EEUU/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTÁCTENOS

Categoría: Perfilometría | Aplanación y alabeo

 

Inspección de mapas de rugosidad mediante perfilometría 3D

INSPECCIÓN CARTOGRÁFICA DE LA RUGOSIDAD

UTILIZANDO LA PERFILOMETRÍA 3D

Preparado por

DUANJIE, PhD

INTRODUCCIÓN

La rugosidad y la textura de la superficie son factores críticos que influyen en la calidad final y el rendimiento de un producto. Un conocimiento profundo de la rugosidad, la textura y la consistencia de la superficie es esencial para seleccionar las mejores medidas de procesamiento y control. La inspección en línea rápida, cuantificable y fiable de las superficies de los productos es necesaria para identificar a tiempo los productos defectuosos y optimizar las condiciones de la línea de producción.

IMPORTANCIA DEL PERFILOMETRO 3D SIN CONTACTO PARA LA INSPECCION EN LINEA DE SUPERFICIES

Los defectos superficiales en los productos resultan del procesamiento de materiales y la fabricación del producto. La inspección de calidad de la superficie en línea garantiza el control de calidad más estricto de los productos finales. NANOVEA Perfiladores ópticos 3D sin contacto Utilice la tecnología Chromatic Light con una capacidad única para determinar la rugosidad de una muestra sin contacto. El sensor de línea permite escanear el perfil 3D de una gran superficie a alta velocidad. El umbral de rugosidad, calculado en tiempo real por el software de análisis, sirve como una herramienta de aprobación/rechazo rápida y confiable.

OBJETIVO DE MEDICIÓN

En este estudio, el NANOVEA ST400 equipado con un sensor de alta velocidad se utiliza para inspeccionar la superficie de una muestra de Teflon con defecto para mostrar la capacidad de NANOVEA

Profilómetros sin contacto en proporcionar una inspección de superficies rápida y fiable en una línea de producción.

NANOVEA

ST400

RESULTADOS Y DISCUSIÓN

Análisis tridimensional de la superficie del Rugosidad Muestra estándar

La superficie de un patrón de rugosidad se escaneó utilizando un NANOVEA ST400 equipado con un sensor de alta velocidad que genera una línea brillante de 192 puntos, como se muestra en la FIGURA 1. Estos 192 puntos escanean la superficie de la muestra al mismo tiempo, lo que conlleva un aumento significativo de la velocidad de escaneado.

La FIGURA 2 muestra vistas en falso color del Mapa de Altura de la Superficie y del Mapa de Distribución de la Rugosidad de la Muestra Estándar de Rugosidad. En la FIGURA 2a, el Estándar de Rugosidad exhibe una superficie ligeramente inclinada como se representa por el gradiente de color variado en cada uno de los bloques de rugosidad estándar. En la FIGURA 2b, se muestra una distribución homogénea de la rugosidad en differentes bloques de rugosidad, cuyo color representa la rugosidad en los bloques.

La FIGURA 3 muestra ejemplos de los mapas de aprobado/no aprobado generados por el software de análisis en función de diferentes umbrales de rugosidad. Los bloques de rugosidad se resaltan en rojo cuando su rugosidad superficial está por encima de un determinado valor umbral establecido. Esto proporciona una herramienta para que el usuario establezca un umbral de rugosidad para determinar la calidad del acabado superficial de una muestra.

FIGURA 1: Barrido del sensor óptico de líneas en la muestra del patrón de rugosidad

a. Mapa de altura de la superficie:

b. Mapa de rugosidad:

FIGURA 2: Vistas en falso color del Mapa de Altura de Superficie y del Mapa de Distribución de Rugosidad de la Muestra Estándar de Rugosidad.

FIGURA 3: Mapa Pasa/Falla basado en el Umbral de Rugosidad.

Inspección superficial de una muestra de Teflon con defectos

En la FIGURA 4 se muestran el mapa de altura de la superficie, el mapa de distribución de la rugosidad y el mapa de umbral de rugosidad Pasa/Falla de la superficie de la muestra de Teflon. La muestra de Teflon presenta una cresta en el centro derecho de la muestra, como se muestra en el mapa de altura de la superficie.

a. Mapa de altura de la superficie:

Los differentes colores en la paleta de la FIGURA 4b representan el valor de rugosidad en la superficie local. El mapa de rugosidad muestra una rugosidad homogénea en la zona intacta de la muestra de Teflon. Sin embargo, los defectos, en las formas de un anillo indentado y una cicatriz de desgaste se destacan en color brillante. El usuario puede configurar fácilmente un umbral de rugosidad Pasa/Falla para localizar los defectos superficiales, como se muestra en la FIGURA 4c. Esta herramienta permite a los usuarios controlar in situ la calidad de la superficie del producto en la línea de producción y descubrir a tiempo los productos defectuosos. El valor de rugosidad en tiempo real se calcula y registra a medida que los productos pasan por el sensor óptico en línea, lo que puede servir como una herramienta rápida pero fiable para el control de calidad.

b. Mapa de rugosidad:

c. Mapa de umbrales de rugosidad Pasa/Falla:

FIGURA 4: Mapa de altura de la superficie, mapa de distribución de la rugosidad y Mapa de umbral de rugosidad Pasa/Falla de la superficie de la muestra de Teflon.

CONCLUSIÓN

En esta aplicación, hemos demostrado cómo el perfilador óptico sin contacto 3D NANOVEA ST400 equipado con un sensor óptico de línea funciona como una herramienta de control de calidad fiable de manera eficaz y eficiente.

