EE.UU./GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTACTO

Categoría: Perfilometría | Planitud y alabeo

 

Inspección de mapas de rugosidad mediante perfilometría 3D

INSPECCIÓN CARTOGRÁFICA DE LA RUGOSIDAD

UTILIZANDO LA PERFILOMETRÍA 3D

Preparado por

DUANJIE, Doctor

INTRODUCCIÓN

La rugosidad y la textura de la superficie son factores críticos que influyen en la calidad final y el rendimiento de un producto. Un conocimiento profundo de la rugosidad, textura y consistencia de las superficies es esencial para seleccionar las mejores medidas de procesamiento y control. La inspección en línea rápida, cuantificable y fiable de las superficies de los productos es necesaria para identificar a tiempo los productos defectuosos y optimizar las condiciones de la línea de producción.

IMPORTANCIA DEL PERFILOMETRO 3D SIN CONTACTO PARA LA INSPECCION EN LINEA DE SUPERFICIES

Los defectos superficiales de los productos son el resultado del procesamiento de los materiales y la fabricación de los productos. La inspección en línea de la calidad de las superficies garantiza el más estricto control de calidad de los productos finales. NANOVEA Perfiladores ópticos 3D sin contacto utilizan la tecnología de luz cromática con una capacidad única para determinar la rugosidad de una muestra sin contacto. El sensor lineal permite escanear el perfil 3D de una gran superficie a gran velocidad. El umbral de rugosidad, calculado en tiempo real por el software de análisis, sirve como herramienta rápida y fiable de pasa/no pasa.

OBJETIVO DE MEDICIÓN

En este estudio, el NANOVEA ST400 equipado con un sensor de alta velocidad se utiliza para inspeccionar la superficie de una muestra de Teflon con defecto para mostrar la capacidad de NANOVEA

Profilómetros sin contacto en proporcionar una inspección de superficies rápida y fiable en una línea de producción.

NANOVEA

ST400

RESULTADOS Y DEBATE

Análisis tridimensional de la superficie del Rugosidad Muestra estándar

La superficie de un patrón de rugosidad se escaneó utilizando un NANOVEA ST400 equipado con un sensor de alta velocidad que genera una línea brillante de 192 puntos, como se muestra en la FIGURA 1. Estos 192 puntos escanean la superficie de la muestra al mismo tiempo, lo que conlleva un aumento significativo de la velocidad de escaneado.

La FIGURA 2 muestra vistas en falso color del Mapa de Altura de la Superficie y del Mapa de Distribución de la Rugosidad de la Muestra Estándar de Rugosidad. En la FIGURA 2a, el Estándar de Rugosidad exhibe una superficie ligeramente inclinada como se representa por el gradiente de color variado en cada uno de los bloques de rugosidad estándar. En la FIGURA 2b, se muestra una distribución homogénea de la rugosidad en differentes bloques de rugosidad, cuyo color representa la rugosidad en los bloques.

La FIGURA 3 muestra ejemplos de los mapas de aprobado/no aprobado generados por el software de análisis en función de diferentes umbrales de rugosidad. Los bloques de rugosidad se resaltan en rojo cuando su rugosidad superficial está por encima de un determinado valor umbral establecido. Esto proporciona una herramienta para que el usuario establezca un umbral de rugosidad para determinar la calidad del acabado superficial de una muestra.

FIGURA 1: Barrido del sensor óptico de líneas en la muestra del patrón de rugosidad

a. Mapa de altura de la superficie:

b. Mapa de rugosidad:

FIGURA 2: Vistas en falso color del Mapa de Altura de Superficie y del Mapa de Distribución de Rugosidad de la Muestra Estándar de Rugosidad.

FIGURA 3: Mapa Pasa/Falla basado en el Umbral de Rugosidad.

Inspección superficial de una muestra de Teflon con defectos

En la FIGURA 4 se muestran el mapa de altura de la superficie, el mapa de distribución de la rugosidad y el mapa de umbral de rugosidad Pasa/Falla de la superficie de la muestra de Teflon. La muestra de Teflon presenta una cresta en el centro derecho de la muestra, como se muestra en el mapa de altura de la superficie.

a. Mapa de altura de la superficie:

Los differentes colores de la paleta de la FIGURA 4b representan el valor de rugosidad en la superficie local. El mapa de rugosidad muestra una rugosidad homogénea en la zona intacta de la muestra de Teflon. Sin embargo, los defectos, en las formas de un anillo indentado y una cicatriz de desgaste se destacan en color brillante. El usuario puede configurar fácilmente un umbral de rugosidad Pasa/Falla para localizar los defectos superficiales, como se muestra en la FIGURA 4c. Esta herramienta permite a los usuarios supervisar in situ la calidad de la superficie del producto en la línea de producción y descubrir a tiempo los productos defectuosos. El valor de rugosidad en tiempo real se calcula y registra a medida que los productos pasan por el sensor óptico en línea, lo que puede servir como una herramienta rápida pero fiable para el control de calidad.

b. Mapa de rugosidad:

c. Mapa de umbrales de rugosidad Pasa/Falla:

FIGURA 4: Mapa de altura de la superficie, mapa de distribución de la rugosidad y Mapa de umbral de rugosidad Pasa/Falla de la superficie de la muestra de Teflon.

CONCLUSIÓN

En esta aplicación, hemos demostrado cómo el perfilador óptico sin contacto 3D NANOVEA ST400 equipado con un sensor óptico de línea funciona como una herramienta de control de calidad fiable de manera eficaz y eficiente.

