallo de braquiópodo y crinoideo utilizando el perfilómetro portátil sin contacto NANOVEA Jr25. Demostramos que el instrumento puede caracterizar con precisión la morfología 3D de las muestras fósiles. Las interesantes características de la superficie y la textura de las muestras se analizan posteriormente. La muestra de braquiópodo posee una textura de surco divergente, mientras que el fósil de tallo de crinoideo muestra una isotropía de textura preferente. Los detallados y precisos escaneados 3D de la superficie resultan ser herramientas ideales para que paleontólogos y geólogos estudien la evolución de la vida y la formación de los fósiles.

Los datos mostrados aquí representan sólo una parte de los cálculos disponibles en el software de análisis. Los perfilómetros NANOVEA miden prácticamente cualquier superficie en campos como los semiconductores, la microelectrónica, la energía solar, la fibra óptica, la automoción, la industria aeroespacial, la metalurgia, el mecanizado, los revestimientos, la industria farmacéutica, la biomedicina, el medio ambiente y muchos otros.

AHORA, HABLEMOS DE SU SOLICITUD

Perfilometría de medición de límites de superficies de espuma de poliestireno

Medición de límites de superficie

Medición de límites superficiales mediante perfilometría 3D

Más información

MEDICIÓN DE LÍMITES DE SUPERFICIE

UTILIZANDO LA PERFILOMETRÍA 3D

Preparado por

Craig Leising

INTRODUCCIÓN

En los estudios en los que se evalúa la orientación de la interfaz de características superficiales, patrones, formas, etc., será útil identificar rápidamente las áreas de interés en todo el perfil de medición. Al segmentar una superficie en áreas significativas, el usuario puede evaluar rápidamente límites, picos, hoyos, áreas, volúmenes y muchos otros para comprender su papel funcional en todo el perfil de la superficie en estudio. Por ejemplo, como en el caso de las imágenes de los límites de grano de los metales, la importancia del análisis es la interfaz de muchas estructuras y su orientación general. La comprensión de cada zona de interés permite identificar defectos o anomalías en el conjunto. Aunque las imágenes de límites de grano suelen estudiarse en un rango que supera la capacidad del Profilometer, y se trata sólo de análisis de imágenes 2D, es una referencia útil para ilustrar el concepto de lo que se mostrará aquí a mayor escala junto con las ventajas de la medición de superficies 3D.

IMPORTANCIA DEL PERFILÓMETRO 3D SIN CONTACTO PARA EL ESTUDIO DE LA SEPARACIÓN DE SUPERFICIES

A diferencia de otras técnicas, como los palpadores o la interferometría, la Perfilómetro 3D sin contactoMediante el cromatismo axial, puede medirse prácticamente cualquier superficie, el tamaño de las muestras puede variar ampliamente gracias a la puesta en escena abierta y no es necesaria la preparación de la muestra. Durante la medición del perfil de superficie se obtiene un rango de nano a macro con influencia cero de la reflectividad o absorción de la muestra, tiene capacidad avanzada para medir ángulos de superficie elevados y no hay manipulación de los resultados por software. Mide fácilmente cualquier material: transparente, opaco, especular, difusivo, pulido, rugoso, etc. La técnica del perfilómetro sin contacto proporciona una capacidad ideal, amplia y fácil de usar para maximizar los estudios de superficie cuando se necesitará el análisis de los límites de la superficie; junto con las ventajas de la capacidad combinada 2D y 3D.

OBJETIVO DE MEDICIÓN

En esta aplicación se utiliza el perfilómetro Nanovea ST400 para medir la superficie de la espuma de poliestireno. Los límites se establecieron combinando un archivo de intensidad reflejada junto con la topografía, que se adquieren simultáneamente utilizando el NANOVEA ST400. A continuación, estos datos se utilizaron para calcular información sobre la forma y el tamaño de cada "grano" de espuma de poliestireno.

NANOVEA

ST400

RESULTADOS Y DISCUSIÓN: Medición del límite superficial en 2D

Imagen topográfica (abajo a la izquierda) enmascarada por la imagen de intensidad reflejada (abajo a la derecha) para definir claramente los límites de los granos. Todos los granos con un diámetro inferior a 565 µm se han ignorado aplicando un filtro.