El sensor óptico de línea genera una línea brillante de 192 puntos que escanean la superficie de la muestra al mismo tiempo, lo que aumenta significativamente la velocidad de escaneado. Puede instalarse en la línea de producción para controlar in situ la rugosidad de la superficie de los productos. El umbral de rugosidad funciona como un criterio fiable para determinar la calidad de la superficie de los productos, lo que permite a los usuarios detectar a tiempo los productos defectuosos.

Los datos mostrados aquí representan sólo una parte de los cálculos disponibles en el software de análisis. Los perfilómetros NANOVEA miden prácticamente cualquier superficie en campos como los semiconductores, la microelectrónica, la energía solar, la fibra óptica, la automoción, la industria aeroespacial, la metalurgia, el mecanizado, los revestimientos, la industria farmacéutica, la biomedicina, el medio ambiente y muchos otros.

AHORA, HABLEMOS DE SU SOLICITUD

Inspección de la superficie de la soldadura con un perfilómetro 3D portátil

Inspección de superficie WELd

utilizando un perfilómetro 3d portátil

Preparado por

CRAIG LEISING

INTRODUCCIÓN

Puede llegar a ser crítico que una soldadura en particular, que normalmente se realiza mediante inspección visual, se investigue con un nivel de precisión extremo. Las áreas específicas de interés para un análisis preciso incluyen las grietas superficiales, la porosidad y los cráteres sin rellenar, independientemente de los procedimientos de inspección posteriores. Las características de la soldadura, como la dimensión/forma, el volumen, la rugosidad, el tamaño, etc., pueden medirse para una evaluación crítica.

IMPORTANCIA DEL PERFILÓMETRO 3D SIN CONTACTO PARA LA INSPECCIÓN DE LA SUPERFICIE DE LA SOLDADURA

A diferencia de otras técnicas como las sondas táctiles o la interferometría, la NANOVEA Perfilómetro 3D sin contacto, utilizando cromatismo axial, puede medir casi cualquier superficie, los tamaños de las muestras pueden variar ampliamente debido a la estadificación abierta y no es necesaria ninguna preparación de la muestra. El rango nano a macro se obtiene durante la medición del perfil de la superficie sin influencia de la reflectividad o absorción de la muestra, tiene una capacidad avanzada para medir ángulos de superficie altos y no hay manipulación de los resultados por software. Mida fácilmente cualquier material: transparente, opaco, especular, difuso, pulido, rugoso, etc. Las capacidades 2D y 2D de los perfilómetros portátiles NANOVEA los convierten en instrumentos ideales para una inspección completa de la superficie de soldadura tanto en el laboratorio como en el campo.

OBJETIVO DE MEDICIÓN

En esta aplicación, el perfilador portátil NANOVEA JR25 se utiliza para medir la rugosidad de la superficie, la forma y el volumen de una soldadura, así como el área circundante. Esta información puede proporcionar información crítica para investigar adecuadamente la calidad de la soldadura y el proceso de soldadura.

NANOVEA

JR25

RESULTADOS DE LAS PRUEBAS

La imagen siguiente muestra la vista completa en 3D de la soldadura y la zona circundante junto con los parámetros de la superficie de la soldadura únicamente. A continuación se muestra el perfil de la sección transversal en 2D.

la muestra

Con el perfil de la sección transversal 2D anterior eliminado del 3D, la información dimensional de la soldadura se calcula a continuación. Superficie y volumen de material calculado para la soldadura sólo a continuación.

 AGUJEROPEAK
SUPERFICIE1,01 mm214,0 mm2
VOLUMEN8,799e-5 mm323,27 mm3
PROFUNDIDAD/ALTURA MÁXIMA0,0276 mm0,6195 mm
PROFUNDIDAD/ALTURA MEDIA 0,004024 mm 0,2298 mm

CONCLUSIÓN

En esta aplicación, hemos mostrado cómo el perfilador sin contacto NANOVEA 3D puede caracterizar con precisión las características críticas de una soldadura y la superficie circundante. A partir de la rugosidad, las dimensiones y el volumen, se puede determinar un método cuantitativo para la calidad y la repetibilidad y o investigar más a fondo. Las soldaduras de muestra, como el ejemplo de esta nota de aplicación, pueden analizarse fácilmente, con un NANOVEA Profiler estándar de sobremesa o portátil para pruebas internas o de campo

AHORA, HABLEMOS DE SU SOLICITUD

Topografía de la superficie de la fibra de vidrio mediante perfilometría 3D

TOPOGRAFÍA DE LA SUPERFICIE DE LA FIBRA DE VIDRIO

UTILIZANDO LA PERFILOMETRÍA 3D

Preparado por

CRAIG LEISING

INTRODUCCIÓN

La fibra de vidrio es un material fabricado con fibras de vidrio extremadamente finas. Se utiliza como agente de refuerzo para muchos productos poliméricos; el material compuesto resultante, conocido propiamente como polímero reforzado con fibra (FRP) o plástico reforzado con vidrio (GRP), se denomina "fibra de vidrio" en el uso popular.

IMPORTANCIA DE LA INSPECCIÓN METROLÓGICA DE SUPERFICIES PARA EL CONTROL DE CALIDAD

Aunque hay muchos usos para el refuerzo de fibra de vidrio, en la mayoría de las aplicaciones es crucial que sean lo más fuertes posible. Los compuestos de fibra de vidrio tienen una de las relaciones más altas entre resistencia y peso disponibles y, en algunos casos, libra por libra es más fuerte que el acero. Aparte de la alta resistencia, también es importante tener la menor superficie expuesta posible. Las grandes superficies de fibra de vidrio pueden hacer que la estructura sea más vulnerable a los ataques químicos y posiblemente a la expansión del material. Por lo tanto, la inspección de la superficie es fundamental para controlar la calidad de la producción.