El sensor óptico de línea genera una línea brillante de 192 puntos que escanean la superficie de la muestra al mismo tiempo, lo que aumenta significativamente la velocidad de escaneado. Puede instalarse en la línea de producción para controlar in situ la rugosidad de la superficie de los productos. El umbral de rugosidad funciona como un criterio fiable para determinar la calidad de la superficie de los productos, lo que permite a los usuarios detectar a tiempo los productos defectuosos.

Los datos mostrados aquí representan sólo una parte de los cálculos disponibles en el software de análisis. Los perfilómetros NANOVEA miden prácticamente cualquier superficie en campos como los semiconductores, la microelectrónica, la energía solar, la fibra óptica, la automoción, la industria aeroespacial, la metalurgia, el mecanizado, los revestimientos, la industria farmacéutica, la biomedicina, el medio ambiente y muchos otros.

Inspección de superficies soldadas con un perfilómetro 3D portátil

Inspección de superficies soldadas

utilizando un perfilómetro 3D portátil

Preparado por

CRAIG LEISING

INTRODUCCIÓN

Puede ser fundamental que una soldadura concreta, normalmente inspeccionada visualmente, se examine con un nivel extremo de precisión. Las áreas específicas de interés para un análisis preciso incluyen las grietas superficiales, la porosidad y los cráteres sin rellenar, independientemente de los procedimientos de inspección posteriores. Las características de la soldadura, como la dimensión/forma, el volumen, la rugosidad, el tamaño, etc., pueden medirse para realizar una evaluación crítica.

IMPORTANCIA DEL PERFILÓMETRO 3D SIN CONTACTO PARA LA INSPECCIÓN DE SUPERFICIES SOLDADAS

A diferencia de otras técnicas, como las sondas táctiles o la interferometría, el NANOVEA Perfilómetro 3D sin contacto, mediante el cromatismo axial, puede medir casi cualquier superficie, los tamaños de las muestras pueden variar ampliamente debido a la disposición abierta y no es necesario preparar las muestras. Se obtiene un rango de nano a macro durante la medición del perfil de la superficie sin influencia alguna de la reflectividad o absorción de la muestra, tiene una capacidad avanzada para medir ángulos de superficie elevados y no hay manipulación de los resultados por parte del software. Mida fácilmente cualquier material: transparente, opaco, especular, difusivo, pulido, rugoso, etc. Las capacidades 2D y 2D de los perfilómetros portátiles NANOVEA los convierten en instrumentos ideales para la inspección completa de la superficie de soldadura, tanto en el laboratorio como en el campo.

OBJETIVO DE MEDICIÓN

En esta aplicación, se utiliza el perfilómetro portátil NANOVEA JR25 para medir la rugosidad de la superficie, la forma y el volumen de una soldadura, así como el área circundante. Esta información puede proporcionar datos fundamentales para investigar adecuadamente la calidad de la soldadura y el proceso de soldadura.

NANOVEA

JR25

RESULTADOS DE LAS PRUEBAS

La imagen siguiente muestra la vista 3D completa de la soldadura y la zona circundante, junto con los parámetros superficiales de la soldadura únicamente. A continuación se muestra el perfil de la sección transversal en 2D.

la muestra

Una vez eliminado el perfil transversal 2D anterior del 3D, se calcula la información dimensional de la soldadura a continuación. Área superficial y volumen del material calculados solo para la soldadura a continuación.

 AGUJEROMÁXIMO
SUPERFICIE1,01 mm214,0 mm2
VOLUMEN8,799e-5 mm323,27 mm3
PROFUNDIDAD/ALTURA MÁXIMA0,0276 mm0,6195 mm
PROFUNDIDAD/ALTURA MEDIA 0,004024 mm 0,2298 mm

CONCLUSIÓN

En esta aplicación, hemos mostrado cómo el perfilómetro sin contacto NANOVEA 3D puede caracterizar con precisión las características críticas de una soldadura y la superficie circundante. A partir de la rugosidad, las dimensiones y el volumen, se puede determinar y/o investigar más a fondo un método cuantitativo para la calidad y la repetibilidad. Las soldaduras de muestra, como el ejemplo de esta nota de aplicación, se pueden analizar fácilmente con un perfilómetro NANOVEA de mesa estándar o portátil para pruebas internas o de campo.

Topografía de superficies de fibra de vidrio mediante perfilometría 3D

TOPOGRAFÍA DE LA SUPERFICIE DE FIBRA DE VIDRIO

UTILIZANDO LA PERFILOMETRÍA 3D

Preparado por

CRAIG LEISING

INTRODUCCIÓN

La fibra de vidrio es un material fabricado a partir de fibras de vidrio extremadamente finas. Se utiliza como agente reforzante en muchos productos poliméricos; el material compuesto resultante, conocido propiamente como polímero reforzado con fibra (FRP) o plástico reforzado con vidrio (GRP), se denomina “fibra de vidrio” en el uso popular.

IMPORTANCIA DE LA INSPECCIÓN METROLÓGICA DE SUPERFICIES PARA EL CONTROL DE CALIDAD

Aunque hay muchos usos para el refuerzo de fibra de vidrio, en la mayoría de las aplicaciones es crucial que sean lo más resistentes posible. Los compuestos de fibra de vidrio tienen una de las relaciones resistencia-peso más altas que existen y, en algunos casos, son más resistentes que el acero. Además de su alta resistencia, también es importante que la superficie expuesta sea lo más pequeña posible. Las superficies grandes de fibra de vidrio pueden hacer que la estructura sea más vulnerable a los ataques químicos y, posiblemente, a la expansión del material. Por lo tanto, la inspección de la superficie es fundamental para el control de calidad de la producción.

