USA/GLOBALE: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTATTACI

Categoria: Test di graffiatura | Fallimento coesivo

 

Test di usura del rivestimento in PTFE

TEST DI USURA DEL RIVESTIMENTO IN PTFE

UTILIZZO DI TRIBOMETRO E TESTER MECCANICO

Preparato da

DUANJIE LI, PhD

INTRODUZIONE

Il politetrafluoroetilene (PTFE), comunemente noto come Teflon, è un polimero con un coefficiente di attrito (COF) eccezionalmente basso e un'eccellente resistenza all'usura, a seconda dei carichi applicati. Il PTFE presenta un'inerzia chimica superiore, un elevato punto di fusione di 327°C (620°F) e mantiene un'elevata resistenza, tenacità e autolubrificazione a basse temperature. L'eccezionale resistenza all'usura dei rivestimenti in PTFE li rende molto richiesti in un'ampia gamma di applicazioni industriali, come quelle automobilistiche, aerospaziali, mediche e, in particolare, le pentole.

IMPORTANZA DELLA VALUTAZIONE QUANTITATIVA DEI RIVESTIMENTI IN PTFE

La combinazione di un coefficiente di attrito (COF) bassissimo, di un'eccellente resistenza all'usura e di un'eccezionale inerzia chimica alle alte temperature rende il PTFE la scelta ideale per i rivestimenti antiaderenti delle pentole. Per migliorare ulteriormente i suoi processi meccanici durante la fase di ricerca e sviluppo, nonché per garantire un controllo ottimale sulla prevenzione dei malfunzionamenti e sulle misure di sicurezza nel processo di controllo qualità, è fondamentale disporre di una tecnica affidabile per la valutazione quantitativa dei processi tribomeccanici dei rivestimenti in PTFE. Il controllo preciso dell'attrito superficiale, dell'usura e dell'adesione dei rivestimenti è essenziale per garantire le prestazioni previste.

OBIETTIVO DI MISURAZIONE

In questa applicazione, il processo di usura di un rivestimento in PTFE per una padella antiaderente viene simulato utilizzando il tribometro NANOVEA in modalità lineare alternata.

NANOVEA T50

Tribometro compatto a peso libero

Inoltre, il tester meccanico NANOVEA è stato utilizzato per eseguire un test di adesione a micrograffi per determinare il carico critico del fallimento dell'adesione del rivestimento in PTFE.

NANOVEA PB1000

Tester meccanico a piattaforma grande

PROCEDURA DI PROVA

TEST DI USURA

USURA LINEARE RECIPROCA MEDIANTE TRIBOMETRO

Il comportamento tribologico del campione di rivestimento in PTFE, compreso il coefficiente di attrito (COF) e la resistenza all'usura, è stato valutato utilizzando il sistema NANOVEA Tribometro in modalità alternativa lineare. Contro il rivestimento è stata utilizzata una punta sferica in acciaio inossidabile 440 con un diametro di 3 mm (grado 100). Il COF è stato continuamente monitorato durante il test di usura del rivestimento in PTFE.

 

Il tasso di usura, K, è stato calcolato utilizzando la formula K=V/(F×s)=A/(F×n), dove V rappresenta il volume usurato, F è il carico normale, s è la distanza di scorrimento, A è l'area della sezione trasversale della pista di usura e n è il numero di corse. I profili delle tracce di usura sono stati valutati utilizzando NANOVEA Profilometro otticoe la morfologia della traccia di usura è stata esaminata utilizzando un microscopio ottico.

PARAMETRI DEL TEST DI USURA

CARICO 30 N
DURATA DEL TEST 5 min
TASSO DI SCORRIMENTO 80 giri al minuto
AMPIEZZA DELLA TRACCIA 8 mm
RIVOLUZIONI 300
DIAMETRO DELLA SFERA 3 mm
MATERIALE DELLA SFERA Acciaio inox 440
LUBRIFICANTE Nessuno
ATMOSFERA Aria
TEMPERATURA 230C (RT)
UMIDITÀ 43%

PROCEDURA DI PROVA

TEST DI SCRATCH

TEST DI ADESIONE AL MICROGRAFFIO CON TESTER MECCANICO

La misurazione dell'adesione ai graffi del PTFE è stata condotta utilizzando NANOVEA Collaudatore meccanico con uno stilo diamantato Rockwell C da 1200 (raggio di 200 μm) in modalità Micro Scratch Tester.

 

Per garantire la riproducibilità dei risultati, sono stati eseguiti tre test in condizioni identiche.

PARAMETRI DEL TEST SCRATCH

TIPO DI CARICO Progressivo
CARICO INIZIALE 0,01 mN
CARICO FINALE 20 mN
TASSO DI CARICO 40 mN/min
LUNGHEZZA DELLO SCRATCH 3 mm
VELOCITÀ DI SCRITTURA, dx/dt 6,0 mm/min
GEOMETRIA DEL PENETRATORE 120o Rockwell C
MATERIALE INDENTATORE (punta) Diamante
RAGGIO DELLA PUNTA DEL PENETRATORE 200 μm

RISULTATI E DISCUSSIONE

USURA LINEARE RECIPROCA MEDIANTE TRIBOMETRO

Il COF registrato in situ è mostrato nella FIGURA 1. Il campione di prova ha mostrato un COF di ~0,18 durante i primi 130 giri, a causa della bassa appiccicosità del PTFE. Tuttavia, si è verificato un improvviso aumento del COF fino a ~1 una volta che il rivestimento si è rotto, rivelando il substrato sottostante. Dopo i test di movimento alternativo lineare, il profilo della pista di usura è stato misurato utilizzando NANOVEA Profilometro ottico senza contatto, come mostrato nella FIGURA 2. Dai dati ottenuti, il tasso di usura corrispondente è stato calcolato in ~2,78 × 10-3 mm3/Nm, mentre la profondità della traccia di usura è stata determinata in 44,94 µm.

Configurazione del test di usura del rivestimento in PTFE sul tribometro NANOVEA T50.

FIGURA 1: Evoluzione della COF durante il test di usura del rivestimento in PTFE.

FIGURA 2: Estrazione di tracce di usura in PTFE.

PTFE Prima della rottura

COF massimo 0.217
Min COF 0.125
Media COF 0.177

PTFE Dopo la rottura

COF massimo 0.217
Min COF 0.125
Media COF 0.177

TABELLA 1: COF prima e dopo la rottura durante il test di usura.

