EE.UU./GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTACTO

Categoría: Indentación | Dureza y elasticidad

 

Caracterización nanomecánica de las constantes elásticas

La capacidad de los resortes para almacenar energía mecánica tiene una larga historia de uso. Desde arcos para cazar hasta cerraduras para puertas, la tecnología de los resortes existe desde hace muchos siglos. Hoy en día dependemos de los resortes, ya sea en colchones, bolígrafos o suspensiones de automóviles, ya que desempeñan un papel fundamental en nuestra vida cotidiana. Con una variedad tan amplia de usos y diseños, es necesario poder cuantificar sus propiedades mecánicas.

Leer más

Herramienta mecánica de selección de mapas Broadview

Todos hemos oído la expresión «el tiempo es oro». Por eso, muchas empresas buscan constantemente métodos para agilizar y mejorar diversos procesos, ya que así se ahorra tiempo. En lo que respecta a las pruebas de indentación, la velocidad, la eficiencia y la precisión se pueden integrar en un proceso de control de calidad o de I+D utilizando uno de nuestros probadores mecánicos Nanovea. En esta nota de aplicación, mostraremos una forma sencilla de ahorrar tiempo con nuestro probador mecánico Nanovea y las funciones del software Broad View Map y Selection Tool.

Haga clic para leer la nota de aplicación completa.

Transición vítrea localizada con precisión mediante DMA por nanoindentación

Transición vítrea localizada con precisión mediante DMA por nanoindentación

Más información
 
Imaginemos una situación en la que una muestra a granel se calienta uniformemente a una velocidad constante. A medida que el material a granel se calienta y se acerca a su punto de fusión, comienza a perder rigidez. Si se realizan indentaciones periódicas (ensayos de dureza) con la misma fuerza objetivo, la profundidad de cada indentación debería aumentar constantemente, ya que la muestra se vuelve más blanda (véase la figura 1). Esto continúa hasta que la muestra comienza a fundirse. En ese momento, se observará un gran aumento de la profundidad por indentación. Utilizando este concepto, se puede observar el cambio de fase en un material mediante oscilaciones dinámicas con una amplitud de fuerza fija y midiendo su desplazamiento, es decir, mediante el análisis mecánico dinámico (DMA).   ¡Lee sobre la transición vítrea localizada precisa!

Medición de la relajación de tensiones mediante nanoindentación

Más información

AHORA, HABLEMOS DE SU SOLICITUD

Compresión en materiales blandos y flexibles

Importancia de probar materiales blandos y flexibles

Un ejemplo de muestras muy blandas y flexibles son los sistemas microelectromecánicos. Los MEMS se utilizan en productos comerciales de uso cotidiano, como impresoras, teléfonos móviles y automóviles [1]. Sus usos también incluyen funciones especiales, como biosensores [2] y recolección de energía [3]. Para sus aplicaciones, los MEMS deben ser capaces de pasar de forma reversible y repetida de su configuración original a una configuración comprimida [4]. Para comprender cómo reaccionarán las estructuras ante las fuerzas mecánicas, se pueden realizar ensayos de compresión. Los ensayos de compresión se pueden utilizar para probar y ajustar diversas configuraciones de MEMS, así como para probar los límites de fuerza superior e inferior de estas muestras.

 La Nanovea Comprobador mecánico Nano La capacidad del módulo para recopilar datos con precisión a cargas muy bajas y desplazarse más de 1 mm lo hace ideal para probar muestras blandas y flexibles. Al contar con sensores de carga y profundidad independientes, el gran desplazamiento del indentador no afecta a las lecturas del sensor de carga. La capacidad de realizar pruebas de baja carga en un rango de más de 1 mm de desplazamiento del indentador hace que nuestro sistema sea único en comparación con otros sistemas de nanoindentación. En comparación, una distancia de desplazamiento razonable para un sistema de indentación a nanoescala suele ser inferior a 250 μm.
 

