EE.UU./GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTACTO

Categoría: Pruebas de perfilometría

 

Tribología de polímeros

Introducción

Los polímeros se han utilizado ampliamente en una gran variedad de aplicaciones y se han convertido en una parte indispensable de la vida cotidiana. Los polímeros naturales, como el ámbar, la seda y el caucho natural, han desempeñado un papel esencial en la historia de la humanidad. El proceso de fabricación de los polímeros sintéticos puede optimizarse para conseguir propiedades físicas únicas, como resistencia, viscoelasticidad, autolubricación y muchas otras.

Importancia del desgaste y la fricción de los polímeros

Los polímeros se utilizan habitualmente en aplicaciones tribológicas, como neumáticos, rodamientos y cintas transportadoras.
Se producen diferentes mecanismos de desgaste en función de las propiedades mecánicas del polímero, las condiciones de contacto y las propiedades de los residuos o la película de transferencia que se forma durante el proceso de desgaste. Para garantizar que los polímeros posean una resistencia al desgaste suficiente en las condiciones de servicio, es necesaria una evaluación tribológica fiable y cuantificable. La evaluación tribológica nos permite comparar cuantitativamente los comportamientos de desgaste de diferentes polímeros de forma controlada y supervisada para seleccionar el material candidato para la aplicación deseada.

El tribómetro Nanovea ofrece pruebas repetibles de desgaste y fricción utilizando modos rotativos y lineales que cumplen con las normas ISO y ASTM, con módulos opcionales de desgaste a alta temperatura y lubricación disponibles en un sistema preintegrado. Esta gama inigualable permite a los usuarios simular los diferentes entornos de trabajo de los polímeros, incluyendo tensión concentrada, desgaste y alta temperatura, etc.

OBJETIVO DE MEDICIÓN

En este estudio, demostramos que Nanovea Tribómetro es una herramienta ideal para comparar la fricción y la resistencia al desgaste de diferentes polímeros de una manera bien controlada y cuantitativa.

PROCEDIMIENTO DE PRUEBA

El coeficiente de fricción (COF) y la resistencia al desgaste de diferentes polímeros comunes se evaluaron mediante el tribómetro Nanovea. Se utilizó una bola de Al2O3 como material de contacto (pasador, muestra estática). Las marcas de desgaste en los polímeros (muestras dinámicas giratorias) se midieron utilizando un perfilómetro 3D sin contacto y un microscopio óptico una vez concluidas las pruebas. Cabe señalar que, como opción, se puede utilizar un sensor endoscópico sin contacto para medir la profundidad a la que el pasador penetra en la muestra dinámica durante una prueba de desgaste. Los parámetros de la prueba se resumen en la tabla 1. La tasa de desgaste, K, se evaluó utilizando la fórmula K=Vl(Fxs), donde V es el volumen desgastado, F es la carga normal y s es la distancia de deslizamiento.

Tenga en cuenta que en este estudio se utilizaron bolas de Al2O3 como material de contraste. Se puede sustituir por cualquier material sólido para simular con mayor precisión el rendimiento de dos muestras en condiciones de aplicación reales.

RESULTADOS Y DISCUSIÓN

La tasa de desgaste es un factor vital para determinar la vida útil de los materiales, mientras que la fricción desempeña un papel fundamental durante las aplicaciones tribológicas. La figura 2 compara la evolución del COF de diferentes polímeros frente a la bola de Al2O3 durante las pruebas de desgaste. El COF sirve como indicador de cuándo se producen fallos y el proceso de desgaste entra en una nueva etapa. Entre los polímeros probados, el HDPE mantiene el COF constante más bajo, de ~0,15, a lo largo de toda la prueba de desgaste. El COF suave implica que se forma un contacto tribológico estable.

Las figuras 3 y 4 comparan las huellas de desgaste de las muestras de polímero después de medir la prueba con el microscopio óptico. El perfilómetro 3D sin contacto in situ determina con precisión el volumen de desgaste de las muestras de polímero, lo que permite calcular con exactitud las tasas de desgaste de 0,0029, 0,0020 y 0,0032 m3/N m, respectivamente. En comparación, la muestra de CPVC muestra la tasa de desgaste más alta, de 0,1121 m3/N m. En la huella de desgaste del CPVC se observan profundas marcas de desgaste paralelas.