OBJETIVO DE MEDICIÓN

En esta aplicación, el NANOVEA ST400 se utiliza para medir la rugosidad y la planitud de una superficie de compuesto de fibra de vidrio. Al cuantificar estas características de la superficie, es posible crear u optimizar un material compuesto de fibra de vidrio más resistente y duradero.

NANOVEA

ST400

PARÁMETROS DE MEDICIÓN

SONDA 1 mm
TASA DE ADQUISICIÓN300 Hz
PROMEDIO1
SUPERFICIE MEDIDA5 mm x 2 mm
TAMAÑO DEL PASO5 µm x 5 µm
MODO DE ESCANEOVelocidad constante

ESPECIFICACIONES DE LA SONDA

MEDICIÓN ALCANCE1 mm
RESOLUCIÓN Z 25 nm
PRECISIÓN Z200 nm
RESOLUCIÓN LATERAL 2 μm

RESULTADOS

VISTA EN FALSO COLOR

Planitud de la superficie 3D

Rugosidad superficial 3D

Sa15,716 μmAltura media aritmética
Sq19,905 μmAltura media cuadrática
Sp116,74 μmAltura máxima del pico
Sv136,09 μmAltura máxima del foso
Sz252,83 μmAltura máxima
Ssk0.556Skewness
Ssu3.654Kurtosis

CONCLUSIÓN

Como se muestra en los resultados, el NANOVEA ST400 Óptico Perfilador fue capaz de medir con precisión la rugosidad y la planitud de la superficie del compuesto de fibra de vidrio. Los datos se pueden medir en múltiples lotes de compuestos de fibra y/o en un periodo de tiempo determinado para proporcionar información crucial sobre los diferentes procesos de fabricación de fibra de vidrio y cómo reaccionan con el paso del tiempo. Por lo tanto, el ST400 es una opción viable para reforzar el proceso de control de calidad de los materiales compuestos de fibra de vidrio.

Acabado superficial del cuero procesado mediante perfilometría 3D

CUERO PROCESADO

ACABADO DE SUPERFICIES MEDIANTE PERFILOMETRÍA 3D

Preparado por

CRAIG LEISING

INTRODUCCIÓN

Una vez completado el proceso de curtido de una piel, la superficie del cuero puede someterse a varios procesos de acabado para obtener diferentes aspectos y texturas. Estos procesos mecánicos pueden incluir estiramiento, pulido, lijado, estampado, recubrimiento, etc. Dependiendo del uso final del cuero, algunos pueden requerir un procesamiento más preciso, controlado y repetible.

IMPORTANCIA DE LA INSPECCIÓN PROFILOMÉTRICA PARA LA INVESTIGACIÓN Y DESARROLLO Y EL CONTROL DE CALIDAD

Debido a la gran variación y falta de fiabilidad de los métodos de inspección visual, las herramientas capaces de cuantificar con precisión las características a escala micro y nano pueden mejorar los procesos de acabado del cuero. Comprender el acabado superficial del cuero en un sentido cuantificable puede conducir a una mejor selección del procesamiento superficial basada en datos para lograr resultados de acabado óptimos. NANOVEA 3D sin contacto Perfilómetros Utilizan tecnología confocal cromática para medir superficies de cuero acabadas y ofrecen la mayor repetibilidad y precisión del mercado. Allí donde otras técnicas no logran proporcionar datos fiables, debido al contacto de la sonda, la variación de la superficie, el ángulo, la absorción o la reflectividad, los perfilómetros NANOVEA tienen éxito.

OBJETIVO DE MEDICIÓN

En esta aplicación, se utiliza el NANOVEA ST400 para medir y comparar el acabado superficial de dos muestras de piel diferentes, pero procesadas de forma muy similar. A partir del perfil de la superficie se calculan automáticamente varios parámetros superficiales.

Aquí nos centraremos en la rugosidad de la superficie, la profundidad de los hoyuelos, el paso de los hoyuelos y el diámetro de los hoyuelos para realizar una evaluación comparativa.

NANOVEA

ST400

RESULTADOS: MUESTRA 1

ISO 25178

PARÁMETROS DE ALTURA

OTROS PARÁMETROS 3D

RESULTADOS: MUESTRA 2

ISO 25178

PARÁMETROS DE ALTURA

OTROS PARÁMETROS 3D

COMPARATIVA DE PROFUNDIDAD

Distribución de profundidad para cada muestra.
Se observó un gran número de hoyuelos profundos en
MUESTRA 1.

COMPARATIVA DE LANZAMIENTOS

Distancia entre hoyuelos en MUESTRA 1 es ligeramente más pequeño
que
MUESTRA 2, pero ambos tienen una distribución similar.

 COMPARATIVA DEL DIÁMETRO MEDIO

Distribuciones similares del diámetro medio de los hoyuelos,
con
MUESTRA 1 mostrando diámetros medios ligeramente más pequeños en promedio.

CONCLUSIÓN

En esta aplicación, hemos mostrado cómo el perfilómetro 3D NANOVEA ST400 puede caracterizar con precisión el acabado superficial del cuero procesado. En este estudio, la capacidad de medir la rugosidad superficial, la profundidad, el paso y el diámetro de las hendiduras nos permitió cuantificar las diferencias entre el acabado y la calidad de las dos muestras, que podrían no ser evidentes a simple vista.

En general, no se observaron diferencias visibles en el aspecto de los escaneos 3D entre la MUESTRA 1 y la MUESTRA 2. Sin embargo, en el análisis estadístico se aprecia una clara distinción entre ambas muestras. La MUESTRA 1 contiene una mayor cantidad de hoyuelos con diámetros más pequeños, mayor profundidad y menor distancia entre hoyuelos en comparación con la MUESTRA 2.