Número total de granos: 167
Superficie total proyectada ocupada por los granos 166,917 mm² (64,5962 %)
Superficie total proyectada ocupada por los límites: (35,4038 %)
Densidad de granos: 0,646285 granos / mm2

Superficie = 0,999500 mm² +/- 0,491846 mm².
Perímetro = 9114,15 µm +/- 4570,38 µm
Diámetro equivalente = 1098,61 µm +/- 256,235 µm
Diámetro medio = 945,373 µm +/- 248,344 µm
Diámetro mínimo = 675,898 µm +/- 246,850 µm
Diámetro máximo = 1312,43 µm +/- 295,258 µm

RESULTADOS Y DISCUSIÓN: Medición del límite superficial en 3D

Utilizando los datos topográficos 3D obtenidos, se puede analizar el volumen, la altura, el pico, la relación de aspecto y la información general sobre la forma de cada grano. Superficie 3D total ocupada: 2,525 mm3

CONCLUSIÓN

En esta aplicación, hemos demostrado cómo el perfilómetro 3D sin contacto NANOVEA puede caracterizar con precisión la superficie de la espuma de poliestireno. Se puede obtener información estadística sobre toda la superficie de interés o sobre granos individuales, ya sean picos u hoyos. En este ejemplo se utilizaron todos los granos mayores que un tamaño definido por el usuario para mostrar el área, el perímetro, el diámetro y la altura. Las características que se muestran aquí pueden ser fundamentales para la investigación y el control de calidad de superficies naturales y prefabricadas, desde aplicaciones biomédicas a micromecanizado, entre muchas otras. 

AHORA, HABLEMOS DE SU SOLICITUD

Medición de contornos mediante perfilómetro de NANOVEA

Medición del contorno de la banda de rodadura

Medición del contorno de la banda de rodadura

Más información

 

 

 

 

 

 

 

 

 

 

 

 

 

MEDICIÓN DEL CONTORNO DE LA BANDA DE RODADURA

USO DEL PERFILADOR ÓPTICO 3D

Medición del contorno de la banda de rodadura - NANOVEA Profiler

Preparado por

ANDREA HERRMANN

INTRODUCCIÓN

Como todos los materiales, el coeficiente de fricción del caucho está relacionado con en parte a la rugosidad de su superficie. En las aplicaciones de neumáticos para vehículos, la tracción con la carretera es muy importante. Tanto la rugosidad de la superficie como la banda de rodadura del neumático desempeñan un papel en este sentido. En este estudio se analizan la rugosidad y las dimensiones de la superficie de goma y de la banda de rodadura.

* LA MUESTRA

IMPORTANCIA

DE LA PERFILOMETRÍA 3D SIN CONTACTO

PARA ESTUDIOS SOBRE EL CAUCHO

A diferencia de otras técnicas, como las sondas táctiles o la interferometría, NANOVEA Perfiladores ópticos 3D sin contacto utilizar el cromatismo axial para medir casi cualquier superficie. 

La puesta en escena abierta del sistema Profiler permite una amplia variedad de tamaños de muestra y no requiere preparación alguna. Las características de rango nanométrico a macrométrico pueden detectarse durante una sola exploración sin influencia alguna de la reflectividad o absorción de la muestra. Además, estos perfiladores tienen la capacidad avanzada de medir ángulos de superficie elevados sin necesidad de manipular los resultados mediante software.

Mide fácilmente cualquier material: transparente, opaco, especular, difusivo, pulido, rugoso, etc. La técnica de medición de los perfiladores sin contacto NANOVEA 3D proporciona una capacidad ideal, amplia y fácil de usar para maximizar los estudios de superficie junto con los beneficios de la capacidad combinada 2D & 3D.

OBJETIVO DE MEDICIÓN

En esta aplicación, mostramos la NANOVEA ST400, un perfilador óptico 3D sin contacto que mide la superficie y las bandas de rodadura de un neumático de caucho.

Una superficie de muestra lo suficientemente grande como para representar se seleccionó al azar toda la superficie del neumático para este estudio. 