CONCLUSIÓN

La resistencia al desgaste de los polímeros desempeña un papel fundamental en su rendimiento. En este estudio, demostramos que el tribómetro Nanovea evalúa el coeficiente de fricción y la tasa de desgaste de diferentes polímeros en un
de manera bien controlada y cuantitativa. El HDPE presenta el COF más bajo, ~0,15, entre los polímeros probados. Las muestras de HDPE, nailon 66 y polipropileno poseen bajos índices de desgaste de 0,0029, 0,0020 y 0,0032 m3/N m, respectivamente. La combinación de baja fricción y gran resistencia al desgaste hace que el HDPE sea un buen candidato para aplicaciones tribológicas de polímeros.

El perfilómetro 3D sin contacto in situ permite medir con precisión el volumen de desgaste y ofrece una herramienta para analizar la morfología detallada de las huellas de desgaste, lo que proporciona una mayor comprensión de los mecanismos fundamentales del desgaste.

AHORA, HABLEMOS DE SU SOLICITUD

Acabado superficial de paneles alveolares con perfilometría 3D

INTRODUCCIÓN


La rugosidad, la porosidad y la textura de la superficie del panel alveolar son factores críticos que deben cuantificarse para el diseño final del panel. Estas cualidades superficiales pueden correlacionarse directamente con las características estéticas y funcionales de la superficie del panel. Una mejor comprensión de la textura y la porosidad de la superficie puede ayudar a optimizar el procesamiento y la fabricabilidad de la superficie del panel. Se necesita una medición cuantitativa, precisa y confiable de la superficie del panel alveolar para controlar los parámetros superficiales para los requisitos de aplicación y pintura. Los sensores sin contacto Nanovea 3D utilizan una tecnología confocal cromática única capaz de medir con precisión estas superficies de los paneles.



OBJETIVO DE MEDICIÓN


En este estudio, se utilizó la plataforma Nanovea HS2000 equipada con un sensor lineal de alta velocidad para medir y comparar dos paneles alveolares con diferentes acabados superficiales. Presentamos el Nanovea perfilómetro sin contacto’Capacidad para proporcionar mediciones de perfilado 3D rápidas y precisas, así como análisis exhaustivos y detallados del acabado superficial.



RESULTADOS Y DISCUSIÓN

Se midió la superficie de dos muestras de paneles alveolares con diferentes acabados superficiales, denominadas Muestra 1 y Muestra 2. La falsa color y la vista en 3D de las superficies de las Muestras 1 y 2 se muestran en la Figura 3 y la Figura 4, respectivamente. Los valores de rugosidad y planitud se calcularon mediante un software de análisis avanzado y se comparan en la Tabla 1. La muestra 2 presenta una superficie más porosa en comparación con la muestra 1. Como resultado, la muestra 2 posee una rugosidad Sa más alta, de 14,7 µm, en comparación con el valor Sa de 4,27 µm de la muestra 1.

En la figura 5 se comparan los perfiles 2D de las superficies de los paneles alveolares, lo que permite a los usuarios realizar una comparación visual del cambio de altura en diferentes puntos de la superficie de la muestra. Podemos observar que la muestra 1 presenta una variación de altura de ~25 µm entre el pico más alto y el valle más bajo. Por otro lado, la muestra 2 muestra varios poros profundos en todo el perfil 2D. El software de análisis avanzado tiene la capacidad de localizar y medir automáticamente la profundidad de seis poros relativamente profundos, como se muestra en la tabla de la figura 4.b Muestra 2. El poro más profundo de los seis tiene una profundidad máxima de casi 90 µm (paso 4).

Para investigar más a fondo el tamaño y la distribución de los poros de la muestra 2, se realizó una evaluación de la porosidad, cuyos resultados se analizan en la siguiente sección. La vista en corte se muestra en la figura 5 y los resultados se resumen en la tabla 2. Se puede observar que los poros, marcados en color azul en la figura 5, tienen una distribución relativamente homogénea en la superficie de la muestra. El área proyectada de los poros constituye el 18,91 % de la superficie total de la muestra. El volumen por mm² del total de poros es de ~0,06 mm³. Los poros tienen una profundidad media de 42,2 µm y la profundidad máxima es de 108,1 µm.