OBJETIVO DE MEDICIÓN

En esta aplicación, el NANOVEA ST400 se utiliza para medir la superficie de un compuesto de fibra de vidrio en cuanto a rugosidad y planitud. Al cuantificar estas características de la superficie es posible crear u optimizar un material compuesto de fibra de vidrio más fuerte y duradero.

NANOVEA

ST400

PARÁMETROS DE MEDICIÓN

SONDA 1 mm
TASA DE ADQUISICIÓN300 Hz
PROMEDIO1
SUPERFICIE MEDIDA5 mm x 2 mm
TAMAÑO DEL PASO5 µm x 5 µm
MODO DE ESCANEOVelocidad constante

ESPECIFICACIONES DE LA SONDA

MEDICIÓN GAMA1 mm
Z RESOLUCIÓN 25 nm
Z PRECISIÓN200 nm
RESOLUCIÓN LATERAL 2 μm

RESULTADOS

VISTA DE COLOR FALSO

Planicidad de la superficie 3D

Rugosidad superficial 3D

Sa15,716 μmAltura media aritmética
Sq19,905 μmAltura media cuadrática
Sp116,74 μmAltura máxima del pico
Sv136,09 μmAltura máxima del foso
Sz252,83 μmAltura máxima
Ssk0.556Skewness
Ssu3.654Kurtosis

CONCLUSIÓN

Como se muestra en los resultados, el NANOVEA ST400 Optical perfilador pudo medir con precisión la rugosidad y planitud de la superficie compuesta de fibra de vidrio. Los datos se pueden medir en múltiples lotes de compuestos de fibra o en un período de tiempo determinado para proporcionar información crucial sobre los diferentes procesos de fabricación de fibra de vidrio y cómo reaccionan con el tiempo. Por tanto, el ST400 es una opción viable para fortalecer el proceso de control de calidad de los materiales compuestos de fibra de vidrio.

AHORA, HABLEMOS DE SU SOLICITUD

Acabado de la superficie de cuero procesado mediante perfilometría 3D

CUERO PROCESADO

ACABADO SUPERFICIAL MEDIANTE PERFILOMETRÍA 3D

Preparado por

CRAIG LEISING

INTRODUCCIÓN

Una vez completado el proceso de curtido de la piel, la superficie del cuero puede someterse a varios procesos de acabado para conseguir una gran variedad de aspectos y tacto. Estos procesos mecánicos pueden incluir el estiramiento, el pulido, el lijado, el repujado, el recubrimiento, etc. Dependiendo del uso final de la piel, algunos pueden requerir un proceso más preciso, controlado y repetible.

IMPORTANCIA DE LA INSPECCIÓN POR PERFILOMETRÍA PARA EL I+D Y EL CONTROL DE CALIDAD

Debido a la gran variación y poca fiabilidad de los métodos de inspección visual, las herramientas capaces de cuantificar con precisión las características de micro y nanoescala pueden mejorar los procesos de acabado del cuero. Comprender el acabado de la superficie del cuero en un sentido cuantificable puede conducir a una mejor selección del procesamiento de la superficie basada en datos para lograr resultados óptimos de acabado. NANOVEA 3D sin contacto Perfilómetros utilizan tecnología confocal cromática para medir superficies de cuero acabadas y ofrecen la mayor repetibilidad y precisión del mercado. Donde otras técnicas no consiguen proporcionar datos fiables, debido al contacto de la sonda, la variación de la superficie, el ángulo, la absorción o la reflectividad, los perfilómetros NANOVEA lo consiguen.

OBJETIVO DE MEDICIÓN

En esta aplicación, el NANOVEA ST400 se utiliza para medir y comparar el acabado de la superficie de dos muestras de cuero diferentes pero estrechamente procesadas. Varios parámetros de la superficie se calculan automáticamente a partir del perfil de la superficie.

Aquí nos centraremos en la rugosidad de la superficie, la profundidad del hoyuelo, el paso del hoyuelo y el diámetro del hoyuelo para la evaluación comparativa.

NANOVEA

ST400

RESULTADOS: MUESTRA 1

ISO 25178

PARÁMETROS DE ALTURA

OTROS PARÁMETROS 3D

RESULTADOS: MUESTRA 2

ISO 25178

PARÁMETROS DE ALTURA

OTROS PARÁMETROS 3D

COMPARATIVA DE PROFUNDIDAD

Distribución de la profundidad de cada muestra.
Se observó un gran número de hoyuelos profundos en
MUESTRA 1.

COMPARATIVO DE TONOS

Paso entre hoyos en MUESTRA 1 es ligeramente menor
que
MUESTRA 2pero ambos tienen una distribución similar

 DIÁMETRO MEDIO COMPARATIVO

Distribuciones similares del diámetro medio de los hoyuelos,
con
MUESTRA 1 mostrando diámetros medios ligeramente menores en promedio.

CONCLUSIÓN

En esta aplicación, hemos demostrado cómo el perfilómetro 3D NANOVEA ST400 puede caracterizar con precisión el acabado de la superficie del cuero procesado. En este estudio, tener la capacidad de medir la rugosidad de la superficie, la profundidad de los hoyuelos, el paso de los hoyuelos y el diámetro de los hoyuelos nos permitió cuantificar las diferencias entre el acabado y la calidad de las dos muestras que pueden no ser evidentes mediante una inspección visual.

En general, no hay diferencias visibles en el aspecto de los escaneos 3D entre la MUESTRA 1 y la MUESTRA 2. Sin embargo, en el análisis estadístico hay una clara distinción entre las dos muestras. La MUESTRA 1 contiene una mayor cantidad de hoyuelos con diámetros más pequeños, mayores profundidades y menor paso entre hoyuelos en comparación con la MUESTRA 2.