Tenga en cuenta que hay estudios adicionales disponibles. Se podrían haber analizado más a fondo áreas de interés especiales con un módulo AFM o microscopio integrado. El perfilómetro 3D NANOVEA alcanza velocidades de entre 20 mm/s y 1 m/s para laboratorio o investigación, con el fin de satisfacer las necesidades de inspección a alta velocidad; se puede fabricar con tamaños, velocidades y capacidades de escaneo personalizados, cumplimiento de la norma de sala limpia de clase 1, cinta transportadora de indexación o para integración en línea o en línea.

Topografía de superficies orgánicas mediante perfilómetro 3D portátil

TOPOGRAFÍA DE SUPERFICIE ORGÁNICA

USO DEL PERFILÓMETRO 3D PORTÁTIL

Preparado por

CRAIG LEISING

INTRODUCCIÓN

La naturaleza se ha convertido en una fuente vital de inspiración para el desarrollo de estructuras superficiales mejoradas. La comprensión de las estructuras superficiales que se encuentran en la naturaleza ha dado lugar a estudios de adhesión basados en las patas del gecko, estudios de resistencia basados en el cambio de textura de los pepinos de mar y estudios de repelencia basados en las hojas, entre muchos otros. Estas superficies tienen numerosas aplicaciones potenciales, desde la biomedicina hasta la confección y la automoción. Para que cualquiera de estos avances en materia de superficies tenga éxito, es necesario desarrollar técnicas de fabricación que permitan imitar y reproducir las características de las superficies. Es este proceso el que requerirá identificación y control.

IMPORTANCIA DEL PERFILADOR ÓPTICO 3D PORTÁTIL SIN CONTACTO PARA SUPERFICIES ORGÁNICAS

Utilizando la tecnología Chromatic Light, el NANOVEA Jr25 Portable Perfilador óptico tiene una capacidad superior para medir casi cualquier material. Esto incluye los ángulos únicos y pronunciados, las superficies reflectantes y absorbentes que se encuentran en la amplia gama de características superficiales de la naturaleza. Las mediciones 3D sin contacto proporcionan una imagen 3D completa que permite comprender mejor las características de la superficie. Sin las capacidades 3D, la identificación de las superficies naturales se basaría únicamente en información 2D o en imágenes microscópicas, lo que no proporciona información suficiente para imitar adecuadamente la superficie estudiada. Comprender toda la gama de características de la superficie, incluyendo la textura, la forma y las dimensiones, entre muchas otras, será fundamental para el éxito de la fabricación.

La capacidad de obtener fácilmente resultados con calidad de laboratorio sobre el terreno abre la puerta a nuevas oportunidades de investigación.

OBJETIVO DE MEDICIÓN

En esta aplicación, el NANOVEA Jr25 se utiliza para medir la superficie de una hoja. Existe una lista interminable de parámetros de superficie que se pueden calcular automáticamente tras el escaneo 3D de la superficie.

Aquí revisaremos la superficie 3D y seleccionaremos
áreas de interés para analizar más a fondo, incluyendo
cuantificar e investigar la rugosidad de la superficie, los canales y la topografía

NANOVEA

JR25

CONDICIONES DE ENSAYO

PROFUNDIDAD DEL SURCO

Densidad media de surcos: 16,471 cm/cm².
Profundidad media de los surcos: 97,428 μm
Profundidad máxima: 359,769 μm

CONCLUSIÓN

En esta aplicación, hemos mostrado cómo el NANOVEA El perfilómetro óptico portátil 3D sin contacto Jr25 puede caracterizar con precisión tanto la topografía como los detalles a escala nanométrica de la superficie de una hoja en el campo. A partir de estas mediciones de superficie en 3D, se pueden identificar rápidamente las áreas de interés y luego analizarlas con una lista de estudios infinitos (Dimensión, rugosidad, textura de acabado, forma, topografía, planitud, alabeo, planaridad, volumen, área, altura de escalón. y otros). Se puede seleccionar fácilmente una sección transversal en 2D para analizar más detalles. Con esta información, se pueden investigar ampliamente las superficies orgánicas con un conjunto completo de recursos de medición de superficies. Las áreas de especial interés se podrían haber analizado más a fondo con el módulo AFM integrado en los modelos de sobremesa.

NANOVEA También ofrece perfilómetros portátiles de alta velocidad para investigación de campo y una amplia gama de sistemas de laboratorio, además de prestar servicios de laboratorio.

Topografía de la lente Fresnel

TOPOGRAFÍA DE LENTES FRESNELUSO 3D PERFILÓMETRO ÓPTICO SIN CONTACTO

Preparado por

Duanjie Li y Benjamin Mell

INTRODUCCIÓN

Una lente es un dispositivo óptico de simetría axial que transmite y refracta la luz. Una lente simple consta de un único componente óptico para converger o divergir la luz. Aunque las superficies esféricas no son la forma ideal para fabricar una lente, a menudo se utilizan como la forma más sencilla a la que se puede moler y pulir el vidrio.

Una lente Fresnel está formada por una serie de anillos concéntricos, que son partes delgadas de una lente simple con un ancho de tan solo unas milésimas de pulgada. Las lentes Fresnel tienen una gran apertura y una distancia focal corta, con un diseño compacto que reduce el peso y el volumen del material necesario, en comparación con las lentes convencionales con las mismas propiedades ópticas. Se pierde una cantidad muy pequeña de luz por absorción debido a la delgada geometría de la lente Fresnel.