RISULTATI E DISCUSSIONE

TEST DI ADESIONE AL MICROGRAFFIO CON TESTER MECCANICO

L'adesione del rivestimento in PTFE al substrato è stata misurata mediante test di graffiatura con uno stilo diamantato da 200 µm. La micrografia è mostrata in FIGURA 3 e FIGURA 4, l'evoluzione della COF e la profondità di penetrazione in FIGURA 5. I risultati dei test di graffio del rivestimento in PTFE sono riassunti nella TABELLA 4. All'aumentare del carico sullo stilo diamantato, questo è penetrato progressivamente nel rivestimento, con conseguente aumento della COF. Quando è stato raggiunto un carico di ~8,5 N, si è verificata la rottura del rivestimento e l'esposizione del substrato ad alta pressione, che ha portato a un COF elevato di ~0,3. Il basso St Dev riportato nella TABELLA 2 dimostra la ripetibilità del test di graffiatura del rivestimento in PTFE condotto con il tester meccanico NANOVEA.

FIGURA 3: Micrografia del graffio completo su PTFE (10X).

FIGURA 4: Micrografia del graffio completo su PTFE (10X).

FIGURA 5: Grafico dell'attrito che mostra la linea del punto critico di rottura per il PTFE.

Graffio Punto di guasto [N] Forza di attrito [N] COF
1 0.335 0.124 0.285
2 0.337 0.207 0.310
3 0.380 0.229 0.295
Media 8.52 2.47 0.297
St dev 0.17 0.16 0.012

TABELLA 2: Riepilogo del carico critico, della forza di attrito e della COF durante la prova di graffiatura.

CONCLUSIONE

In questo studio abbiamo condotto una simulazione del processo di usura di un rivestimento in PTFE per padelle antiaderenti utilizzando il tribometro NANOVEA T50 in modalità lineare alternata. Il rivestimento in PTFE ha mostrato un basso COF di ~0,18 e ha subito una rottura a circa 130 giri. La valutazione quantitativa dell'adesione del rivestimento in PTFE al substrato metallico è stata eseguita utilizzando il tester meccanico NANOVEA, che ha determinato un carico critico di rottura dell'adesione del rivestimento pari a ~8,5 N in questo test.

 

I tribometri NANOVEA offrono funzionalità precise e ripetibili di test di usura e attrito utilizzando modalità rotative e lineari conformi alle norme ISO e ASTM. Offrono moduli opzionali per l'usura ad alta temperatura, la lubrificazione e la tribocorrosione, tutti integrati in un unico sistema. Questa versatilità consente agli utenti di simulare con maggiore precisione gli ambienti applicativi del mondo reale e di acquisire una conoscenza approfondita dei meccanismi di usura e delle proprietà tribologiche di materiali diversi.

 

I tester meccanici NANOVEA offeriscono moduli Nano, Micro e Macro, ciascuno dei quali include modalità di prova di indentazione, graffio e usura conformi alle norme ISO e ASTM, offrendo la più ampia e semplice gamma di capacità di prova disponibile in un unico sistema.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Test di nano-graffio e mar della vernice su substrato metallico

Test Nano Scratch & Mar

di vernice su substrato metallico

Preparato da

SUSANA CABELLO

INTRODUZIONE

La vernice con o senza strato duro è uno dei rivestimenti più comunemente utilizzati. La vediamo sulle auto, sui muri, sugli elettrodomestici e praticamente su tutto ciò che necessita di un rivestimento protettivo o semplicemente per scopi estetici. Le vernici destinate alla protezione del substrato sottostante spesso contengono sostanze chimiche che impediscono alla vernice di prendere fuoco o semplicemente di perdere il colore o di screpolarsi. Spesso le vernici utilizzate per scopi estetici sono disponibili in vari colori, ma non sono necessariamente destinate alla protezione del substrato o a una lunga durata.

Tuttavia, tutte le vernici subiscono un certo invecchiamento nel corso del tempo. Gli agenti atmosferici sulla vernice possono spesso modificarne le proprietà rispetto a quelle previste dal produttore. Può scheggiarsi più rapidamente, scrostarsi con il calore, perdere colore o creparsi. I diversi cambiamenti di proprietà delle vernici nel tempo sono il motivo per cui i produttori offrono una scelta così ampia. Le vernici sono personalizzate per soddisfare le diverse esigenze dei singoli clienti.

IMPORTANZA DEL NANO SCRATCH TEST PER IL CONTROLLO DI QUALITÀ

Una delle principali preoccupazioni dei produttori di vernici è la capacità del loro prodotto di resistere alle screpolature. Una volta che la vernice inizia a screpolarsi, non riesce a proteggere il substrato su cui è stata applicata e quindi non soddisfa il cliente. Ad esempio, se un ramo dovesse colpire la fiancata di un'auto e subito dopo la vernice iniziasse a scheggiarsi, i produttori di vernice perderebbero l'attività a causa della scarsa qualità della vernice. La qualità della vernice è molto importante perché se il metallo sotto la vernice viene esposto può iniziare ad arrugginirsi o a corrodersi a causa della nuova esposizione.

 

Ragioni simili valgono per molti altri settori, come le forniture per la casa e l'ufficio, l'elettronica, i giocattoli, gli strumenti di ricerca e altro ancora. Anche se la vernice può essere resistente alle crepe quando viene applicata per la prima volta ai rivestimenti metallici, le proprietà possono cambiare nel corso del tempo quando il campione è stato sottoposto agli agenti atmosferici. Per questo motivo è molto importante che i campioni di vernice siano testati allo stato di invecchiamento. Sebbene la fessurazione sotto un elevato carico di stress possa essere inevitabile, il produttore deve prevedere l'indebolimento dei cambiamenti nel tempo e la profondità del graffio da affettuare per fornire ai propri consumatori i migliori prodotti possibili.

OBIETTIVO DI MISURAZIONE

Dobbiamo simulare il processo di graffiatura in modo controllato e monitorato per osservare gli effetti del comportamento del campione. In questa applicazione, il tester meccanico NANOVEA PB1000 in modalità Nano Scratch Testing viene utilizzato per misurare il carico necessario a causare il cedimento di un campione di vernice di circa 7 anni di spessore pari a 30-50 μm su un substrato metallico.

Uno stilo con punta di diamante da 2 μm viene utilizzato con un carico progressivo da 0,015 mN a 20,00 mN per graffiare il rivestimento. Abbiamo eseguito una scansione pre e post della vernice con un carico di 0,2 mN per determinare il valore della profondità reale del graffio. La profondità reale analizza la deformazione plastica ed elastica del campione durante il test, mentre la scansione successiva analizza solo la deformazione plastica del graffio. Il punto in cui il rivestimento si rompe per fessurazione è considerato il punto di rottura. Abbiamo utilizzato l'ASTMD7187 come guida per determinare i nostri parametri di prova.