CONCLUSIÓN



En esta aplicación, hemos demostrado que la plataforma Nanovea HS2000 equipada con un sensor lineal de alta velocidad es una herramienta ideal para analizar y comparar el acabado superficial de muestras de paneles alveolares de forma rápida y precisa. Los escaneos de perfilometría de alta resolución, junto con un software de análisis avanzado, permiten una evaluación completa y cuantitativa del acabado superficial de las muestras de paneles alveolares.

Los datos que se muestran aquí representan solo una pequeña parte de los cálculos disponibles en el software de análisis. Los perfilómetros Nanovea miden prácticamente cualquier superficie para una amplia gama de aplicaciones en los sectores de semiconductores, microelectrónica, energía solar, fibra óptica, automoción, aeroespacial, metalurgia, mecanizado, recubrimientos, farmacéutico, biomédico, medioambiental y muchos otros.

AHORA, HABLEMOS DE SU SOLICITUD

Comprensión de los fallos en los recubrimientos mediante pruebas de rayado

Introducción:

La ingeniería de superficies de los materiales desempeña un papel importante en diversas aplicaciones funcionales, que van desde la apariencia decorativa hasta la protección de los sustratos contra el desgaste, la corrosión y otras formas de agresión. Un factor importante y determinante que influye en la calidad y la vida útil de los recubrimientos es su fuerza cohesiva y adhesiva.

¡Haga clic aquí para leer!

Escaneo de alta velocidad con perfilometría sin contacto

Introducción:

Las mediciones de superficie rápidas y fáciles de configurar ahorran tiempo y esfuerzo, y son esenciales para el control de calidad, la investigación y el desarrollo, y las instalaciones de producción. El Nanovea Perfilómetro sin contacto Es capaz de realizar escaneos de superficies tanto en 3D como en 2D para medir características a escala nano y macro en cualquier superficie, lo que le confiere una amplia gama de usos.

¡Haga clic aquí para leer!

Rugosidad superficial y características de una célula solar

Importancia de las pruebas de los paneles solares

Maximizar la absorción de energía de una célula solar es clave para la supervivencia de la tecnología como recurso renovable. Las múltiples capas de recubrimiento y protección de vidrio permiten la absorción, transmisión y reflexión de la luz necesaria para que las células fotovoltaicas funcionen. Dado que la mayoría de las células solares de consumo operan con una eficiencia de 15-18%, optimizar su producción de energía es una batalla constante.


Los estudios han demostrado que la rugosidad de la superficie desempeña un papel fundamental en la reflectancia de la luz. La capa inicial de vidrio debe ser lo más lisa posible para mitigar la reflectancia de la luz, pero las capas posteriores no siguen esta pauta. Es necesario un cierto grado de rugosidad en cada interfaz de recubrimiento para aumentar la posibilidad de dispersión de la luz dentro de sus respectivas zonas de agotamiento y aumentar la absorción de luz dentro de la célula. La optimización de la rugosidad de la superficie en estas regiones permite que la célula solar funcione al máximo de su capacidad y, con el sensor de alta velocidad Nanovea HS2000, la medición de la rugosidad de la superficie se puede realizar de forma rápida y precisa.



Objetivo de medición

En este estudio mostraremos las capacidades de Nanovea. Perfilómetro HS2000 con sensor de alta velocidad mediante la medición de la rugosidad superficial y las características geométricas de una célula fotovoltaica. Para esta demostración se medirá una célula solar monocristalina sin protección de vidrio, pero la metodología puede utilizarse para otras aplicaciones.




Procedimiento de ensayo y procedimientos

Se utilizaron los siguientes parámetros de prueba para medir la superficie de la célula solar.




Resultados y debate

A continuación se muestra la vista en falso color 2D de la célula solar y una extracción del área de la superficie con sus respectivos parámetros de altura. Se aplicó un filtro gaussiano a ambas superficies y se utilizó un índice más agresivo para aplanar el área extraída. Esto excluye las formas (o ondulaciones) mayores que el índice de corte, dejando atrás las características que representan la rugosidad de la célula solar.