Tenga en cuenta que hay estudios adicionales disponibles. Las áreas especiales de interés podrían haber sido analizadas más a fondo con un módulo integrado de AFM o Microscopio. Las velocidades del perfilómetro 3D NANOVEA van desde 20 mm/s hasta 1 m/s para que el laboratorio o la investigación satisfagan las necesidades de inspección de alta velocidad; puede construirse con tamaños, velocidades, capacidades de escaneo personalizados, cumplimiento de la clase 1 de sala limpia, transportador de indexación o para la integración en línea o en línea.

AHORA, HABLEMOS DE SU SOLICITUD

Topografía de superficies orgánicas mediante un perfilómetro 3D portátil

TOPOGRAFÍA DE LA SUPERFICIE ORGÁNICA

USO DEL PERFILÓMETRO 3D PORTÁTIL

Preparado por

CRAIG LEISING

INTRODUCCIÓN

La naturaleza se ha convertido en una fuente de inspiración fundamental para el desarrollo de estructuras superficiales mejoradas. La comprensión de las estructuras superficiales que se encuentran en la naturaleza ha dado lugar a estudios de adhesión basados en las patas de los gecos, estudios de resistencia basados en el cambio de textura de los pepinos de mar y estudios de repelencia basados en las hojas, entre otros muchos. Estas superficies tienen un gran número de aplicaciones potenciales, desde la biomedicina hasta la ropa y la automoción. Para que cualquiera de estos avances en materia de superficies tenga éxito, hay que desarrollar técnicas de fabricación que permitan imitar y reproducir las características de la superficie. Es este proceso el que requerirá la identificación y el control.

IMPORTANCIA DEL PERFILADOR ÓPTICO 3D PORTÁTIL SIN CONTACTO PARA SUPERFICIES ORGÁNICAS

Utilizando la tecnología de luz cromática, el NANOVEA Jr25 Portable Perfilador óptico tiene una capacidad superior para medir casi cualquier material. Eso incluye los ángulos únicos y pronunciados, las superficies reflectantes y absorbentes que se encuentran dentro de la amplia gama de características de superficie de la naturaleza. Las mediciones 3D sin contacto proporcionan una imagen 3D completa para brindar una comprensión más completa de las características de la superficie. Sin capacidades 3D, la identificación de las superficies de la naturaleza dependería únicamente de información 2D o imágenes microscópicas, que no proporcionan información suficiente para imitar adecuadamente la superficie estudiada. Comprender toda la gama de características de la superficie, incluidas la textura, la forma y las dimensiones, entre muchas otras, será fundamental para una fabricación exitosa.

La posibilidad de obtener fácilmente resultados de calidad de laboratorio sobre el terreno abre la puerta a nuevas oportunidades de investigación.

OBJETIVO DE MEDICIÓN

En esta aplicación, el NANOVEA Jr25 se utiliza para medir la superficie de una hoja. Existe una lista interminable de parámetros de superficie que pueden calcularse automáticamente tras el escaneo de la superficie en 3D.

Aquí revisaremos la superficie 3D y seleccionaremos
áreas de interés para analizar más a fondo, incluyendo
cuantificar e investigar la rugosidad de la superficie, los canales y la topografía

NANOVEA

JR25

CONDICIONES DE PRUEBA

PROFUNDIDAD DE LA FLECHA

Densidad media de los surcos: 16,471 cm/cm2
Profundidad media de los surcos: 97,428 μm
Profundidad máxima: 359,769 μm

CONCLUSIÓN

En esta aplicación, hemos mostrado cómo el NANOVEA El perfilador óptico sin contacto 3D portátil Jr25 puede caracterizar con precisión tanto la topografía como los detalles a escala nanométrica de la superficie de una hoja en el campo. A partir de estas mediciones de la superficie en 3D, se pueden identificar rápidamente las áreas de interés y luego analizarlas con una lista de estudios interminables (Dimensión, Rugosidad Textura de Acabado, Forma Topografía, Planitud Alabeo Planaridad, Volumen Área, Paso-Altura y otros). Se puede elegir fácilmente una sección transversal 2D para analizar más detalles. Con esta información se pueden investigar ampliamente las superficies orgánicas con un conjunto completo de recursos de medición de superficies. Las áreas especiales de interés podrían analizarse más a fondo con el módulo AFM integrado en los modelos de mesa.

NANOVEA también ofrece perfilómetros portátiles de alta velocidad para la investigación de campo y una amplia gama de sistemas de laboratorio, además de proporcionar servicios de laboratorio.

AHORA, HABLEMOS DE SU SOLICITUD

Topografía de la lente de Fresnel

Lente de Fresnel

DIMENSIONES MEDIANTE PERFILOMETRÍA 3D

Preparado por

Duanjie Li y Benjamin Mell

INTRODUCCIÓN

Una lente es un dispositivo óptico de simetría axial que transmite y refracta la luz. Una lente simple consta de un único componente óptico para converger o divergir la luz. Aunque las superficies esféricas no son la forma ideal para fabricar una lente, a menudo se utilizan como la forma más sencilla a la que se puede rectificar y pulir el vidrio.

Una lente de Fresnel consiste en una serie de anillos concéntricos, que son partes delgadas de una lente simple con una anchura tan pequeña como unas milésimas de pulgada. Las lentes de Fresnel tienen una gran apertura y una corta distancia focal, con un diseño compacto que reduce el peso y el volumen de material necesario, en comparación con las lentes convencionales con las mismas propiedades ópticas. Una cantidad muy pequeña de luz se pierde por absorción debido a la fina geometría de la lente de Fresnel.