 

Si può concludere che, avendo utilizzato un campione esposto alle intemperie; quindi, testando un campione di vernice al suo stadio più debole, abbiamo ottenuto minori punti di rottura.

 

Su questo campione sono stati eseguiti cinque test al fine di

determinare con esattezza i carichi critici di rottura.

NANOVEA

PB1000

PARAMETRI DEL TEST

a seguire ASTM D7027

La superficie di un campione di rugosità è stata scansionata con un NANOVEA ST400 dotato di un sensore ad alta velocità che genera una linea luminosa di 192 punti, come mostrato in FIGURA 1. Questi 192 punti scansionano contemporaneamente la superficie del campione, aumentando notevolmente la velocità di scansione. Questi 192 punti scansionano la superficie del campione contemporaneamente, aumentando notevolmente la velocità di scansione.

TIPO DI CARICO Progressivo
CARICO INIZIALE 0,015 mN
CARICO FINALE 20 mN
TASSO DI CARICO 20 mN/min
LUNGHEZZA DELLO SCRATCH 1,6 mm
VELOCITÀ DI SCRATCH, dx/dt 1,601 mm/min
CARICAMENTO PRE-SCAN 0,2 mN
CARICAMENTO POST-SCANSIONE 0,2 mN
Indentatore conico 90° Raggio della punta 2 µm

tipo di penetratore

Conico

Cono diamantato a 90°

Raggio della punta di 2 µm

Indentatore conico Diamante 90° Cono 2 µm raggio della punta

RISULTATI

Questa sezione presenta i dati raccolti sui guasti durante la prova di scratch. La prima sezione descrive i cedimenti osservati durante lo scratch e definisce i carichi critici riportati. La parte successiva contiene una tabella riassuntiva dei carichi critici per tutti i campioni e una rappresentazione grafica. L'ultima parte presenta i risultati dettagliati per ogni campione: i carichi critici per ogni graffio, le micrografie di ogni guasto e il grafico della prova.

GUASTI OSSERVATI E DEFINIZIONE DEI CARICHI CRITICI

FALLIMENTO CRITICO:

DANNO INIZIALE

Questo è il primo punto in cui si osserva il danno lungo la traccia del graffio.

nano graffio guasto critico danno iniziale

FALLIMENTO CRITICO:

DANNO COMPLETO

A questo punto, il danno è più significativo: la vernice si sta scheggiando e crepando lungo la traccia dei graffi.

nano graffio guasto critico danno completo

RISULTATI DETTAGLIATI

* I valori di rottura si riferiscono al punto di fessurazione del substrato.

CARICHI CRITICI
SCRATCH DANNO INIZIALE [mN] DANNO COMPLETO [µm]
1 14.513 4.932
2 3.895 4.838
3 3.917 4.930
MEDIA 3.988 4.900
DEV STD 0.143 0.054
Micrografia del graffio completo del test di nano graffio (magnificazione 1000x).

FIGURA 2: Micrografia del graffio completo (ingrandimento 1000x).

Micrografia del danno iniziale del test di nano graffio (magnificazione 1000x)

FIGURA 3: Micrografia del danno iniziale (ingrandimento 1000x).

Micrografia del danno completo da nano-graffio (magnificazione 1000x).

FIGURA 4: Micrografia del danno completo (ingrandimento 1000x).

Forza d'attrito e Coefficiente di attrito del test lineare di nano graffio

FIGURA 5: Forza di attrito e Coefficiente di attrito.

Profilo della superficie a nano-graffio lineare

FIGURA 6: Profilo della superficie.

Linear Nano Scratch Test Profondità reale e profondità residua

FIGURA 7: Profondità vera e profondità residua.

CONCLUSIONE

La NANOVEA Collaudatore meccanico nel Nano Scratch Tester consente di simulare molti guasti reali di vernici e rivestimenti duri. Applicando carichi crescenti in modo controllato e strettamente monitorato, lo strumento consente di identificare a quale carico si verificano i guasti. Questo può essere utilizzato per determinare i valori quantitativi della resistenza ai graffi. È noto che il rivestimento testato, in assenza di agenti atmosferici, presenta una prima cricca a circa 22 mN. Con valori più vicini a 5 mN, è chiaro che il periodo di 7 anni ha degradato la vernice.

La compensazione del profilo originale consente di ottenere una profondità corretta durante il graffio e di misurare la profondità residua dopo il graffio. Ciò fornisce ulteriori informazioni sul comportamento plastico ed elastico del rivestimento in presenza di un carico crescente. Sia la fessurazione che le informazioni sulla deformazione possono essere di grande utilità per migliorare il rivestimento duro. Le deviazioni standard molto ridotte dimostrano anche la riproducibilità della tecnica dello strumento, che può aiutare i produttori a migliorare la qualità del loro rivestimento/vernice dura e a studiare gli effetti degli agenti atmosferici.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Rivestimenti industriali Valutazione di graffi e usura

RIVESTIMENTO INDUSTRIALE

VALUTAZIONE DEI GRAFFI E DELL'USURA MEDIANTE TRIBOMETRO

Preparato da

DUANJIE LI, PhD & ANDREA HERRMANN

INTRODUZIONE

La vernice acrilica uretanica è un tipo di rivestimento protettivo ad asciugatura rapida ampiamente utilizzato in diverse applicazioni industriali, come la vernice per pavimenti, la vernice per auto e altre. Quando viene utilizzata come vernice per pavimenti, può essere impiegata in aree a forte traffico pedonale e di ruote gommate, come passaggi pedonali, cordoli e parcheggi.

IMPORTANZA DEI TEST DI GRAFFIATURA E USURA PER IL CONTROLLO DI QUALITÀ

Tradizionalmente, i test di abrasione Taber sono stati eseguiti per valutare la resistenza all'usura delle vernici acriliche per pavimenti secondo lo standard ASTM D4060. Tuttavia, come indicato nella norma, "per alcuni materiali, i test di abrasione che utilizzano il Taber Abraser possono essere soggetti a variazioni dovute a cambiamenti nelle caratteristiche abrasive della ruota durante il test".1 Ciò può comportare una scarsa riproducibilità dei risultati dei test e creare difficoltà nel confrontare i valori riportati da diversi laboratori. Inoltre, nei test di abrasione Taber, la resistenza all'abrasione è calcolata come perdita di peso a un determinato numero di cicli di abrasione. Tuttavia, le vernici acriliche per pavimenti hanno uno spessore del film secco raccomandato di 37,5-50 μm2.