Se tomó un perfil perpendicular a la orientación de las líneas de la rejilla para medir sus características geométricas, como se muestra a continuación. El ancho, la altura y el paso de las líneas de la rejilla se pueden medir para cualquier ubicación específica de la célula solar.









Conclusión





En este estudio, pudimos demostrar la capacidad del sensor lineal Nanovea HS2000 para medir la rugosidad y las características de la superficie de una célula fotovoltaica monocristalina. Con la capacidad de automatizar mediciones precisas de múltiples muestras y establecer límites de aprobación o rechazo, el sensor lineal Nanovea HS2000 es la opción perfecta para las inspecciones de control de calidad.

Referencia

1 Scholtz, Lubomir. Ladanyi, Libor. Mullerova, Jarmila. “Influencia de la rugosidad de la superficie en las características ópticas de las células solares multicapa“. Advances in Electrical and Electronic Engineering, vol. 12, n.º 6, 2014, pp. 631-638.

AHORA, HABLEMOS DE SU SOLICITUD

Comparación del desgaste por abrasión en la tela vaquera

Introducción

La forma y la función de un tejido vienen determinadas por su calidad y durabilidad. El uso diario de los tejidos provoca el desgaste del material, por ejemplo, el amontonamiento, la pelusa y la decoloración. Un tejido de calidad inferior utilizado para prendas de vestir puede provocar a menudo la insatisfacción del consumidor y dañar la marca.

Intentar cuantificar las propiedades mecánicas de los tejidos puede plantear muchos retos. La estructura del hilo e incluso la fábrica en la que se produjo pueden dar lugar a una escasa reproducibilidad de los resultados de las pruebas. Esto dificulta la comparación de los resultados de las pruebas de distintos laboratorios. Medir las prestaciones de desgaste de los tejidos es fundamental para los fabricantes, distribuidores y minoristas de la cadena de producción textil. Una medición de la resistencia al desgaste bien controlada y reproducible es crucial para garantizar un control de calidad fiable del tejido.

Haga clic para leer la nota de aplicación completa.

¿Desgaste Rotativo o Lineal y COF? (Un estudio exhaustivo con el tribómetro Nanovea)

El desgaste es el proceso de eliminación y deformación de material en una superficie como resultado de la acción mecánica de la superficie opuesta. En él influyen diversos factores, como el deslizamiento unidireccional, la rodadura, la velocidad, la temperatura y muchos otros. El estudio del desgaste, la tribología, abarca muchas disciplinas, desde la física y la química hasta la ingeniería mecánica y la ciencia de los materiales. La compleja naturaleza del desgaste requiere estudios aislados sobre mecanismos o procesos de desgaste específicos, como el desgaste adhesivo, el desgaste abrasivo, la fatiga superficial, el desgaste por rozamiento y el desgaste erosivo. Sin embargo, el "desgaste industrial" suele implicar múltiples mecanismos de desgaste que se producen en sinergia.

Los ensayos de desgaste lineal alternativo y rotativo (clavija sobre disco) son dos configuraciones ampliamente utilizadas de conformidad con ASTM para medir los comportamientos de desgaste por deslizamiento de los materiales. Dado que el valor de la tasa de desgaste de cualquier método de ensayo de desgaste se utiliza a menudo para predecir la clasificación relativa de las combinaciones de materiales, es extremadamente importante confirmar la repetibilidad de la tasa de desgaste medida utilizando diferentes configuraciones de ensayo. Esto permite a los usuarios considerar cuidadosamente el valor de la tasa de desgaste reportado en la literatura, lo cual es crítico para entender las características tribológicas de los materiales.

Más información

Caracterización a alta velocidad de una concha de ostra

Las muestras grandes con geometrías complejas pueden resultar difíciles de manejar debido a su preparación, tamaño, ángulos agudos y curvatura. En este estudio se escaneará una concha de ostra para demostrar la capacidad del sensor lineal Nanovea HS2000 para escanear una muestra biológica grande con una geometría compleja. Aunque en este estudio se ha utilizado una muestra biológica, los mismos conceptos pueden aplicarse a otras muestras.