IMPORTANCIA DE LA PERFILOMETRÍA 3D SIN CONTACTO PARA LA INSPECCIÓN DE LENTES DE FRESNEL

Las lentes Fresnel se emplean ampliamente en la industria automotriz, los faros, la energía solar y los sistemas ópticos de aterrizaje para portaaviones. El moldeado o estampado de las lentes a partir de plásticos transparentes puede hacer que su producción sea rentable. La calidad del servicio de las lentes Fresnel depende en gran medida de la precisión y la calidad de la superficie de su anillo concéntrico. A diferencia de la técnica de sonda táctil, NANOVEA Perfiladores ópticos Realiza mediciones de superficies en 3D sin tocar la superficie, evitando el riesgo de producir nuevos rayones. La técnica Chromatic Light es ideal para el escaneo preciso de formas complejas, como lentes de diferentes geometrías.

ESQUEMA DE LA LENTE DE FRESNEL

Las lentes Fresnel de plástico transparente se pueden fabricar mediante moldeado o estampado. Un control de calidad preciso y eficiente es fundamental para detectar moldes o estampados defectuosos. Mediante la medición de la altura y el paso de los anillos concéntricos, se pueden detectar variaciones en la producción comparando los valores medidos con los valores especificados por el fabricante de la lente.

La medición precisa del perfil de la lente garantiza que los moldes o troqueles se mecanicen correctamente para ajustarse a las especificaciones del fabricante. Además, el troquel podría desgastarse progresivamente con el tiempo, lo que provocaría que perdiera su forma inicial. Una desviación constante con respecto a las especificaciones del fabricante de la lente es un indicio claro de que es necesario sustituir el molde.

OBJETIVO DE MEDICIÓN

En esta aplicación, presentamos el NANOVEA ST400, un perfilador 3D sin contacto con un sensor de alta velocidad, que proporciona un análisis completo del perfil 3D de un componente óptico de forma compleja. Para demostrar las extraordinarias capacidades de nuestra tecnología Chromatic Light, se realiza un análisis del contorno de una lente Fresnel.

NANOVEA ST400 Gran superficie
Perfilómetro óptico 3D

La lente Fresnel acrílica de 2,3” x 2,3” utilizada para este estudio consta de 

una serie de anillos concéntricos y un perfil transversal dentado complejo. 

Tiene una distancia focal de 1,5 pulgadas y un diámetro efectivo de 2,0 pulgadas., 

125 estrías por pulgada y un índice de refracción de 1,49.

El escaneo NANOVEA ST400 de la lente Fresnel muestra un notable aumento en la altura de los anillos concéntricos, que se desplazan hacia afuera desde el centro.

FALSO COLOR 2D

Representación de la altura

VISTA EN 3D

PERFIL EXTRAÍDO

MÁXIMO Y MÍNIMO

Análisis dimensional del perfil

CONCLUSIÓN

En esta aplicación, hemos demostrado que el perfilómetro óptico sin contacto NANOVEA ST400 mide con precisión la topografía superficial de las lentes Fresnel. 

La dimensión de la altura y el paso se pueden determinar con precisión a partir del complejo perfil dentado utilizando el software de análisis NANOVEA. Los usuarios pueden inspeccionar eficazmente la calidad de los moldes o troqueles de producción comparando las dimensiones de la altura y el paso del anillo de las lentes fabricadas con las especificaciones ideales del anillo.

Los datos que se muestran aquí representan solo una parte de los cálculos disponibles en el software de análisis. 

Los perfilómetros ópticos NANOVEA miden prácticamente cualquier superficie en campos como los semiconductores, la microelectrónica, la energía solar, la fibra óptica, la automoción, la industria aeroespacial, la metalurgia, el mecanizado, los recubrimientos, la industria farmacéutica, la biomedicina, el medio ambiente y muchos otros.

 
Control de calidad de piezas mecanizadas

Inspección de piezas mecanizadas

PIEZAS MECANIZADAS

Inspección a partir de un modelo CAD mediante perfilometría 3D.

Autor:

Doctor Duanjie Li

Revisado por

Jocelyn Esparza

Inspección de piezas mecanizadas con un perfilómetro

INTRODUCCIÓN

La demanda de mecanizados de precisión capaces de crear geometrías complejas ha ido en aumento en una amplia gama de industrias. Desde la industria aeroespacial, médica y automotriz, hasta los engranajes tecnológicos, la maquinaria y los instrumentos musicales, la innovación y la evolución continuas elevan las expectativas y los estándares de precisión a nuevas cotas. En consecuencia, asistimos al aumento de la demanda de técnicas e instrumentos de inspección rigurosos para garantizar la máxima calidad de los productos.

Importancia de la perfilometría 3D sin contacto para la inspección de piezas

Comparar las propiedades de las piezas mecanizadas con sus modelos CAD es esencial para verificar las tolerancias y el cumplimiento de las normas de producción. La inspección durante el tiempo de servicio también es crucial, ya que el desgaste de las piezas puede requerir su sustitución. La identificación oportuna de cualquier desviación de las especificaciones requeridas ayudará a evitar costosas reparaciones, paradas de producción y daños a la reputación.

A diferencia de la técnica de sonda táctil, el NANOVEA Perfiladores ópticos Realiza escaneos de superficies en 3D sin contacto, lo que permite realizar mediciones rápidas, precisas y no destructivas de formas complejas con la máxima precisión.

OBJETIVO DE MEDICIÓN

En esta aplicación, presentamos el NANOVEA HS2000, un perfilómetro 3D sin contacto con un sensor de alta velocidad, que realiza una inspección exhaustiva de la superficie en cuanto a dimensiones, radio y rugosidad. 

Todo en menos de 40 segundos.