L'aggressivo processo di abrasione di Taber Abraser può consumare rapidamente il rivestimento in uretano acrilico e creare una perdita di massa nel substrato, con conseguenti errori sostanziali nel calcolo della perdita di peso della vernice. Anche l'impianto di particelle abrasive nella vernice durante il test di abrasione contribuisce agli errori. Pertanto, una misurazione quantificabile e affidabile ben controllata è fondamentale per garantire una valutazione riproducibile dell'usura della vernice. Inoltre, la test di graffiatura consente agli utenti di rilevare cedimenti prematuri di adesivi/coesive in applicazioni reali.

OBIETTIVO DI MISURAZIONE

In questo studio mostriamo che NANOVEA Tribometri e Tester Meccanici sono ideali per la valutazione e il controllo qualità dei rivestimenti industriali.

Il processo di usura delle vernici acriliche per pavimenti con diversi strati di finitura viene simulato in modo controllato e monitorato utilizzando il tribometro NANOVEA. Il test del micrograffio viene utilizzato per misurare il carico necessario a causare un cedimento coesivo o adesivo della vernice.

NANOVEA T100

Il tribometro pneumatico compatto

NANOVEA PB1000

Il tester meccanico a piattaforma larga

PROCEDURA DI PROVA

Questo studio valuta quattro rivestimenti per pavimenti acrilici all'acqua disponibili in commercio che presentano lo stesso primer (base) e diversi topcoat della stessa formula con una piccola variazione nelle miscele di additivi allo scopo di migliorare la durata. Questi quattro rivestimenti sono identificati come campioni A, B, C e D.

TEST DI USURA

Il tribometro NANOVEA è stato applicato per valutare il comportamento tribologico, ad esempio coefficiente di attrito, COF e resistenza all'usura. Sulle vernici testate è stata applicata una punta sferica SS440 (6 mm di diametro, grado 100). Il COF è stato registrato in situ. Il tasso di usura, K, è stato valutato utilizzando la formula K=V/(F×s)=A/(F×n), dove V è il volume usurato, F è il carico normale, s è la distanza di scorrimento, A è l'area della sezione trasversale della pista di usura e n è il numero di giri. La rugosità superficiale e i profili delle tracce di usura sono stati valutati dal NANOVEA Profilometro otticoe la morfologia della traccia di usura è stata esaminata utilizzando il microscopio ottico.

PARAMETRI DEL TEST DI USURA

FORZA NORMALE

20 N

VELOCITÀ

15 m/min

DURATA DEL TEST

100, 150, 300 e 800 cicli

TEST DI SCRATCH

Il tester meccanico NANOVEA, dotato di uno stilo in diamante Rockwell C (raggio di 200 μm), è stato utilizzato per eseguire prove di graffiatura a carico progressivo sui campioni di vernice utilizzando la modalità Micro Scratch Tester. Sono stati utilizzati due carichi finali: 5 N per verificare la delaminazione della vernice dal primer e 35 N per verificare la delaminazione del primer dai substrati metallici. Per garantire la riproducibilità dei risultati, sono stati ripetuti tre test alle stesse condizioni su ciascun campione.

Le immagini panoramiche delle intere lunghezze dei graffi sono state generate automaticamente e le loro posizioni critiche di rottura sono state correlate con i carichi applicati dal software del sistema. Questa funzione del software consente agli utenti di eseguire analisi sulle tracce di graffio in qualsiasi momento, anziché dover determinare il carico critico al microscopio subito dopo i test di graffio.

PARAMETRI DEL TEST SCRATCH

TIPO DI CARICOProgressivo
CARICO INIZIALE0,01 mN
CARICO FINALE5 N / 35 N
TASSO DI CARICO10 / 70 N/min
LUNGHEZZA DELLO SCRATCH3 mm
VELOCITÀ DI SCRITTURA, dx/dt6,0 mm/min
GEOMETRIA DEL PENETRATORECono da 120º
MATERIALE INDENTATORE (punta)Diamante
RAGGIO DELLA PUNTA DEL PENETRATORE200 μm

RISULTATI DEI TEST DI USURA

Su ogni campione sono stati eseguiti quattro test di usura pin-on-disk a diversi numeri di giri (100, 150, 300 e 800 cicli) per monitorare l'evoluzione dell'usura. La morfologia superficiale dei campioni è stata misurata con un profilatore senza contatto NANOVEA 3D per quantificare la rugosità superficiale prima di eseguire i test di usura. Tutti i campioni presentavano una rugosità superficiale comparabile di circa 1 μm, come illustrato nella FIGURA 1. La COF è stata registrata in situ durante i test di usura, come mostrato in FIGURA 2. La FIGURA 4 presenta l'evoluzione delle tracce di usura dopo 100, 150, 300 e 800 cicli, mentre la FIGURA 3 riassume il tasso di usura medio dei diversi campioni nelle varie fasi del processo di usura.

 

Rispetto a un valore di COF di ~0,07 per gli altri tre campioni, il campione A presenta un COF molto più elevato, pari a ~0,15 all'inizio, che aumenta gradualmente e si stabilizza a ~0,3 dopo 300 cicli di usura. Un COF così elevato accelera il processo di usura e crea una quantità sostanziale di detriti di vernice, come indicato in FIGURA 4 - il topcoat del campione A ha iniziato a essere rimosso nei primi 100 giri. Come mostrato in FIGURA 3, il campione A presenta il tasso di usura più elevato, pari a ~5 μm2/N nei primi 300 cicli, che diminuisce leggermente a ~3,5 μm2/N a causa della migliore resistenza all'usura del substrato metallico. Il topcoat del campione C inizia a cedere dopo 150 cicli di usura, come mostrato in FIG. 4, che è anche indicato dall'aumento di COF in FIG. 2.

 

In confronto, il campione B e il campione D mostrano proprietà tribologiche migliori. Il campione B mantiene un basso COF per tutta la durata del test - il COF aumenta leggermente da~0,05 a ~0,1. Questo effetto lubrificante aumenta sostanzialmente la sua resistenza all'usura: il topcoat fornisce ancora una protezione superiore al primer sottostante dopo 800 cicli di usura. Il tasso di usura medio più basso, pari a soli ~0,77 μm2/N, è stato misurato per il campione B a 800 cicli. Lo strato superiore del campione D inizia a delaminare dopo 375 cicli, come dimostra il brusco aumento del COF in FIG. 2. Il tasso di usura medio del campione D è di circa 0,77 μm2/N. Il tasso di usura medio del campione D è di ~1,1 μm2/N a 800 cicli.