Leer más

 

 

 

 

 

 

 

 

 

 

Inspección del acabado superficial de los suelos de madera

 

Importancia del perfilado de los acabados de madera

En diversas industrias, el propósito de un acabado para madera es proteger la superficie de la madera de diversos tipos de daños, como químicos, mecánicos o biológicos, y/o proporcionar una estética visual específica. Tanto para los fabricantes como para los compradores, cuantificar las características superficiales de sus acabados para madera puede ser vital para el control de calidad o la optimización de los procesos de acabado de la madera. En esta aplicación, exploraremos las diversas características superficiales que se pueden cuantificar utilizando un perfilómetro 3D sin contacto Nanovea.


Cuantificar el grado de rugosidad y textura que presenta una superficie de madera puede ser fundamental para garantizar que cumpla con los requisitos de su aplicación. Perfeccionar el proceso de acabado o verificar la calidad de las superficies de madera basándose en un método de inspección cuantificable, repetible y confiable permitiría a los fabricantes crear tratamientos superficiales controlados y a los compradores inspeccionar y seleccionar los materiales de madera que satisfagan sus necesidades.



Objetivo de medición

En este estudio, el Nanovea HS2000 de alta velocidad perfilómetro Equipado con un sensor de perfilado sin contacto, se utilizó para medir y comparar el acabado superficial de tres muestras de pisos: madera noble de abedul antiguo, roble gris cortejo y caoba Santos. Mostramos la capacidad del perfilómetro sin contacto Nanovea para ofrecer velocidad y precisión al medir tres tipos de superficies y realizar un análisis exhaustivo y detallado de los escaneos.





Procedimiento de ensayo y procedimientos




Resultados y debate

Descripción de la muestra: Los pisos de roble gris Courtship y caoba Santos son tipos de pisos laminados. El roble gris Courtship es una muestra de color gris pizarra texturizado y bajo brillo con acabado EIR. La caoba Santos es una muestra de color burdeos oscuro y alto brillo que ha sido preacabada. La madera dura de abedul antiguo tiene un acabado de óxido de aluminio de 7 capas, que proporciona protección contra el desgaste diario.

 





Madera dura de abedul antiguo






Cortejo Roble gris






Caoba Santos




Debate

Existe una clara distinción entre el valor Sa de todas las muestras. La más lisa fue la madera dura de abedul antiguo, con un valor Sa de 1,716 µm, seguida de la caoba Santos, con un valor Sa de 2,388 µm, y aumentando significativamente para el roble gris Courtship, con un valor Sa de 11,17 µm. Los valores P y R también son valores de rugosidad comunes que se pueden utilizar para evaluar la rugosidad de perfiles específicos a lo largo de la superficie. El roble gris cortejo posee una textura gruesa llena de características similares a grietas a lo largo de la dirección celular y fibrosa de la madera. Se realizó un análisis adicional de la muestra de roble gris cortejo debido a su superficie texturizada. En la muestra de roble gris cortejo, se utilizaron cortes para separar y calcular la profundidad y el volumen de las grietas de la superficie más plana y uniforme.



Conclusión




En esta aplicación, hemos mostrado cómo se puede utilizar el perfilómetro de alta velocidad Nanovea HS2000 para inspeccionar el acabado superficial de muestras de madera de forma eficaz y eficiente. Las mediciones del acabado superficial pueden resultar importantes tanto para los fabricantes como para los consumidores de pisos de madera dura a la hora de comprender cómo pueden mejorar un proceso de fabricación o elegir el producto adecuado que ofrezca el mejor rendimiento para una aplicación específica.

AHORA, HABLEMOS DE SU SOLICITUD

Prueba de desgaste de la madera con el tribómetro Nanovea

Importancia de comparar el desgaste del acabado de la madera y el coeficiente de fricción (COF)

La madera se ha utilizado durante miles de años como material de construcción para viviendas, muebles y suelos. Combina belleza natural y durabilidad, lo que la convierte en una opción ideal para suelos. A diferencia de las alfombras, los suelos de madera noble conservan su color durante mucho tiempo y se limpian y mantienen fácilmente. Sin embargo, al ser un material natural, la mayoría de los suelos de madera requieren la aplicación de un acabado superficial para proteger la madera de diversos tipos de daños, como arañazos y astillas con el paso del tiempo. En este estudio, Nanovea Tribómetro Se utilizó para medir la tasa de desgaste y el coeficiente de fricción (COF) con el fin de comprender mejor el rendimiento comparativo de tres acabados para madera.