NANOVEA

HS2000

MODELO CAD

Una medición precisa de las dimensiones y la rugosidad superficial de la pieza mecanizada es fundamental para garantizar que cumple con las especificaciones, tolerancias y acabados superficiales deseados. A continuación se presentan el modelo 3D y el dibujo técnico de la pieza que se va a inspeccionar. 

VISTA EN FALSO COLOR

En la FIGURA 3 se comparan la vista en falso color del modelo CAD y la superficie escaneada de la pieza mecanizada. La variación de altura en la superficie de la muestra se puede observar por el cambio de color.

Se extraen tres perfiles 2D del escaneo de superficie 3D, tal y como se indica en la FIGURA 2, para verificar aún más la tolerancia dimensional de la pieza mecanizada.

COMPARACIÓN DE PERFILES Y RESULTADOS

Los perfiles 1 a 3 se muestran en las FIGURAS 3 a 5. La inspección cuantitativa de la tolerancia se lleva a cabo comparando el perfil medido con el modelo CAD para mantener unos rigurosos estándares de fabricación. Los perfiles 1 y 2 miden el radio de diferentes áreas de la pieza mecanizada curvada. La variación de altura del perfil 2 es de 30 µm en una longitud de 156 mm, lo que cumple con el requisito de tolerancia deseado de ±125 µm. 

Al establecer un valor límite de tolerancia, el software de análisis puede determinar automáticamente si la pieza mecanizada es apta o no.

Inspección de piezas de máquinas con un perfilómetro

La rugosidad y la uniformidad de la superficie de la pieza mecanizada desempeñan un papel importante a la hora de garantizar su calidad y funcionalidad. La FIGURA 6 es un área superficial extraída del escaneo original de la pieza mecanizada que se utilizó para cuantificar el acabado superficial. Se calculó que la rugosidad superficial media (Sa) era de 2,31 µm.

CONCLUSIÓN

En este estudio, hemos mostrado cómo el perfilómetro sin contacto NANOVEA HS2000, equipado con un sensor de alta velocidad, realiza una inspección exhaustiva de la superficie en cuanto a dimensiones y rugosidad. 

Los escaneos de alta resolución permiten a los usuarios medir la morfología detallada y las características superficiales de las piezas mecanizadas y compararlas cuantitativamente con sus modelos CAD. El instrumento también es capaz de detectar cualquier defecto, incluyendo rayones y grietas. 

El análisis avanzado de contornos es una herramienta sin igual, no solo para determinar si las piezas mecanizadas cumplen con las especificaciones establecidas, sino también para evaluar los mecanismos de falla de los componentes desgastados.

Los datos que se muestran aquí representan solo una parte de los cálculos que se pueden realizar con el software de análisis avanzado que viene incluido con cada perfilómetro óptico NANOVEA.

 

Inspección de rugosidad en línea

Detección instantánea de errores con perfiladores en línea

Surface roughness and texture is vital to the end-use of a product. Fast, quantiable, and reliable inline inspection of the product surface ensures detecting the defective products immediately so as to determine the work
conditions of the production line. It not only improves productivity and eciency, but also reduces defect rates,
re-work, and waste.

IMPORTANCIA DEL PERFILADOR SIN CONTACTO PARA LA INSPECCIÓN DE RUGOSIDAD EN LÍNEA

Los defectos superficiales se derivan del procesamiento de los materiales y la fabricación de los productos. La inspección de la calidad de la superficie en línea garantiza el control de calidad más estricto de los productos finales. Nanovea Perfilómetros 3D sin contacto Utiliza tecnología confocal cromática con una capacidad única para determinar la rugosidad de una muestra sin contacto. Se pueden instalar múltiples sensores de perfilado para supervisar la rugosidad y la textura de diferentes áreas del producto al mismo tiempo. El umbral de rugosidad calculado en tiempo real por el software de análisis sirve como una herramienta rápida y confiable de aprobación/rechazo.

OBJETIVO DE MEDICIÓN

En este estudio, se utiliza el sistema transportador de inspección de rugosidad Nanovea, equipado con un sensor puntual, para inspeccionar la rugosidad superficial de las muestras de acrílico y papel de lija. Mostramos la capacidad del perfilómetro sin contacto Nanovea para proporcionar una inspección de rugosidad rápida y confiable en línea en una línea de producción en tiempo real.

RESULTADOS Y DISCUSIÓN

El sistema de perfilómetro transportador puede funcionar en dos modos: modo de activación y modo continuo. Como se ilustra en la figura 2, la rugosidad superficial de las muestras se mide cuando pasan por debajo de los cabezales del perfilómetro óptico en el modo de activación. En comparación, el modo continuo proporciona una medición ininterrumpida de la rugosidad superficial de muestras continuas, como láminas metálicas y tejidos. Se pueden instalar varios sensores de perfilómetro óptico para supervisar y registrar la rugosidad de diferentes áreas de la muestra.

 

Durante la medición de inspección de rugosidad en tiempo real, las alertas de aprobado y fallido se muestran en las ventanas del software, tal y como se muestra en la Figura 4 y la Figura 5. Cuando el valor de rugosidad se encuentra dentro de los umbrales establecidos, la rugosidad medida se resalta en color verde. Sin embargo, el resaltado se vuelve rojo cuando la rugosidad superficial medida está fuera del rango de los valores umbral establecidos. Esto proporciona una herramienta para que el usuario determine la calidad del acabado superficial de un producto.

En las siguientes secciones, se utilizan dos tipos de muestras, por ejemplo, acrílico y lija, para demostrar los modos de activación y continuo del sistema de inspección.