 

Rispetto alle tradizionali misure di abrasione Taber, il Tribometro NANOVEA fornisce valutazioni dell'usura ben controllate, quantificabili e affidabili, che garantiscono valutazioni riproducibili e controlli di qualità delle vernici commerciali per pavimenti/auto. Inoltre, la capacità di misurare il COF in situ consente agli utenti di correlare le diverse fasi di un processo di usura con l'evoluzione del COF, che è fondamentale per migliorare la comprensione fondamentale del meccanismo di usura e delle caratteristiche tribologiche di vari rivestimenti di vernice.

FIGURA 1: Morfologia 3D e rugosità dei campioni di vernice.

FIGURA 2: COF durante i test pin-on-disk.

FIGURA 3: Evoluzione del tasso di usura di diverse vernici.

FIGURA 4: Evoluzione delle tracce di usura durante i test con i perni su disco.

RISULTATI DEL TEST SCRATCH

La FIGURA 5 mostra il grafico della forza normale, della forza di attrito e della profondità reale in funzione della lunghezza del graffio per il campione A come esempio. È possibile installare un modulo opzionale di emissione acustica per fornire ulteriori informazioni. Con l'aumento lineare del carico normale, la punta dell'indentazione affonda gradualmente nel campione testato, come dimostra l'aumento progressivo della profondità reale. La variazione delle pendenze delle curve della forza di attrito e della profondità reale può essere utilizzata come una delle implicazioni dell'inizio della rottura del rivestimento.

FIGURA 5: Forza normale, forza d'attrito e profondità reale in funzione della lunghezza del graffio per il prova di graffiatura del Campione A con un carico massimo di 5 N.

Le FIGURE 6 e 7 mostrano i graffi completi di tutti e quattro i campioni di vernice testati con un carico massimo di 5 N e 35 N, rispettivamente. Il campione D ha richiesto un carico maggiore di 50 N per delaminare il primer. Le prove di graffiatura a 5 N di carico finale (FIG. 6) valutano il cedimento coesivo/adesivo della vernice superiore, mentre quelle a 35 N (FIG. 7) valutano la delaminazione del primer. Le frecce nelle micrografie indicano il punto in cui il rivestimento superiore o il primer iniziano a essere completamente rimossi dal primer o dal substrato. Il carico in questo punto, il cosiddetto Carico Critico (Lc), viene utilizzato per confrontare le proprietà coesive o adesive della vernice, come riassunto nella Tabella 1.

 

È evidente che il campione di vernice D ha la migliore adesione interfacciale - mostrando i più alti valori di Lc di 4,04 N alla delaminazione della vernice e di 36,61 N alla delaminazione del primer. Il campione B mostra la seconda migliore resistenza ai graffi. L'analisi dei graffi dimostra che l'ottimizzazione della formula della vernice è fondamentale per il comportamento meccanico, o più specificamente, per la resistenza ai graffi e l'adesione delle vernici acriliche per pavimenti.

Tabella 1: Sintesi dei carichi critici.

FIGURA 6: Micrografie del graffio completo con carico massimo di 5 N.

FIGURA 7: Micrografie del graffio completo con carico massimo di 35 N.

CONCLUSIONE

Rispetto alle tradizionali misure di abrasione Taber, il tester meccanico e il tribometro NANOVEA sono strumenti superiori per la valutazione e il controllo di qualità dei rivestimenti commerciali per pavimenti e per autoveicoli. Il NANOVEA Mechanical Tester in modalità Scratch può rilevare problemi di adesione/coesione in un sistema di rivestimento. Il Tribometro NANOVEA fornisce un'analisi tribologica ben controllata, quantificabile e ripetibile sulla resistenza all'usura e sul coefficiente di attrito delle vernici.

 

Sulla base delle analisi tribologiche e meccaniche complete sui rivestimenti acrilici per pavimenti a base d'acqua testati in questo studio, dimostriamo che il campione B possiede il COF e il tasso di usura più bassi e la seconda migliore resistenza ai graffi, mentre il campione D mostra la migliore resistenza ai graffi e la seconda migliore resistenza all'usura. Questa valutazione ci permette di valutare e selezionare il miglior candidato in base alle esigenze dei diversi ambienti di applicazione.

 

I moduli Nano e Micro del tester meccanico NANOVEA includono tutti modalità di indentazione, graffio e usura conformi alle norme ISO e ASTM, fornendo la più ampia gamma di test disponibili per la valutazione delle vernici su un unico modulo. Il tribometro NANOVEA offre test di usura e attrito precisi e ripetibili utilizzando modalità rotative e lineari conformi alle norme ISO e ASTM, con moduli opzionali per l'usura ad alta temperatura, la lubrificazione e la tribocorrosione disponibili in un unico sistema pre-integrato. La gamma impareggiabile di NANOVEA è la soluzione ideale per determinare l'intera gamma di proprietà meccaniche/tribologiche di rivestimenti, film e substrati sottili o spessi, morbidi o duri, tra cui durezza, modulo di Young, tenacità alla frattura, adesione, resistenza all'usura e molte altre. Sono disponibili profilatori ottici senza contatto NANOVEA opzionali per l'acquisizione di immagini 3D ad alta risoluzione di graffi e tracce di usura, oltre ad altre misure di superficie come la rugosità.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Test di graffiatura del rivestimento in nitruro di titanio

TEST DI GRAFFIATURA DEL RIVESTIMENTO IN NITRURO DI TITANIO

ISPEZIONE DI CONTROLLO QUALITÀ

Preparato da

DUANJIE LI, PhD

INTRODUZIONE

La combinazione di elevata durezza, eccellente resistenza all'usura, alla corrosione e all'inerzia rende il nitruro di titanio (TiN) un rivestimento protettivo ideale per i componenti metallici di vari settori. Ad esempio, la ritenzione dei bordi e la resistenza alla corrosione di un rivestimento TiN possono aumentare notevolmente l'efficienza di lavoro e prolungare la durata di vita di macchine utensili come lame di rasoio, frese metalliche, stampi a iniezione e seghe. L'elevata durezza, l'inerzia e l'atossicità rendono il TiN un ottimo candidato per le applicazioni nei dispositivi medici, compresi gli impianti e gli strumenti chirurgici.

IMPORTANZA DEL TEST DI SCRATCH DEL RIVESTIMENTO TiN

Le tensioni residue nei rivestimenti protettivi PVD/CVD svolgono un ruolo critico nelle prestazioni e nell'integrità meccanica del componente rivestito. Le sollecitazioni residue derivano da diverse fonti principali, tra cui le sollecitazioni di crescita, i gradienti termici, i vincoli geometrici e le sollecitazioni di servizio¹. Il disallineamento dell'espansione termica tra il rivestimento e il substrato, che si crea durante la deposizione del rivestimento a temperature elevate, porta a elevate sollecitazioni residue termiche. Inoltre, gli utensili rivestiti di TiN sono spesso utilizzati in presenza di sollecitazioni concentrate molto elevate, come ad esempio le punte da trapano e i cuscinetti. È fondamentale sviluppare un processo di controllo qualità affidabile per ispezionare quantitativamente la forza coesiva e adesiva dei rivestimenti funzionali protettivi.