Para cuantificar las características del caucho, utilizamos el software de análisis NANOVEA Ultra 3D para medir las dimensiones del contorno, la profundidad, rugosidad y área desarrollada de la superficie.

NANOVEA

ST400

ANÁLISIS: BANDA DE RODADURA

La vista en 3D y la vista en falso color de las bandas de rodadura muestran el valor del mapeado de diseños de superficie en 3D. Proporcionan a los usuarios una herramienta sencilla para observar directamente el tamaño y la forma de las bandas de rodadura desde distintos ángulos. El Análisis avanzado de contornos y el Análisis de altura de escalones son herramientas muy potentes para medir con precisión las dimensiones de las formas y el diseño de las muestras.

ANÁLISIS AVANZADO DE CONTORNOS

ANÁLISIS DE LA ALTURA DE LOS ESCALONES

ANÁLISIS: SUPERFICIE DE GOMA

La superficie del caucho puede cuantificarse de numerosas maneras utilizando herramientas de software incorporadas, como se muestra en las siguientes figuras a modo de ejemplo. Puede observarse que la rugosidad de la superficie es de 2,688 μm, y el área desarrollada frente al área proyectada es de 9,410 mm² frente a 8,997 mm². Esta información nos permite examinar la relación entre el acabado superficial y la tracción de diferentes formulaciones de caucho o incluso de caucho con diferentes grados de desgaste superficial.

CONCLUSIÓN

En esta aplicación, hemos demostrado cómo el NANOVEA El perfilador óptico 3D sin contacto puede caracterizar con precisión la rugosidad de la superficie y las dimensiones de la banda de rodadura del caucho.

Los datos muestran una rugosidad superficial de 2,69 µm y un área desarrollada de 9,41 mm² con un área proyectada de 9 mm². Las bandas de rodadura de caucho tenían diferentes dimensiones y radios. medido también.

La información presentada en este estudio puede utilizarse para comparar el rendimiento de neumáticos de caucho con diferentes diseños de banda de rodadura, formulaciones o distintos grados de desgaste. Los datos que se muestran aquí representan sólo una parte de la cálculos disponibles en el software de análisis Ultra 3D.

AHORA, HABLEMOS DE SU SOLICITUD

Control de calidad de piezas mecanizadas

Inspección de piezas mecanizadas

PIEZAS MECANIZADAS

inspección a partir de un modelo CAD mediante perfilometría 3D

Autor:

Doctor Duanjie Li

Revisado por

Jocelyn Esparza

Inspección de piezas mecanizadas con un perfilómetro

INTRODUCCIÓN

La demanda de mecanizado de precisión capaz de crear geometrías complejas ha ido en aumento en todo un espectro de industrias. Desde la industria aeroespacial, médica y automovilística hasta los engranajes tecnológicos, la maquinaria y los instrumentos musicales, la innovación y la evolución continuas llevan las expectativas y los niveles de precisión a nuevas cotas. En consecuencia, asistimos al aumento de la demanda de técnicas e instrumentos de inspección rigurosos para garantizar la máxima calidad de los productos.

Importancia de la perfilometría 3D sin contacto para la inspección de piezas

La comparación de las propiedades de las piezas mecanizadas con sus modelos CAD es esencial para verificar las tolerancias y el cumplimiento de las normas de producción. La inspección durante el tiempo de servicio también es crucial, ya que el desgaste de las piezas puede exigir su sustitución. Identificar a tiempo cualquier desviación de las especificaciones requeridas ayudará a evitar costosas reparaciones, paradas de producción y una reputación empañada.

A diferencia de la técnica de palpación, el NANOVEA Perfiladores ópticos realizan escaneados de superficies 3D con contacto cero, lo que permite realizar mediciones rápidas, precisas y no destructivas de formas complejas con la máxima precisión.

OBJETIVO DE MEDICIÓN

En esta aplicación, mostramos NANOVEA HS2000, un perfilador 3D sin contacto con un sensor de alta velocidad, que realiza una inspección completa de la superficie en cuanto a dimensión, radio y rugosidad. 