Modo de activación: Inspección superficial de la muestra acrílica

Una serie de muestras de acrílico se alinean en la cinta transportadora y se desplazan bajo el cabezal del perfilador óptico, tal y como se muestra en la figura 1. La vista en falso color de la figura 6 muestra el cambio en la altura de la superficie. Algunas de las muestras de acrílico con acabado espejo se lijaron para crear una textura superficial rugosa, tal y como se muestra en la figura 6b.

A medida que las muestras de acrílico se desplazan a una velocidad constante bajo el cabezal del perfilómetro óptico, se mide el perfil de la superficie, tal y como se muestra en las figuras 7 y 8. Al mismo tiempo, se calcula el valor de rugosidad del perfil medido y se compara con los valores umbral. Cuando el valor de rugosidad supera el umbral establecido, se activa una alerta roja de fallo, lo que permite a los usuarios detectar y localizar inmediatamente el producto defectuoso en la línea de producción.

Modo continuo: inspección de la superficie de la muestra de papel de lija.

Mapa de altura de superficie, mapa de distribución de rugosidad y mapa de umbral de rugosidad de aprobado/reprobado de la superficie de la muestra de papel de lija, tal y como se muestra en la figura 9. La muestra de papel de lija tiene un par de picos más altos en la parte usada, tal y como se muestra en el mapa de altura de superficie. Los diferentes colores de la paleta de la figura 9C representan el valor de rugosidad de la superficie local. El mapa de rugosidad muestra una rugosidad homogénea en la zona intacta de la muestra de papel de lija, mientras que la zona usada se resalta en color azul oscuro, lo que indica el valor de rugosidad reducido en esta región. Se puede establecer un umbral de rugosidad de aprobado/reprobado para localizar dichas regiones, como se muestra en la figura 9D.

A medida que el papel de lija pasa continuamente por debajo del sensor del perfilador en línea, se calcula y registra el valor de rugosidad local en tiempo real, tal y como se muestra en la figura 10. Las alertas de aprobado/reprobado se muestran en la pantalla del software en función de los valores umbral de rugosidad establecidos, lo que lo convierte en una herramienta rápida y confiable para el control de calidad. La calidad de la superficie del producto en la línea de producción se inspecciona in situ para detectar a tiempo las áreas defectuosas.

CONCLUSIÓN

En esta aplicación, hemos demostrado que el perfilómetro de cinta transportadora Nanovea, equipado con un sensor perfilador óptico sin contacto, funciona como una herramienta de control de calidad en línea fiable, eficaz y eficiente.

El sistema de inspección se puede instalar en la línea de producción para supervisar la calidad de la superficie de los productos in situ. El umbral de rugosidad funciona como un criterio fiable para determinar la calidad de la superficie de los productos, lo que permite a los usuarios detectar a tiempo los productos defectuosos. Se ofrecen dos modos de inspección, el modo de activación y el modo continuo, para satisfacer los requisitos de inspección de diferentes tipos de productos.

Los datos que se muestran aquí representan solo una parte de los cálculos disponibles en el software de análisis. Los perfilómetros Nanovea miden prácticamente cualquier superficie en campos como el de los semiconductores, la microelectrónica, la energía solar, la fibra óptica, la automoción, la industria aeroespacial, la metalurgia, el mecanizado, los recubrimientos, la industria farmacéutica, la biomedicina, el medio ambiente y muchos otros.

AHORA, HABLEMOS DE SU SOLICITUD

Análisis tridimensional de la superficie de un centavo con perfilometría sin contacto

Importancia de la perfilometría sin contacto para monedas

La moneda tiene un gran valor en la sociedad moderna, ya que se utiliza para intercambiar bienes y servicios. Las monedas y los billetes circulan por las manos de muchas personas. La transferencia constante de moneda física provoca deformaciones en la superficie. Nanovea 3D Perfilómetro escanea la topografía de monedas acuñadas en diferentes años para investigar las diferencias en la superficie.

Las características de las monedas son fácilmente reconocibles para el público en general, ya que son objetos comunes. Una moneda de un centavo es ideal para presentar la potencia del software de análisis avanzado de superficies de Nanovea: Mountains 3D. Los datos de superficie recopilados con nuestro perfilómetro 3D permiten realizar análisis de alto nivel sobre geometrías complejas con sustracción de superficies y extracción de contornos 2D. La sustracción de superficies con una máscara, un sello o un molde controlados compara la calidad de los procesos de fabricación, mientras que la extracción de contornos identifica las tolerancias con análisis dimensionales. El perfilómetro 3D y el software Mountains 3D de Nanovea investigan la topografía submicrométrica de objetos aparentemente simples, como las monedas de un centavo.



Objetivo de medición

Se escaneó toda la superficie superior de cinco monedas de un centavo utilizando el sensor lineal de alta velocidad de Nanovea. Se midieron los radios interior y exterior de cada moneda utilizando el software de análisis avanzado Mountains. Se cuantificó la deformación de la superficie mediante la extracción de cada superficie de moneda en un área de interés con sustracción directa de la superficie.

 



Resultados y debate

Superficie 3D

El perfilómetro Nanovea HS2000 tardó solo 24 segundos en escanear 4 millones de puntos en un área de 20 mm x 20 mm con un tamaño de paso de 10 um x 10 um para adquirir la superficie de un centavo. A continuación se muestra un mapa de altura y una visualización en 3D del escaneo. La vista en 3D muestra la capacidad del sensor de alta velocidad para captar pequeños detalles imperceptibles a simple vista. Se pueden ver muchos pequeños arañazos en la superficie de la moneda. Se investigan la textura y la rugosidad de la moneda que se observan en la vista en 3D.