IMPORTANCIA DE LA PERFILOMETRÍA 3D SIN CONTACTO PARA LA INSPECCIÓN DE LENTES FRESNEL

Las lentes de Fresnel se utilizan ampliamente en la industria automotriz, faros, energía solar y sistemas ópticos de aterrizaje para portaaviones. Moldear o estampar las lentes a partir de plásticos transparentes puede hacer que su producción sea rentable. La calidad de servicio de las lentes Fresnel depende principalmente de la precisión y la calidad de la superficie de su anillo concéntrico. A diferencia de la técnica de sonda táctil, NANOVEA Perfiladores ópticos Realice mediciones de superficies en 3D sin tocar la superficie, evitando el riesgo de realizar nuevos rayones. La técnica de luz cromática es ideal para escanear con precisión formas complejas, como lentes de diferentes geometrías.

ESQUEMA DE LA LENTE FRESNEL

Las lentes de Fresnel de plástico transparente pueden fabricarse por moldeo o estampación. Un control de calidad preciso y eficaz es fundamental para revelar los moldes o estampados de producción defectuosos. Mediante la medición de la altura y el paso de los anillos concéntricos, se pueden detectar variaciones de producción comparando los valores medidos con los valores de especificación dados por el fabricante de la lente.

La medición precisa del perfil de la lente garantiza que los moldes o sellos estén bien mecanizados para ajustarse a las especificaciones del fabricante. Además, el sello podría desgastarse progresivamente con el tiempo, haciendo que pierda su forma inicial. Una desviación constante de las especificaciones del fabricante de lentes es un indicio positivo de que el molde debe ser sustituido.

OBJETIVO DE MEDICIÓN

En esta aplicación, mostramos el NANOVEA ST400, un perfilador 3D sin contacto con un sensor de alta velocidad, que proporciona un análisis completo del perfil 3D de un componente óptico de forma compleja.Para demostrar las notables capacidades de nuestra tecnología de luz cromática, el análisis del contorno se realiza en una lente Fresnel.

NANOVEA

ST400

La lente acrílica de Fresnel de 2,3" x 2,3" utilizada para este estudio consta de 

una serie de anillos concéntricos y un complejo perfil de sección transversal dentada. 

Tiene una distancia focal de 1,5" y un diámetro de tamaño efectivo de 2,0", 

125 ranuras por pulgada, y un índice de refracción de 1,49.

El escaneo NANOVEA ST400 de la lente Fresnel muestra un notable aumento de la altura de los anillos concéntricos, moviéndose hacia fuera desde el centro.

2D FALSE COLOR

Representación de la altura

VISTA 3D

PERFIL EXTRAÍDO

PEAK & VALLEY

Análisis dimensional del perfil

CONCLUSIÓN

En esta aplicación, hemos demostrado que el perfilador óptico sin contacto NANOVEA ST400 mide con precisión la topografía de la superficie de las lentes Fresnel. 

La dimensión de la altura y el paso pueden determinarse con precisión a partir del complejo perfil dentado utilizando el software de análisis NANOVEA. Los usuarios pueden inspeccionar eficazmente la calidad de los moldes o sellos de producción comparando las dimensiones de altura y paso del anillo de las lentes fabricadas con la especificación del anillo ideal.

Los datos mostrados aquí representan sólo una parte de los cálculos disponibles en el software de análisis. 

Los perfiladores ópticos NANOVEA miden prácticamente cualquier superficie en campos como los semiconductores, la microelectrónica, la energía solar, la fibra óptica, la automoción, la industria aeroespacial, la metalurgia, el mecanizado, los revestimientos, la industria farmacéutica, la biomedicina, el medio ambiente y muchos otros.

 

AHORA, HABLEMOS DE SU SOLICITUD

Control de calidad de piezas mecanizadas

Inspección de piezas mecanizadas

PIEZAS MECANIZADAS

inspección a partir del modelo CAD mediante perfilometría 3D

El autor:

Duanjie Li, Doctor en Filosofía

Revisado por

Jocelyn Esparza

Inspección de piezas mecanizadas con un perfilómetro

INTRODUCCIÓN

La demanda de mecanizado de precisión capaz de crear geometrías complejas ha ido en aumento en todo un espectro de industrias. Desde el sector aeroespacial, el médico y el automovilístico, hasta los engranajes tecnológicos, la maquinaria y los instrumentos musicales, la innovación y la evolución continuas elevan las expectativas y los niveles de precisión a nuevas cotas. En consecuencia, asistimos al aumento de la demanda de técnicas e instrumentos de inspección rigurosos para garantizar la máxima calidad de los productos.

Importancia de la perfilometría 3D sin contacto para la inspección de piezas

La comparación de las propiedades de las piezas mecanizadas con sus modelos CAD es esencial para verificar las tolerancias y el cumplimiento de las normas de producción. La inspección durante el tiempo de servicio también es crucial, ya que el desgaste de las piezas puede exigir su sustitución. La identificación de cualquier desviación de las especificaciones requeridas a tiempo ayudará a evitar costosas reparaciones, paradas de producción y una reputación deteriorada.

A diferencia de una técnica de sonda táctil, NANOVEA Perfiladores ópticos realice escaneos de superficies 3D sin contacto, lo que permite mediciones rápidas, precisas y no destructivas de formas complejas con la mayor precisión.

OBJETIVO DE MEDICIÓN

En esta aplicación, mostramos el NANOVEA HS2000, un perfilador 3D sin contacto con un sensor de alta velocidad, que realiza una inspección superficial completa de la dimensión, el radio y la rugosidad. 