Todo en menos de 40 segundos.

NANOVEA

HS2000

MODELO CAD

Una medición precisa de la dimensión y la rugosidad superficial de la pieza mecanizada es fundamental para asegurarse de que cumple las especificaciones, tolerancias y acabados superficiales deseados. A continuación se presentan el modelo 3D y el plano de ingeniería de la pieza que se va a inspeccionar. 

VISTA EN FALSO COLOR

La vista en falso color del modelo CAD y la superficie de la pieza mecanizada escaneada se comparan en la FIGURA 3. La variación de altura en la superficie de la muestra puede observarse por el cambio de color.

Se extraen tres perfiles 2D del escaneado 3D de la superficie, como se indica en la FIGURA 2, para verificar aún más la tolerancia dimensional de la pieza mecanizada.

COMPARACIÓN DE PERFILES Y RESULTADOS

Los perfiles 1 a 3 se muestran en las FIGURAS 3 a 5. La inspección de tolerancia cuantitativa se lleva a cabo comparando el perfil medido con el modelo CAD para mantener unos estándares de fabricación rigurosos. El Perfil 1 y el Perfil 2 miden el radio de diferentes zonas de la pieza mecanizada curva. La variación de altura del Perfil 2 es de 30 µm en una longitud de 156 mm, lo que cumple el requisito de tolerancia deseado de ±125 µm. 

Estableciendo un valor límite de tolerancia, el software de análisis puede determinar automáticamente el aprobado o el suspenso de la pieza mecanizada.

Inspección de piezas de máquinas con un perfilómetro

La rugosidad y la uniformidad de la superficie de la pieza mecanizada desempeñan un papel importante para garantizar su calidad y funcionalidad. La FIGURA 6 es una superficie extraída del escaneado padre de la pieza mecanizada que se utilizó para cuantificar el acabado superficial. La rugosidad superficial media (Sa) se calculó en 2,31 µm.

CONCLUSIÓN

En este estudio, hemos mostrado cómo el perfilador sin contacto NANOVEA HS2000, equipado con un sensor de alta velocidad, realiza una inspección superficial exhaustiva de las dimensiones y la rugosidad. 

Los escaneados de alta resolución permiten a los usuarios medir con detalle la morfología y las características superficiales de las piezas mecanizadas y compararlas cuantitativamente con sus modelos CAD. El instrumento también es capaz de detectar cualquier defecto, incluidos arañazos y grietas. 

El análisis avanzado de contornos sirve como herramienta inigualable no sólo para determinar si las piezas mecanizadas cumplen las especificaciones establecidas, sino también para evaluar los mecanismos de fallo de los componentes desgastados.

Los datos mostrados aquí representan sólo una parte de los cálculos posibles con el software de análisis avanzado que viene equipado con cada Perfilador Óptico NANOVEA.

 

AHORA, HABLEMOS DE SU SOLICITUD

Tornillos dentales-medición-dimensional-mediante-profilómetro-3d

Herramientas dentales: Análisis dimensional y de rugosidad superficial



INTRODUCCIÓN

 

Tener unas dimensiones precisas y una rugosidad superficial óptima es vital para la funcionalidad de los tornillos dentales. Muchas dimensiones de los tornillos dentales requieren una gran precisión, como los radios, los ángulos, las distancias y las alturas de los escalones. Comprender la rugosidad de la superficie local también es muy importante para cualquier herramienta o pieza médica que se inserte en el interior del cuerpo humano para minimizar la fricción por deslizamiento.

 

 

PERFILOMETRÍA SIN CONTACTO PARA ESTUDIO DIMENSIONAL

 

Nanovea Perfiladores 3D sin contacto utilizan una tecnología basada en luz cromática para medir cualquier superficie de material: transparente, opaca, especular, difusiva, pulida o rugosa. A diferencia de la técnica de sonda de contacto, la técnica sin contacto puede medir dentro de zonas estrechas y no añadirá errores intrínsecos debidos a la deformación causada por la presión de la punta sobre un material plástico más blando. La tecnología basada en luz cromática también ofrece precisiones laterales y de altura superiores en comparación con la tecnología de variación de enfoque. Los perfiladores Nanovea pueden escanear grandes superficies directamente sin costura y perfilar la longitud de una pieza en pocos segundos. Gracias a la capacidad del perfilador para medir superficies sin necesidad de complejos algoritmos que manipulen los resultados, es posible medir características superficiales de rango nanométrico a macrométrico y ángulos de superficie elevados.