Objetivo de medición

En este estudio de caso, Nanovea realizó pruebas de compresión en dos muestras flexibles y elásticas únicas. Mostramos nuestra capacidad para realizar compresiones con cargas muy bajas y registrar grandes desplazamientos, al tiempo que obtenemos datos precisos con cargas bajas, y cómo esto se puede aplicar a la industria de los MEMS. Debido a las políticas de privacidad, las muestras y su origen no se revelarán en este estudio.

Parámetros de medición

Nota: La velocidad de carga de 1 V/min es proporcional a aproximadamente 100 μm de desplazamiento cuando el penetrador se encuentra en el aire.

Resultados y debate

La respuesta de la muestra a las fuerzas mecánicas se puede observar en las curvas de carga frente a profundidad. La muestra A solo muestra una deformación elástica lineal con los parámetros de prueba indicados anteriormente. La figura 2 es un buen ejemplo de la estabilidad que se puede alcanzar para una curva de carga frente a profundidad a 75 μN. Debido a la estabilidad de los sensores de carga y profundidad, sería fácil percibir cualquier respuesta mecánica significativa de la muestra.

La muestra B muestra una respuesta mecánica diferente a la de la muestra A. A partir de los 750 μm de profundidad, comienza a aparecer un comportamiento similar a una fractura en el gráfico. Esto se observa en las fuertes caídas de carga a 850 y 975 μm de profundidad. A pesar de desplazarse a una alta velocidad de carga durante más de 1 mm en un rango de 8 mN, nuestros sensores de carga y profundidad de alta sensibilidad permiten al usuario obtener las elegantes curvas de carga frente a profundidad que se muestran a continuación.

La rigidez se calculó a partir de la parte de descarga de las curvas de carga frente a profundidad. La rigidez refleja la fuerza necesaria para deformar la muestra. Para este cálculo de rigidez, se utilizó un coeficiente de Poisson pseudo de 0,3, ya que se desconoce el coeficiente real del material. En este caso, la muestra B resultó ser más rígida que la muestra A.

 

Conclusión

Se sometieron a prueba dos muestras flexibles diferentes bajo compresión utilizando el módulo Nano del Nanovea Mechanical Tester. Las pruebas se realizaron con cargas muy bajas (1 mm). Las pruebas de compresión a nanoescala con el módulo Nano han demostrado la capacidad del módulo para probar muestras muy blandas y flexibles. Las pruebas adicionales para este estudio podrían abordar cómo la carga cíclica repetida afecta al aspecto de recuperación elástica de las muestras elásticas a través de la opción de carga múltiple del Nanovea Mechanical Tester.

Para obtener más información sobre este método de prueba, no dude en ponerse en contacto con nosotros en info@nanovea.com y, si desea consultar otras notas de aplicación, visite nuestra amplia biblioteca digital de notas de aplicación.

Referencias

[1] “Introducción y áreas de aplicación de los MEMS”. EEHerald, 1 de marzo de 2017., www.eeherald.com/section/design-guide/mems_application_introduction.html.

[2] Louizos, Louizos-Alexandros; Athanasopoulos, Panagiotis G.; Varty, Kevin (2012). “Sistemas microelectromecánicos y nanotecnología. Una plataforma para la próxima era tecnológica de los stents”. Vasc Endovascular Surg. 46 (8): 605-609. doi:10.1177/1538574412462637. PMID 23047818.

[3] Hajati, Arman; Sang-Gook Kim (2011). “Recolección de energía piezoeléctrica de ancho de banda ultraamplio”. Applied Physics Letters. 99 (8): 083105. doi:10.1063/1.3629551.

[4] Fu, Haoran, et al. “Mesostructuras 3D moldeables y dispositivos microelectrónicos mediante mecánica de pandeo multiestable”. Nature materials 17.3 (2018): 268.

AHORA, HABLEMOS DE SU SOLICITUD

Propiedades mecánicas de los recubrimientos de obleas de carburo de silicio

Es fundamental comprender las propiedades mecánicas de los recubrimientos de las obleas de carburo de silicio. El proceso de fabricación de dispositivos microelectrónicos puede constar de más de 300 pasos diferentes y durar entre seis y ocho semanas. Durante este proceso, el sustrato de la oblea debe ser capaz de soportar las condiciones extremas de la fabricación, ya que un fallo en cualquier paso supondría una pérdida de tiempo y dinero. Las pruebas de dureza, La adhesión/resistencia a los rayones y el COF/índice de desgaste de la oblea deben cumplir ciertos requisitos para soportar las condiciones impuestas durante el proceso de fabricación y aplicación, a fin de garantizar que no se produzcan fallas.