Todo en menos de 40 segundos.

NANOVEA

HS2000

MODELO CAD

Una medición precisa de la dimensión y la rugosidad de la superficie de la pieza mecanizada es fundamental para asegurarse de que cumple las especificaciones, tolerancias y acabados superficiales deseados. A continuación se presentan el modelo 3D y el dibujo de ingeniería de la pieza que se va a inspeccionar. 

VISTA DE COLOR FALSO

La vista en falso color del modelo CAD y la superficie de la pieza mecanizada escaneada se comparan en la FIGURA 3. La variación de altura en la superficie de la muestra puede observarse por el cambio de color.

Se extraen tres perfiles 2D del escaneo de la superficie 3D, como se indica en la FIGURA 2, para verificar aún más la tolerancia dimensional de la pieza mecanizada.

COMPARACIÓN DE PERFILES Y RESULTADOS

Los perfiles 1 a 3 se muestran en las FIGURAS 3 a 5. La inspección cuantitativa de la tolerancia se lleva a cabo comparando el perfil medido con el modelo CAD para mantener los rigurosos estándares de fabricación. El Perfil 1 y el Perfil 2 miden el radio de diferentes zonas de la pieza curvada mecanizada. La variación de altura del Perfil 2 es de 30 µm en una longitud de 156 mm, lo que cumple el requisito de tolerancia deseado de ±125 µm. 

Al establecer un valor límite de tolerancia, el software de análisis puede determinar automáticamente el aprobado o el suspenso de la pieza mecanizada.

Inspección de piezas de máquinas con un perfilómetro

La rugosidad y la uniformidad de la superficie de la pieza mecanizada desempeñan un papel importante para garantizar su calidad y funcionalidad. La FIGURA 6 es una superficie extraída del escaneo de la pieza mecanizada que se utilizó para cuantificar el acabado de la superficie. La rugosidad superficial media (Sa) se calculó en 2,31 µm.

CONCLUSIÓN

En este estudio, hemos mostrado cómo el perfilador sin contacto NANOVEA HS2000, equipado con un sensor de alta velocidad, realiza una inspección superficial completa de las dimensiones y la rugosidad. 

Los escaneos de alta resolución permiten a los usuarios medir la morfología detallada y las características de la superficie de las piezas mecanizadas y compararlas cuantitativamente con sus modelos CAD. El instrumento también es capaz de detectar cualquier defecto, incluidos arañazos y grietas. 

El análisis avanzado de contornos sirve como una herramienta inigualable no sólo para determinar si las piezas mecanizadas satisfacen las especificaciones establecidas, sino también para evaluar los mecanismos de fallo de los componentes desgastados.

Los datos mostrados aquí representan sólo una parte de los cálculos posibles con el software de análisis avanzado que viene equipado con cada NANOVEA Optical Profiler.

 

AHORA, HABLEMOS DE SU SOLICITUD

Inspección de rugosidad en línea

Detección instantánea de errores con los perfiladores en línea

Más información

IMPORTANCIA DEL PERFILADOR SIN CONTACTO PARA LA INSPECCIÓN DE LA RUGOSIDAD EN LÍNEA

Los defectos superficiales se derivan del procesamiento de materiales y la fabricación de productos. La inspección de calidad de la superficie en línea garantiza el control de calidad más estricto de los productos finales. La Nanovea Perfilómetros 3D sin contacto Utilice tecnología confocal cromática con una capacidad única para determinar la rugosidad de una muestra sin contacto. Se pueden instalar múltiples sensores perfiladores para monitorear la rugosidad y textura de diferentes áreas del producto al mismo tiempo. El umbral de rugosidad calculado en tiempo real por el software de análisis sirve como una herramienta de aprobación/falla rápida y confiable.

OBJETIVO DE MEDICIÓN

En este estudio, el sistema de inspección de rugosidad en línea Nanovea, equipado con un sensor puntual, se utiliza para inspeccionar la rugosidad de la superficie de las muestras de acrílico y papel de lija. Mostramos la capacidad del perfilómetro sin contacto Nanovea para proporcionar una inspección de rugosidad en línea rápida y fiable en una línea de producción en tiempo real.

RESULTADOS Y DISCUSIÓN

El sistema de perfilómetro de cinta puede funcionar en dos modos, a saber, el modo de disparo y el modo continuo. Como se ilustra en la figura 2, la rugosidad de la superficie de las muestras se mide cuando pasan por debajo de los cabezales del perfilómetro óptico en el modo de disparo. En comparación, el Modo Continuo proporciona una medición ininterrumpida de la rugosidad de la superficie en la muestra continua, como la chapa metálica y el tejido. Pueden instalarse varios sensores del perfilador óptico para supervisar y registrar la rugosidad de diferentes áreas de la muestra.

 

Durante la medición de la inspección de la rugosidad en tiempo real, se muestran las alertas de aprobado y suspenso en las ventanas del software, como se muestra en la Figura 4 y la Figura 5. Cuando el valor de la rugosidad está dentro de los umbrales establecidos, la rugosidad medida se resalta en color verde. Sin embargo, el resaltado se vuelve rojo cuando la rugosidad de la superficie medida está fuera del rango de los valores de umbral establecidos. Esto proporciona una herramienta para que el usuario determine la calidad del acabado superficial de un producto.

En las siguientes secciones, se utilizan dos tipos de muestras, por ejemplo, acrílico y papel de lija, para demostrar los modos de disparo y continuo del sistema de inspección.