 

 

OBJETIVO DE MEDICIÓN

 

En esta aplicación, se utilizó el perfilómetro óptico Nanovea ST400 para medir un tornillo dental a lo largo de características planas y roscadas en una sola medición. La rugosidad de la superficie se calculó a partir del área plana, y se determinaron varias dimensiones de las características roscadas.

 

control de calidad de los tornillos dentales

Muestra de tornillo dental analizada por NANOVEA Perfilador óptico.

 

Muestra de tornillo dental analizada.

 

RESULTADOS

 

Superficie 3D

La vista en 3D y la vista en falso color del tornillo dental muestran una zona plana con roscado que comienza a ambos lados. Proporciona a los usuarios una herramienta sencilla para observar directamente la morfología del tornillo desde diferentes ángulos. El área plana se extrajo del escaneado completo para medir su rugosidad superficial.

 

 

Análisis de superficies 2D

También pueden extraerse perfiles lineales de la superficie para mostrar una vista transversal del tornillo. El análisis de contornos y los estudios de altura de escalón se utilizaron para medir dimensiones precisas en un lugar determinado del tornillo.

 

 

CONCLUSIÓN

 

En esta aplicación, hemos mostrado la capacidad del Nanovea 3D Non-Contact Profiler para calcular con precisión la rugosidad local de la superficie y medir características de grandes dimensiones en un solo escaneado.

Los datos muestran una rugosidad superficial local de 0,9637 μm. Se determinó que el radio del tornillo entre roscas era de 1,729 mm, y las roscas tenían una altura media de 0,413 mm. Se determinó que el ángulo medio entre las roscas era de 61,3°.

Los datos mostrados aquí representan sólo una parte de los cálculos disponibles en el software de análisis.

 

Preparado por
Duanjie Li, Doctor, Jonathan Thomas y Pierre Leroux

Evaluación del desgaste y el rayado del alambre de cobre tratado superficialmente

Importancia de la evaluación del desgaste y el rayado del alambre de cobre

El cobre tiene una larga historia de uso en el cableado eléctrico desde la invención del electroimán y el telégrafo. Los hilos de cobre se utilizan en una amplia gama de equipos electrónicos, como paneles, contadores, ordenadores, máquinas comerciales y electrodomésticos, gracias a su resistencia a la corrosión, su soldabilidad y su rendimiento a temperaturas elevadas de hasta 150°C. Aproximadamente la mitad del cobre extraído se destina a la fabricación de alambres y cables eléctricos.

La calidad de la superficie de los alambres de cobre es fundamental para el rendimiento y la vida útil de las aplicaciones. Los microdefectos en los alambres pueden provocar un desgaste excesivo, el inicio y la propagación de grietas, una disminución de la conductividad y una soldabilidad inadecuada. Un tratamiento adecuado de la superficie de los alambres de cobre elimina los defectos superficiales generados durante el trefilado, mejorando la resistencia a la corrosión, los arañazos y el desgaste. Muchas aplicaciones aeroespaciales con alambres de cobre requieren un comportamiento controlado para evitar fallos inesperados del equipo. Se necesitan mediciones cuantificables y fiables para evaluar adecuadamente la resistencia al desgaste y al rayado de la superficie del alambre de cobre.

 
 

 

Objetivo de medición

En esta aplicación simulamos un proceso de desgaste controlado de diferentes tratamientos superficiales de alambre de cobre. Prueba del rasguño mide la carga necesaria para provocar un fallo en la capa superficial tratada. Este estudio muestra la capacidad de Nanovea Tribómetro y Comprobador mecánico como herramientas ideales para la evaluación y el control de calidad de los cables eléctricos.