El comportamiento en servicio de una especie de madera utilizada para suelos suele estar relacionado con su resistencia al desgaste. El cambio en la estructura celular y fibrosa individual de las diferentes especies de madera contribuye a sus diferentes comportamientos mecánicos y tribológicos. Las pruebas de servicio reales de la madera como material para suelos son caras, difíciles de reproducir y requieren largos periodos de tiempo. Por ello, resulta valioso desarrollar una prueba de desgaste sencilla que pueda producir resultados fiables, reproducibles y directos.

Objetivo de medición

En este estudio, simulamos y comparamos el comportamiento frente al desgaste de tres tipos de madera para demostrar la capacidad del tribómetro Nanovea para evaluar las propiedades tribológicas de la madera de forma controlada y supervisada.

Debate

Descripción de la muestra: La madera noble de abedul antiguo tiene un acabado de óxido de aluminio de 7 capas, que proporciona protección contra el desgaste diario. El roble gris Courtship y la caoba Santos son dos tipos de pisos laminados que varían en cuanto al acabado de la superficie y el brillo. El roble gris cortejo es de color gris pizarra, con acabado EIR y bajo brillo. Por otro lado, la caoba Santos es de color burdeos oscuro, preacabada y con alto brillo, lo que permite ocultar más fácilmente los arañazos y defectos de la superficie.

La evolución del COF durante las pruebas de desgaste de las tres muestras de pisos de madera se muestra en la Fig. 1. Las muestras de madera dura de abedul antiguo, roble gris cortejo y caoba Santos mostraron un comportamiento diferente en cuanto al COF.

En el gráfico anterior se puede observar que la madera dura de abedul antiguo fue la única muestra que mostró un COF estable durante toda la prueba. El fuerte aumento del COF del roble gris Courtship y su posterior disminución gradual podrían indicar que la rugosidad de la superficie de la muestra contribuyó en gran medida a su comportamiento en cuanto al COF. A medida que la muestra se desgastaba, la rugosidad de la superficie disminuyó y se volvió más homogénea, lo que explica la disminución del COF a medida que la superficie de la muestra se volvía más lisa debido al desgaste mecánico. El COF de la caoba Santos muestra un aumento suave y gradual al comienzo de la prueba y luego pasa abruptamente a una tendencia irregular. Esto podría indicar que, una vez que el revestimiento laminado comenzó a desgastarse, la bola de acero (material de contraposición) entró en contacto con el sustrato de madera, que se desgastó de manera más rápida y turbulenta, creando un comportamiento del COF más ruidoso hacia el final de la prueba.

 

Madera dura de abedul antiguo:

Cortejo del roble gris:

Caoba Santos

La tabla 2 resume los resultados de los escaneos y análisis de las huellas de desgaste en todas las muestras de pisos de madera después de realizar las pruebas de desgaste. La información detallada y las imágenes de cada muestra se pueden ver en las figuras 2-7. Basándonos en la comparación de la tasa de desgaste entre las tres muestras, podemos deducir que la caoba Santos demostró ser menos resistente al desgaste mecánico que las otras dos muestras. La madera dura de abedul antiguo y el roble gris cortejo tuvieron índices de desgaste muy similares, aunque su comportamiento durante las pruebas difirió significativamente. La madera dura de abedul antiguo presentó una tendencia de desgaste gradual y más uniforme, mientras que el roble gris cortejo mostró una huella de desgaste superficial y con picaduras debido a la textura y el acabado preexistentes de la superficie.

Conclusión

En este estudio, mostramos la capacidad del tribómetro de Nanovea para evaluar el coeficiente de fricción y la resistencia al desgaste de tres tipos de madera: madera dura de abedul antiguo, roble gris Courtship y caoba Santos, de forma controlada y supervisada. Las propiedades mecánicas superiores de la madera dura de abedul antiguo le confieren una mayor resistencia al desgaste. La textura y la homogeneidad de la superficie de la madera desempeñan un papel importante en el comportamiento frente al desgaste. La textura de la superficie del roble gris cortejo, como los huecos o grietas entre las fibras de las células de la madera, puede convertirse en los puntos débiles donde se inicia y se propaga el desgaste.

AHORA, HABLEMOS DE SU SOLICITUD