Modo de disparo: Inspección de la superficie de la muestra acrílica

Una serie de muestras de acrílico se alinean en la cinta transportadora y se mueven bajo el cabezal del perfilador óptico, como se muestra en la figura 1. La vista en falso color de la Figura 6 muestra el cambio de la altura de la superficie. Algunas de las muestras de acrílico con acabado de espejo se han lijado para crear una textura superficial áspera, como se muestra en la Figura 6b.

A medida que las muestras de acrílico se mueven a una velocidad constante bajo el cabezal del perfilador óptico, se mide el perfil de la superficie, como se muestra en la Figura 7 y la Figura 8. El valor de la rugosidad del perfil medido se calcula al mismo tiempo y se compara con los valores del umbral. La alerta roja de fallo se lanza cuando el valor de rugosidad supera el umbral establecido, lo que permite a los usuarios detectar y localizar inmediatamente el producto defectuoso en la línea de producción.

Modo continuo: Inspección de la superficie de la muestra de papel de lija

Mapa de altura de la superficie, mapa de distribución de la rugosidad y mapa de umbral de rugosidad de aprobado/no aprobado de la superficie de la muestra de papel de lija, como se muestra en la figura 9. La muestra de papel de lija tiene un par de picos más altos en la parte utilizada como se muestra en el mapa de altura de la superficie. Los diferentes colores en la paleta de la Figura 9C representan el valor de rugosidad de la superficie local. El mapa de rugosidad muestra una rugosidad homogénea en la zona intacta de la muestra de papel de lija, mientras que la zona usada está resaltada en color azul oscuro, indicando el valor de rugosidad reducido en esta región. Se puede establecer un umbral de rugosidad Pasa/Falla para localizar dichas regiones, como se muestra en la Figura 9D.

A medida que el papel de lija pasa continuamente por debajo del sensor del perfilador en línea, se calcula y registra el valor de rugosidad local en tiempo real, como se muestra en la figura 10. Las alertas de aprobado/desaprobado se muestran en la pantalla del software en función de los valores de umbral de rugosidad establecidos, lo que constituye una herramienta rápida y fiable para el control de calidad. La calidad de la superficie del producto en la línea de producción se inspecciona in situ para descubrir a tiempo las zonas defectuosas.

CONCLUSIÓN

En esta aplicación, hemos demostrado que el perfilómetro transportador Nanovea, equipado con un sensor óptico de perfil sin contacto, funciona como una herramienta fiable de control de calidad en línea de forma eficaz y eficiente.

El sistema de inspección puede instalarse en la línea de producción para controlar la calidad superficial de los productos in situ. El umbral de rugosidad funciona como un criterio fiable para determinar la calidad de la superficie de los productos, lo que permite a los usuarios detectar los productos defectuosos a tiempo. Se ofrecen dos modos de inspección, a saber, el modo de disparo y el modo continuo, para satisfacer los requisitos de inspección de diferentes tipos de productos.

Los datos mostrados aquí representan sólo una parte de los cálculos disponibles en el software de análisis. Los perfilómetros Nanovea miden prácticamente cualquier superficie en campos como el de los semiconductores, la microelectrónica, la energía solar, la fibra, la óptica, la automoción, la industria aeroespacial, la metalurgia, el mecanizado, los revestimientos, la industria farmacéutica, la biomedicina, el medio ambiente y muchos otros.

AHORA, HABLEMOS DE SU SOLICITUD

Análisis de la superficie en 3D de un centavo con perfilometría sin contacto

Importancia de la perfilometría sin contacto para las monedas

La moneda es muy valorada en la sociedad moderna porque se intercambia por bienes y servicios. Las monedas y los billetes circulan por las manos de muchas personas. La transferencia constante de moneda física crea deformaciones en la superficie. El 3D de Nanovea Perfilómetro escanea la topografía de monedas acuñadas en diferentes años para investigar las diferencias superficiales.

Las características de las monedas son fácilmente reconocibles para el público en general ya que son objetos comunes. Un centavo es ideal para presentar la fortaleza del software avanzado de análisis de superficies de Nanovea: Mountains 3D. Los datos de superficie recopilados con nuestro perfilómetro 3D permiten análisis de alto nivel en geometría compleja con resta de superficie y extracción de contornos 2D. La sustracción de superficies con una máscara, sello o molde controlado compara la calidad de los procesos de fabricación, mientras que la extracción de contornos identifica tolerancias con análisis dimensional. El software 3D Profilometer y Mountains 3D de Nanovea investiga la topografía submicrónica de objetos aparentemente simples, como monedas de un centavo.



Objetivo de medición

Se escaneó toda la superficie superior de cinco céntimos utilizando el sensor de líneas de alta velocidad de Nanovea. El radio interior y exterior de cada penique se midió con el software de análisis avanzado de Mountains. Una extracción de la superficie de cada penique en un área de interés con sustracción directa de la superficie cuantificó la deformación de la superficie.

 



Resultados y discusión

Superficie 3D

El perfilómetro Nanovea HS2000 tardó sólo 24 segundos en escanear 4 millones de puntos en un área de 20 mm x 20 mm con un tamaño de paso de 10um x 10um para adquirir la superficie de un centavo. A continuación se muestra un mapa de alturas y una visualización en 3D del escaneado. La vista en 3D muestra la capacidad del sensor de alta velocidad para captar pequeños detalles imperceptibles para el ojo. En la superficie de la moneda de un céntimo se aprecian muchos pequeños arañazos. En la vista 3D se investigan la textura y la rugosidad de la moneda.