 

 

Procedimiento de ensayo y procedimientos

El coeficiente de fricción (COF) y la resistencia al desgaste de dos tratamientos superficiales diferentes en alambres de cobre (Alambre A y Alambre B) se evaluaron mediante el tribómetro Nanovea utilizando un módulo de desgaste alternativo lineal. Una bola de Al₂O₃ (6 mm de diámetro) es el contramaterial utilizado en esta aplicación. La pista de desgaste se examinó utilizando el tribómetro de Nanovea Perfilómetro 3D sin contacto. Los parámetros de la prueba se resumen en la Tabla 1.

En este estudio se utilizó como ejemplo una bola lisa de Al₂O₃ como contramaterial. Puede aplicarse cualquier material sólido con diferente forma y acabado superficial utilizando una fijación personalizada para simular la situación de aplicación real.

 

 

El comprobador mecánico de Nanovea equipado con un palpador de diamante Rockwell C (100 μm de radio) realizó ensayos de rayado de carga progresiva en los hilos recubiertos utilizando el modo de micro rayado. Los parámetros del ensayo de rayado y la geometría de la punta se muestran en la Tabla 2.
 

 

 

 

Resultados y debate

Desgaste del hilo de cobre:

La figura 2 muestra la evolución del COF de los hilos de cobre durante las pruebas de desgaste. El alambre A muestra un COF estable de ~0,4 durante toda la prueba de desgaste, mientras que el alambre B exhibe un COF de ~0,35 en las primeras 100 revoluciones y aumenta progresivamente hasta ~0,4.

 

La figura 3 compara las huellas de desgaste de los hilos de cobre tras las pruebas. El perfilómetro 3D sin contacto de Nanovea ofreció un análisis superior de la morfología detallada de las huellas de desgaste. Permite determinar de forma directa y precisa el volumen de la huella de desgaste proporcionando una comprensión fundamental del mecanismo de desgaste. La superficie del alambre B presenta daños significativos en la huella de desgaste tras una prueba de desgaste de 600 revoluciones. La vista en 3D del perfilómetro muestra la capa tratada de la superficie del alambre B completamente eliminada, lo que aceleró sustancialmente el proceso de desgaste. Esto dejó una huella de desgaste aplanada en el alambre B, donde el sustrato de cobre está expuesto. Esto puede acortar considerablemente la vida útil de los equipos eléctricos en los que se utiliza el alambre B. En comparación, el alambre A presenta un desgaste relativamente leve, que se manifiesta por una huella de desgaste poco profunda en la superficie. La capa tratada superficialmente en el alambre A no se eliminó como la capa del alambre B en las mismas condiciones.

Resistencia al rayado de la superficie del hilo de cobre:

La figura 4 muestra las huellas de arañazos en los cables después de la prueba. La capa protectora del cable A muestra una resistencia al rayado muy buena. Se deslamina con una carga de ~12,6 N. En comparación, la capa protectora del alambre B falló con una carga de ~1,0 N. Una diferencia tan significativa en la resistencia al rayado de estos alambres contribuye a su rendimiento frente al desgaste, donde el alambre A posee una resistencia al desgaste sustancialmente mayor. La evolución de la fuerza normal, el COF y la profundidad durante las pruebas de rayado mostradas en la Fig. 5 proporciona más información sobre el fallo del revestimiento durante las pruebas.

Conclusión

En este estudio controlado mostramos el tribómetro de Nanovea, que realiza una evaluación cuantitativa de la resistencia al desgaste de los alambres de cobre tratados superficialmente, y el comprobador mecánico de Nanovea, que proporciona una evaluación fiable de la resistencia al rayado de los alambres de cobre. El tratamiento superficial del alambre desempeña un papel fundamental en las propiedades tribo-mecánicas durante su vida útil. El tratamiento adecuado de la superficie del cable A mejoró significativamente la resistencia al desgaste y a los arañazos, lo que es fundamental para el rendimiento y la vida útil de los cables eléctricos en entornos difíciles.