Propiedades mecánicas de los recubrimientos de obleas de carburo de silicio

Nanoindentación de películas poliméricas con humedad controlada

Las propiedades mecánicas del polímero se modifican a medida que aumenta la humedad ambiental. Los efectos transitorios de la humedad, también conocidos como efectos mecánico-sorptivos, surgen cuando el polímero absorbe un alto contenido de humedad y experimenta un comportamiento de fluencia acelerado. La mayor complacencia de la fluencia es el resultado de efectos combinados complejos, como el aumento de la movilidad molecular, el envejecimiento físico inducido por la sorción y los gradientes de tensión inducidos por la sorción.

Por lo tanto, se necesita una prueba confiable y cuantitativa (nanoindentación por humedad) de la influencia inducida por la sorción en el comportamiento mecánico de los materiales poliméricos a diferentes niveles de humedad. El módulo Nano del probador mecánico Nanovea aplica la carga mediante un piezoeléctrico de alta precisión y mide directamente la evolución de la fuerza y el desplazamiento. Se crea una humedad uniforme alrededor de la punta de indentación y la superficie de la muestra mediante una cámara de aislamiento, lo que garantiza la precisión de la medición y minimiza la influencia de la deriva causada por el gradiente de humedad.

Nanoindentación de películas poliméricas con humedad controlada

Propiedades mecánicas y tribológicas de la fibra de carbono

Combinado con la prueba de desgaste por Tribómetro y análisis de superficies mediante perfilómetro óptico 3D, nos
mostrar la versatilidad y precisión de los instrumentos Nanovea en el ensayo de materiales compuestos
con propiedades mecánicas direccionales.

Propiedades mecánicas y tribológicas de la fibra de carbono

Evaluación biomecánica de la dureza de los tejidos

La capacidad de medir con precisión las propiedades mecánicas en el campo de las ciencias de la vida se ha convertido recientemente en un aspecto importante de muchos estudios actuales. En algunos casos, comprender las propiedades mecánicas de las superficies biológicas blandas ha ayudado a descubrir los efectos mecánicos de las enfermedades. Comprender las propiedades mecánicas proporciona un contexto para identificar el comportamiento mecánico local relacionado con cambios específicos. También es fundamental en el desarrollo de biomateriales artificiales. En esta aplicación, el Nanovea Comprobador mecánico, en Nanoindentación modo, se utiliza para estudiar la dureza biomecánica y el módulo de elasticidad de tres áreas distintas del jamón (grasa, carne clara y carne oscura).

Evaluación biomecánica de la dureza de los tejidos

Evaluación de la dureza dental mediante nanoindentación

En esta aplicación, Nanovea Comprobador mecánico, en Nanoindentación modo, se utiliza para estudiar la dureza y el módulo de elasticidad de la dentina, la caries y la pulpa de un diente. El aspecto más crítico de las pruebas de nanoindentación es asegurar la muestra; en este caso, tomamos un diente cortado y lo montamos con epoxi, dejando expuestas las tres áreas de interés para su análisis.

Evaluación de la dureza dental mediante nanoindentación

Prueba de flexión de 3 puntos mediante microindentación

En esta aplicación, Nanovea Comprobador mecánico, en Microindentación El modo se utiliza para medir la resistencia a la flexión (utilizando una prueba de flexión en tres puntos) de muestras de varillas (pasta) de distintos tamaños para mostrar una serie de datos. Se eligieron dos diámetros diferentes para demostrar las características elásticas y frágiles. Utilizando un penetrador de punta plana para aplicar una carga puntual, determinamos la rigidez (módulo de Young) e identificamos las cargas críticas a las que la muestra se fractura.

Prueba de flexión de 3 puntos mediante microindentación