 










Análisis dimensional

Se extrajeron los contornos del centavo y mediante un análisis dimensional se obtuvieron los diámetros interior y exterior de la característica del borde. El radio exterior tenía una media de 9,500 mm ± 0,024, mientras que el radio interior tenía una media de 8,960 mm ± 0,032. Otros análisis dimensionales que Mountains 3D puede realizar en fuentes de datos 2D y 3D son las mediciones de distancia, la altura de los escalones, la planaridad y los cálculos de ángulos.







Sustracción de Superficies

La figura 5 muestra la zona de interés para el análisis de sustracción de superficies. El centavo de 2007 se utilizó como superficie de referencia para los cuatro centavos más antiguos. La sustracción de la superficie del centavo de 2007 muestra las diferencias entre los centavos con agujeros/picos. La diferencia de volumen total de la superficie se obtiene sumando los volúmenes de los agujeros/picos. El error RMS se refiere a la concordancia entre las superficies de los peniques.


 









Conclusión:





El High-Speed HS2000L de Nanovea escaneó cinco monedas de un centavo acuñadas en diferentes años. El software Mountains 3D comparó las superficies de cada moneda mediante la extracción de contornos, el análisis dimensional y la sustracción de superficies. El análisis define claramente el radio interior y exterior entre los peniques, a la vez que compara directamente las diferencias de las características de la superficie. Con la capacidad del perfilómetro 3D de Nanovea para medir cualquier superficie con una resolución a nivel nanométrico, combinada con las capacidades de análisis de Mountains 3D, las posibles aplicaciones de investigación y control de calidad son infinitas.

 


AHORA, HABLEMOS DE SU SOLICITUD

Acabado de la superficie del panel de nido de abeja con perfilometría 3D

INTRODUCCIÓN


La rugosidad, la porosidad y la textura de la superficie del panel alveolar son fundamentales para cuantificar el diseño final del panel. Estas cualidades de la superficie pueden estar directamente relacionadas con la estética y las características funcionales de la superficie del panel. Una mejor comprensión de la textura y la porosidad de la superficie puede ayudar a optimizar el procesamiento y la fabricación de la superficie del panel. Se necesita una medición cuantitativa, precisa y fiable de la superficie del panel alveolar para controlar los parámetros de la superficie para los requisitos de aplicación y pintura. Los sensores sin contacto Nanovea 3D utilizan una tecnología confocal cromática única capaz de medir con precisión las superficies de estos paneles.



OBJETIVO DE MEDICIÓN


En este estudio, se utilizó la plataforma Nanovea HS2000 equipada con un sensor de línea de alta velocidad para medir y comparar dos paneles alveolares con diferentes acabados superficiales. Mostramos la Nanovea perfilómetro sin contactoLa capacidad de proporcionar mediciones de perfiles 3D rápidas y precisas y un análisis exhaustivo y en profundidad del acabado de la superficie.



RESULTADOS Y DISCUSIÓN

Se midió la superficie de dos muestras de paneles alveolares con distintos acabados superficiales, a saber, la Muestra 1 y la Muestra 2. La Figura 3 y la Figura 4 muestran el color falso y la vista en 3D de las superficies de las Muestras 1 y 2, respectivamente. Los valores de rugosidad y planitud se calcularon mediante un software de análisis avanzado y se comparan en la Tabla 1. La Muestra 2 presenta una superficie más porosa en comparación con la Muestra 1. Como resultado, la Muestra 2 posee una mayor rugosidad Sa de 14,7 µm, en comparación con un valor Sa de 4,27 µm para la Muestra 1.

Los perfiles 2D de las superficies de los paneles alveolares se compararon en la figura 5, lo que permite a los usuarios tener una comparación visual del cambio de altura en diferentes lugares de la superficie de la muestra. Podemos observar que la Muestra 1 tiene una variación de altura de ~25 µm entre la ubicación del pico más alto y el valle más bajo. Por otro lado, la Muestra 2 muestra varios poros profundos a lo largo del perfil 2D. El software de análisis avanzado tiene la capacidad de localizar y medir automáticamente la profundidad de seis poros relativamente profundos como se muestra en la tabla de la Figura 4.b Muestra 2. El poro más profundo de los seis posee una profundidad máxima de casi 90 µm (Paso 4).

Para investigar más a fondo el tamaño y la distribución de los poros de la Muestra 2, se realizó una evaluación de la porosidad, que se discute en la siguiente sección. La vista en corte se muestra en la Figura 5 y los resultados se resumen en la Tabla 2. Podemos observar que los poros, marcados en color azul en la Figura 5, tienen una distribución relativamente homogénea en la superficie de la muestra. El área proyectada de los poros constituye 18,9% de toda la superficie de la muestra. El volumen por mm² del total de poros es de ~0,06 mm³. Los poros tienen una profundidad media de 42,2 µm, y la profundidad máxima es de 108,1 µm.

CONCLUSIÓN



En esta aplicación, hemos demostrado que la plataforma Nanovea HS2000, equipada con un sensor de línea de alta velocidad, es una herramienta ideal para analizar y comparar el acabado de la superficie de las muestras de paneles alveolares de forma rápida y precisa. Los escaneos de perfilometría de alta resolución, junto con un software de análisis avanzado, permiten una evaluación exhaustiva y cuantitativa del acabado superficial de las muestras de paneles alveolares.

Los datos mostrados aquí representan sólo una pequeña parte de los cálculos disponibles en el software de análisis. Los perfilómetros Nanovea miden prácticamente cualquier superficie para una amplia gama de aplicaciones en los sectores de los semiconductores, la microelectrónica, la energía solar, la fibra óptica, la automoción, la industria aeroespacial, la metalurgia, el mecanizado, los revestimientos, la industria farmacéutica, la biomedicina, el medio ambiente y muchos otros.

AHORA, HABLEMOS DE SU SOLICITUD