El tribómetro de Nanovea ofrece pruebas precisas y repetibles de desgaste y fricción mediante modos rotativos y lineales conformes con las normas ISO y ASTM, con módulos opcionales de desgaste a alta temperatura, lubricación y tribo-corrosión disponibles en un sistema preintegrado. La incomparable gama de Nanovea es una solución ideal para determinar toda la gama de propiedades tribológicas de revestimientos, películas y sustratos finos o gruesos, blandos o duros.

AHORA, HABLEMOS DE SU SOLICITUD

Análisis tridimensional de la superficie de una moneda con perfilometría sin contacto

Importancia de la perfilometría sin contacto para monedas

La moneda tiene un gran valor en la sociedad moderna porque se intercambia por bienes y servicios. Las monedas y billetes circulan por las manos de muchas personas. La transferencia constante de moneda física crea deformaciones en la superficie. Nanovea 3D Perfilómetro escanea la topografía de monedas acuñadas en distintos años para investigar las diferencias de superficie.

Las características de las monedas son fácilmente reconocibles para el público en general, ya que son objetos comunes. Una moneda de un céntimo es ideal para presentar la potencia del software de análisis avanzado de superficies de Nanovea: Montañas 3D. Los datos de superficie recogidos con nuestro Perfilómetro 3D permiten realizar análisis de alto nivel en geometría compleja con sustracción de superficies y extracción de contornos 2D. La sustracción de superficies con una máscara, un sello o un molde controlados compara la calidad de los procesos de fabricación, mientras que la extracción de contornos identifica las tolerancias con un análisis dimensional. El perfilómetro 3D de Nanovea y el software Mountains 3D investigan la topografía submicrónica de objetos aparentemente sencillos, como los céntimos.



Objetivo de medición

Se escaneó toda la superficie superior de cinco peniques utilizando el sensor de líneas de alta velocidad de Nanovea. El radio interior y exterior de cada penique se midió con el software de análisis avanzado Mountains. Una extracción de la superficie de cada penique en un área de interés con sustracción directa de la superficie cuantificó la deformación de la superficie.

 



Resultados y debate

Superficie 3D

El perfilómetro Nanovea HS2000 tardó sólo 24 segundos en escanear 4 millones de puntos en un área de 20 mm x 20 mm con un tamaño de paso de 10um x 10um para adquirir la superficie de un céntimo. A continuación se muestra un mapa de alturas y una visualización en 3D del escaneado. La vista en 3D muestra la capacidad del sensor de alta velocidad para captar pequeños detalles imperceptibles a simple vista. En la superficie de la moneda de un céntimo se aprecian muchos pequeños arañazos. Se investigan la textura y la rugosidad de la moneda vistas en la vista 3D.

 










Análisis dimensional

Se extrajeron los contornos del centavo y mediante un análisis dimensional se obtuvieron los diámetros interior y exterior de la característica del borde. La media del radio exterior fue de 9,500 mm ± 0,024, mientras que la media del radio interior fue de 8,960 mm ± 0,032. Otros análisis dimensionales que Mountains 3D puede realizar en fuentes de datos 2D y 3D son la medición de distancias, la altura de los escalones, la planitud y el cálculo de ángulos.







Sustracción de superficies

La figura 5 muestra el área de interés para el análisis de sustracción de superficie. El penique de 2007 se utilizó como superficie de referencia para los cuatro peniques más antiguos. La sustracción de la superficie del penique de 2007 muestra las diferencias entre los peniques con agujeros/picos. La diferencia de volumen total de la superficie se obtiene sumando los volúmenes de los agujeros/picos. El error cuadrático medio indica la concordancia entre las superficies de los céntimos.


 









Conclusión





El escáner de alta velocidad HS2000L de Nanovea escaneó cinco monedas de un penique acuñadas en diferentes años. El software Mountains 3D comparó las superficies de cada moneda mediante extracción de contornos, análisis dimensional y sustracción de superficies. El análisis define claramente los radios interior y exterior entre los peniques, a la vez que compara directamente las diferencias de las características superficiales. Con la capacidad del perfilómetro 3D de Nanovea para medir cualquier superficie con una resolución nanométrica, combinada con las capacidades de análisis de Mountains 3D, las posibles aplicaciones de investigación y control de calidad son infinitas.

 


AHORA, HABLEMOS DE SU SOLICITUD