 










Análisis dimensional

Se extrajeron los contornos de la moneda y, mediante un análisis dimensional, se obtuvieron los diámetros interior y exterior del borde. El radio exterior promedió 9,500 mm ± 0,024, mientras que el radio interior promedió 8,960 mm ± 0,032. Otros análisis dimensionales que Mountains 3D puede realizar con fuentes de datos 2D y 3D son mediciones de distancia, altura de escalón, planitud y cálculos de ángulos.







Resta de superficies

La figura 5 muestra el área de interés para el análisis de sustracción de superficie. Se utilizó la moneda de un centavo de 2007 como superficie de referencia para las cuatro monedas más antiguas. La sustracción de superficie de la moneda de un centavo de 2007 muestra diferencias entre las monedas con agujeros/picos. La diferencia total de volumen de superficie se obtiene sumando los volúmenes de los agujeros/picos. El error RMS se refiere a la precisión con la que coinciden las superficies de las monedas entre sí.


 









Conclusión





El escáner de alta velocidad HS2000L de Nanovea escaneó cinco monedas de cinco centavos acuñadas en diferentes años. El software Mountains 3D comparó las superficies de cada moneda utilizando la extracción de contornos, el análisis dimensional y la sustracción de superficies. El análisis define claramente el radio interior y exterior entre las monedas de un centavo, al tiempo que compara directamente las diferencias en las características de la superficie. Gracias a la capacidad del perfilómetro 3D de Nanovea para medir cualquier superficie con una resolución a nivel nanométrico, combinada con las capacidades de análisis de Mountains 3D, las posibles aplicaciones en investigación y control de calidad son infinitas.

 


AHORA, HABLEMOS DE SU SOLICITUD

Acabado superficial de paneles alveolares con perfilometría 3D

INTRODUCCIÓN


La rugosidad, la porosidad y la textura de la superficie del panel alveolar son factores críticos que deben cuantificarse para el diseño final del panel. Estas cualidades superficiales pueden correlacionarse directamente con las características estéticas y funcionales de la superficie del panel. Una mejor comprensión de la textura y la porosidad de la superficie puede ayudar a optimizar el procesamiento y la fabricabilidad de la superficie del panel. Se necesita una medición cuantitativa, precisa y confiable de la superficie del panel alveolar para controlar los parámetros superficiales para los requisitos de aplicación y pintura. Los sensores sin contacto Nanovea 3D utilizan una tecnología confocal cromática única capaz de medir con precisión estas superficies de los paneles.



OBJETIVO DE MEDICIÓN


En este estudio, se utilizó la plataforma Nanovea HS2000 equipada con un sensor lineal de alta velocidad para medir y comparar dos paneles alveolares con diferentes acabados superficiales. Presentamos el Nanovea perfilómetro sin contacto’Capacidad para proporcionar mediciones de perfilado 3D rápidas y precisas, así como análisis exhaustivos y detallados del acabado superficial.



RESULTADOS Y DISCUSIÓN

Se midió la superficie de dos muestras de paneles alveolares con diferentes acabados superficiales, denominadas Muestra 1 y Muestra 2. La falsa color y la vista en 3D de las superficies de las Muestras 1 y 2 se muestran en la Figura 3 y la Figura 4, respectivamente. Los valores de rugosidad y planitud se calcularon mediante un software de análisis avanzado y se comparan en la Tabla 1. La muestra 2 presenta una superficie más porosa en comparación con la muestra 1. Como resultado, la muestra 2 posee una rugosidad Sa más alta, de 14,7 µm, en comparación con el valor Sa de 4,27 µm de la muestra 1.

En la figura 5 se comparan los perfiles 2D de las superficies de los paneles alveolares, lo que permite a los usuarios realizar una comparación visual del cambio de altura en diferentes puntos de la superficie de la muestra. Podemos observar que la muestra 1 presenta una variación de altura de ~25 µm entre el pico más alto y el valle más bajo. Por otro lado, la muestra 2 muestra varios poros profundos en todo el perfil 2D. El software de análisis avanzado tiene la capacidad de localizar y medir automáticamente la profundidad de seis poros relativamente profundos, como se muestra en la tabla de la figura 4.b Muestra 2. El poro más profundo de los seis tiene una profundidad máxima de casi 90 µm (paso 4).

Para investigar más a fondo el tamaño y la distribución de los poros de la muestra 2, se realizó una evaluación de la porosidad, cuyos resultados se analizan en la siguiente sección. La vista en corte se muestra en la figura 5 y los resultados se resumen en la tabla 2. Se puede observar que los poros, marcados en color azul en la figura 5, tienen una distribución relativamente homogénea en la superficie de la muestra. El área proyectada de los poros constituye el 18,91 % de la superficie total de la muestra. El volumen por mm² del total de poros es de ~0,06 mm³. Los poros tienen una profundidad media de 42,2 µm y la profundidad máxima es de 108,1 µm.

CONCLUSIÓN



En esta aplicación, hemos demostrado que la plataforma Nanovea HS2000 equipada con un sensor lineal de alta velocidad es una herramienta ideal para analizar y comparar el acabado superficial de muestras de paneles alveolares de forma rápida y precisa. Los escaneos de perfilometría de alta resolución, junto con un software de análisis avanzado, permiten una evaluación completa y cuantitativa del acabado superficial de las muestras de paneles alveolares.

Los datos que se muestran aquí representan solo una pequeña parte de los cálculos disponibles en el software de análisis. Los perfilómetros Nanovea miden prácticamente cualquier superficie para una amplia gama de aplicaciones en los sectores de semiconductores, microelectrónica, energía solar, fibra óptica, automoción, aeroespacial, metalurgia, mecanizado, recubrimientos, farmacéutico, biomédico, medioambiental y muchos otros.

AHORA, HABLEMOS DE SU SOLICITUD