[1] V. Teixeira, Vacuum 64 (2002) 393-399.

OBIETTIVO DI MISURAZIONE

In questo studio, mostriamo che NANOVEA Tester Meccanici in Scratch Mode sono ideali per valutare la forza coesiva/adesiva dei rivestimenti protettivi TiN in modo controllato e quantitativo.

NANOVEA

PB1000

CONDIZIONI DI PROVA

Per eseguire il rivestimento è stato utilizzato il tester meccanico NANOVEA PB1000. test di graffio su tre rivestimenti TiN utilizzando gli stessi parametri di prova riassunti di seguito:

MODALITÀ DI CARICAMENTO: Progressivo lineare

CARICO INIZIALE

0.02 N

CARICO FINALE

10 N

TASSO DI CARICO

20 N/min

LUNGHEZZA DELLO SCRATCH

5 mm

TIPO DI INDENTERO

Sfero-conico

Diamante, raggio 20 μm

RISULTATI E DISCUSSIONE

La FIGURA 1 mostra l'evoluzione registrata della profondità di penetrazione, del coefficiente di attrito (COF) e dell'emissione acustica durante il test. La FIGURA 2 mostra le tracce dei micrograffi sui campioni di TiN. I comportamenti di rottura a diversi carichi critici sono mostrati in FIGURA 3, dove il carico critico Lc1 è definito come il carico al quale si verifica il primo segno di cricca coesiva nella traccia del graffio, Lc2 è il carico dopo il quale si verificano ripetuti cedimenti per spallazione e Lc3 è il carico al quale il rivestimento viene completamente rimosso dal substrato. I valori di carico critico (Lc) per i rivestimenti TiN sono riassunti in FIGURA 4.

L'evoluzione della profondità di penetrazione, della COF e dell'emissione acustica fornisce una visione del meccanismo di rottura del rivestimento in diverse fasi, che in questo studio sono rappresentate dai carichi critici. Si può osservare che il campione A e il campione B presentano un comportamento comparabile durante il test di graffiatura. Lo stilo penetra progressivamente nel campione fino a una profondità di ~0,06 mm e il COF aumenta gradualmente fino a ~0,3 mentre il carico normale aumenta linearmente all'inizio della prova di graffiatura del rivestimento. Quando si raggiunge un Lc1 di ~3,3 N, si verifica il primo segno di rottura per scheggiatura. Ciò si riflette anche nei primi grandi picchi nel grafico della profondità di penetrazione, della COF e dell'emissione acustica. Quando il carico continua ad aumentare fino a Lc2 di ~3,8 N, si verificano ulteriori fluttuazioni della profondità di penetrazione, della COF e dell'emissione acustica. Si può osservare un continuo cedimento per spallazione su entrambi i lati della traccia di graffio. A Lc3, il rivestimento si stacca completamente dal substrato metallico sotto l'elevata pressione applicata dallo stilo, lasciando il substrato esposto e non protetto.

In confronto, il campione C presenta carichi critici più bassi in diverse fasi dei test di graffio del rivestimento, il che si riflette anche nell'evoluzione della profondità di penetrazione, del coefficiente di attrito (COF) e dell'emissione acustica durante il test di graffio del rivestimento. Il campione C presenta un intercalare di adesione con una durezza inferiore e una sollecitazione più elevata all'interfaccia tra il rivestimento TiN superiore e il substrato metallico rispetto ai campioni A e B.

Questo studio dimostra l'importanza di un adeguato supporto del substrato e dell'architettura del rivestimento per la qualità del sistema di rivestimento. Un intercalare più resistente può resistere meglio alla deformazione sotto un elevato carico esterno e alle sollecitazioni di concentrazione, migliorando così la forza coesiva e adesiva del sistema rivestimento/substrato.

FIGURA 1: Evoluzione della profondità di penetrazione, della COF e dell'emissione acustica dei campioni di TiN.

FIGURA 2: Traccia completa dei graffi dei rivestimenti TiN dopo i test.

FIGURA 3: Cedimenti del rivestimento TiN in presenza di diversi carichi critici, Lc.

FIGURA 4: Riepilogo dei valori di carico critico (Lc) per i rivestimenti TiN.

CONCLUSIONE

In questo studio abbiamo dimostrato che il tester meccanico NANOVEA PB1000 esegue test di graffiatura affidabili e accurati su campioni rivestiti di TiN in modo controllato e strettamente monitorato. Le misure di graffiatura consentono agli utenti di identificare rapidamente il carico critico al quale si verificano i tipici cedimenti del rivestimento coesivo e adesivo. I nostri strumenti sono strumenti di controllo qualità superiori, in grado di ispezionare e confrontare quantitativamente la qualità intrinseca di un rivestimento e l'integrità interfacciale di un sistema rivestimento/substrato. Un rivestimento con un adeguato intercalare può resistere a grandi deformazioni sotto un elevato carico esterno e a sollecitazioni di concentrazione e migliorare la forza coesiva e adesiva di un sistema rivestimento/substrato.

I moduli Nano e Micro di un tester meccanico NANOVEA includono tutti modalità di indentazione, graffiatura e usura conformi alle norme ISO e ASTM, fornendo la gamma di test più ampia e semplice da utilizzare disponibile in un unico sistema. La gamma impareggiabile di NANOVEA è la soluzione ideale per determinare l'intera gamma di proprietà meccaniche di rivestimenti, film e substrati sottili o spessi, morbidi o duri, tra cui durezza, modulo di Young, tenacità alla frattura, adesione, resistenza all'usura e molte altre.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Proprietà di adesione del rivestimento d'oro su un substrato di cristallo di quarzo

Proprietà di adesione del rivestimento in oro

su substrato di cristallo di quarzo

Preparato da

DUANJIE LI, Dottore di ricerca

INTRODUZIONE

La microbilancia a cristallo di quarzo (QCM) è un sensore di massa estremamente sensibile in grado di effettuare misure precise di piccole masse nell'ordine dei nanogrammi. Il QCM misura la variazione di massa sulla superficie rilevando le variazioni della frequenza di risonanza del cristallo di quarzo con due elettrodi applicati su ciascun lato della piastra. La capacità di misurare pesi estremamente ridotti lo rende un componente chiave in una varietà di strumenti di ricerca e industriali per rilevare e monitorare la variazione di massa, l'adsorbimento, la densità, la corrosione, ecc.

IMPORTANZA DELLO SCRATCH TEST PER IL QCM

Essendo un dispositivo estremamente preciso, il QCM misura la variazione di massa fino a 0,1 nanogrammi. Qualsiasi perdita di massa o delaminazione degli elettrodi sulla piastra di quarzo sarà rilevata dal cristallo di quarzo e causerà errori di misura significativi. Di conseguenza, la qualità intrinseca del rivestimento dell'elettrodo e l'integrità interfacciale del sistema rivestimento/substrato svolgono un ruolo essenziale nell'esecuzione di misure di massa accurate e ripetibili. Il test Micro scratch è una misura comparativa ampiamente utilizzata per valutare la coesione relativa o le proprietà di adesione dei rivestimenti in base al confronto dei carichi critici in corrispondenza dei quali si verificano i cedimenti. Si tratta di uno strumento superiore per un controllo di qualità affidabile dei QCM.

OBIETTIVO DI MISURAZIONE

In questa applicazione, il NANOVEA Collaudatore meccanico, in modalità Micro Scratch, viene utilizzato per valutare la forza coesiva e adesiva del rivestimento in oro sul substrato di quarzo di un campione QCM. Vorremmo mostrare la capacità del NANOVEA Tester meccanico per l'esecuzione di prove di micrograffio su un campione delicato con elevata precisione e ripetibilità.

NANOVEA

PB1000

CONDIZIONI DI PROVA

Il NANOVEA Il tester meccanico PB1000 è stato utilizzato per eseguire i test di micrograffiatura su un campione QCM utilizzando i parametri di prova riassunti di seguito. Sono stati eseguiti tre graffi per garantire la riproducibilità dei risultati.

TIPO DI CARICO: Progressivo

CARICO INIZIALE

0.01 N

CARICO FINALE

30 N

ATMOSFERA: Aria 24°C

VELOCITÀ DI SCORRIMENTO

2 mm/min

DISTANZA DI SCORRIMENTO

2 mm

RISULTATI E DISCUSSIONE

La traccia completa del micrograffio sul campione QCM è mostrata in FIGURA 1. I comportamenti di rottura a diversi carichi critici sono mostrati nella FIGURA 2., dove il carico critico, LC1 è definito come il carico al quale si verifica il primo segno di cedimento dell'adesivo nella traccia di graffio, LC2 è il carico dopo il quale si verificano cedimenti adesivi ripetitivi, e LC3 è il carico al quale il rivestimento viene completamente rimosso dal substrato. Si può osservare che la scheggiatura è minima a LC1 di 11,15 N, il primo segno di cedimento del rivestimento. 

Poiché il carico normale continua ad aumentare durante il test di micrograffio, si verificano cedimenti ripetitivi dell'adesivo dopo LC2 di 16,29 N. Quando LC3 di 19,09 N, il rivestimento si stacca completamente dal substrato di quarzo. Questi carichi critici possono essere utilizzati per confrontare quantitativamente la forza coesiva e adesiva del rivestimento e selezionare il candidato migliore per applicazioni mirate.

FIGURA 1: Traccia micrografica completa sul campione QCM.

FIGURA 2: Traccia micrograffio a diversi carichi critici.

FIGURA 3 L'evoluzione del coefficiente di attrito e della profondità può fornire maggiori informazioni sulla progressione dei cedimenti del rivestimento durante il test di micrograffio.

FIGURA 3: Evoluzione di COF e profondità durante il test di micrograffio.

CONCLUSIONE

In questo studio, abbiamo mostrato che il NANOVEA Mechanical Tester esegue test di micrograffio affidabili e accurati su un campione QCM. Applicando carichi linearmente crescenti in modo controllato e strettamente monitorato, la misura del graffio consente agli utenti di identificare il carico critico al quale si verifica il tipico cedimento del rivestimento coesivo e adesivo. Si tratta di uno strumento superiore per valutare e confrontare quantitativamente la qualità intrinseca del rivestimento e l'integrità interfacciale del sistema rivestimento/substrato per il QCM.

I moduli Nano, Micro o Macro del sistema NANOVEA Tutti i tester meccanici includono modalità di indentazione, graffiatura e usura conformi alle norme ISO e ASTM, offrendo la più ampia e semplice gamma di test disponibili in un unico sistema. NANOVEAè la soluzione ideale per determinare l'intera gamma di proprietà meccaniche di rivestimenti, film e substrati sottili o spessi, morbidi o duri, tra cui durezza, modulo di Young, tenacità alla frattura, adesione, resistenza all'usura e molte altre.

Inoltre, sono disponibili un profilatore 3D senza contatto e un modulo AFM opzionali per l'acquisizione di immagini 3D ad alta risoluzione di impronte, graffi e tracce di usura, oltre ad altre misure di superficie, come rugosità e deformazione.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Valutazione dell'usura e del graffio di fili di rame trattati superficialmente

Importanza della valutazione dell'usura e dei graffi dei fili di rame

Il rame ha una lunga storia di utilizzo nel cablaggio elettrico fin dall'invenzione dell'elettromagnete e del telegrafo. I fili di rame sono utilizzati in un'ampia gamma di apparecchiature elettroniche, come pannelli, contatori, computer, macchine commerciali ed elettrodomestici, grazie alla loro resistenza alla corrosione, alla saldabilità e alle prestazioni a temperature elevate, fino a 150°C. Circa la metà di tutto il rame estratto viene utilizzato per la produzione di conduttori di fili e cavi elettrici.

La qualità della superficie dei fili di rame è fondamentale per le prestazioni e la durata delle applicazioni. I micro difetti nei fili possono portare a un'usura eccessiva, all'innesco e alla propagazione di cricche, a una diminuzione della conduttività e a un'inadeguata saldabilità. Un adeguato trattamento superficiale dei fili di rame rimuove i difetti superficiali generati durante la trafilatura, migliorando la resistenza alla corrosione, ai graffi e all'usura. Molte applicazioni aerospaziali con fili di rame richiedono un comportamento controllato per evitare guasti imprevisti alle apparecchiature. Per valutare correttamente la resistenza all'usura e ai graffi della superficie del filo di rame sono necessarie misure quantificabili e affidabili.

 
 

 

Obiettivo di misurazione

In questa applicazione simuliamo un processo di usura controllata di diversi trattamenti superficiali del filo di rame. Test di graffiatura misura il carico necessario a causare la rottura dello strato superficiale trattato. Questo studio mette in mostra la Nanovea Tribometro e Collaudatore meccanico come strumenti ideali per la valutazione e il controllo qualità dei cavi elettrici.

 

 

Procedura di test e procedure

Il coefficiente di attrito (COF) e la resistenza all'usura di due diversi trattamenti superficiali sui fili di rame (filo A e filo B) sono stati valutati dal tribometro Nanovea utilizzando un modulo di usura alternativo lineare. Una sfera Al₂O₃ (6 mm di diametro) è il contromateriale utilizzato in questa applicazione. La traccia di usura è stata esaminata utilizzando Nanovea Profilometro 3D senza contatto. I parametri del test sono riepilogati nella Tabella 1.

In questo studio è stata utilizzata come esempio una sfera liscia di Al₂O₃ come materiale di contrasto. È possibile applicare qualsiasi materiale solido con forma e finitura superficiale diverse, utilizzando un dispositivo personalizzato per simulare la situazione di applicazione reale.

 

 

Il tester meccanico di Nanovea, dotato di uno stilo in diamante Rockwell C (raggio di 100 μm), ha eseguito prove di graffiatura a carico progressivo sui fili rivestiti utilizzando la modalità micrograffio. I parametri del test di graffiatura e la geometria della punta sono riportati nella Tabella 2.
 

 

 

 

Risultati e discussione

Usura del filo di rame:

La Figura 2 mostra l'evoluzione della COF dei fili di rame durante i test di usura. Il filo A mostra un COF stabile di ~0,4 per tutta la durata del test di usura, mentre il filo B presenta un COF di ~0,35 nei primi 100 giri e aumenta progressivamente fino a ~0,4.

 

La Figura 3 confronta le tracce di usura dei fili di rame dopo i test. Il profilometro 3D senza contatto di Nanovea ha offerto un'analisi superiore della morfologia dettagliata delle tracce di usura. Consente una determinazione diretta e accurata del volume delle tracce di usura, fornendo una comprensione fondamentale del meccanismo di usura. La superficie del filo B presenta danni significativi alle tracce di usura dopo un test di usura a 600 giri. La vista 3D del profilometro mostra che lo strato trattato in superficie del filo B è stato completamente rimosso, accelerando in modo sostanziale il processo di usura. Ciò ha lasciato una traccia di usura appiattita sul filo B dove è esposto il substrato di rame. Ciò può comportare una riduzione significativa della durata di vita delle apparecchiature elettriche in cui viene utilizzato il filo B. In confronto, il filo A presenta un'usura relativamente lieve, evidenziata da una traccia di usura poco profonda sulla superficie. Lo strato trattato in superficie sul filo A non si è rimosso come quello sul filo B nelle stesse condizioni.

Resistenza ai graffi della superficie del filo di rame:

La Figura 4 mostra le tracce di graffi sui fili dopo il test. Lo strato protettivo del filo A mostra un'ottima resistenza ai graffi. Si delamina a un carico di ~12,6 N. In confronto, lo strato protettivo del filo B si è rotto a un carico di ~1,0 N. Una differenza così significativa nella resistenza ai graffi di questi fili contribuisce alle loro prestazioni all'usura, dove il filo A possiede una resistenza all'usura sostanzialmente superiore. L'evoluzione della forza normale, della COF e della profondità durante i test di graffiatura mostrati nella Fig. 5 fornisce ulteriori informazioni sul cedimento del rivestimento durante i test.

Conclusione

In questo studio controllato abbiamo presentato il tribometro Nanovea che effettua una valutazione quantitativa della resistenza all'usura dei fili di rame trattati superficialmente e il tester meccanico Nanovea che fornisce una valutazione affidabile della resistenza ai graffi dei fili di rame. Il trattamento superficiale del filo gioca un ruolo fondamentale nelle proprietà tribomeccaniche durante la sua vita. Un trattamento superficiale adeguato del filo A ha migliorato significativamente la resistenza all'usura e ai graffi, fondamentale per le prestazioni e la durata dei fili elettrici in ambienti difficili.

Il tribometro di Nanovea offre test di usura e attrito precisi e ripetibili utilizzando modalità rotative e lineari conformi agli standard ISO e ASTM, con moduli opzionali per l'usura ad alta temperatura, la lubrificazione e la tribocorrosione disponibili in un unico sistema pre-integrato. La gamma impareggiabile di Nanovea è la soluzione ideale per determinare l'intera gamma di proprietà tribologiche di rivestimenti, film e substrati sottili o spessi, morbidi o duri.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Capire i guasti del rivestimento con i test di graffiatura

Introduzione:

L'ingegneria superficiale dei materiali svolge un ruolo significativo in una varietà di applicazioni funzionali, che vanno dall'aspetto decorativo alla protezione dei substrati dall'usura, dalla corrosione e da altre forme di attacco. Un fattore importante e preponderante che determina la qualità e la durata dei rivestimenti è la loro forza coesiva e adesiva.

Clicca qui per leggere!

Resistenza ai graffi delle protezioni dello schermo del cellulare

Resistenza ai graffi delle protezioni dello schermo del cellulare

Per saperne di più
 

Importanza di testare le protezioni per lo schermo

Sebbene gli schermi dei telefoni siano progettati per resistere a frantumi e graffi, sono comunque suscettibili di danni. L'uso quotidiano del telefono ne provoca l'usura, ad esempio l'accumulo di graffi e crepe. Poiché la riparazione di questi schermi può essere costosa, le protezioni per lo schermo sono un articolo economico per la prevenzione dei danni, comunemente acquistato e utilizzato per aumentare la durata dello schermo.


Utilizzando il modulo Macro del tester meccanico Nanovea PB1000 in combinazione con il sensore di emissioni acustiche (AE), possiamo identificare chiaramente i carichi critici ai quali le protezioni per schermi mostrano cedimenti dovuti a graffi1 per creare uno studio comparativo tra due tipi di protezioni per schermi.


Due tipi comuni di materiali per la protezione dello schermo sono il TPU (poliuretano termoplastico) e il vetro temperato. Tra i due, il vetro temperato è considerato il migliore in quanto offre una migliore protezione dagli urti e dai graffi. Tuttavia, è anche il più costoso. Le protezioni per schermo in TPU, invece, sono meno costose e rappresentano una scelta popolare per i consumatori che preferiscono le protezioni per schermo in plastica. Poiché le protezioni per schermi sono progettate per assorbire graffi e urti e sono solitamente realizzate in materiali con proprietà fragili, i test controllati sui graffi abbinati al rilevamento AE in situ sono una configurazione di test ottimale per determinare i carichi ai quali si verificano i cedimenti coesivi (ad esempio, cricche, scheggiature e fratture) e/o i cedimenti adesivi (ad esempio, delaminazione e spallazione).



Obiettivo di misurazione

In questo studio sono stati eseguiti tre test di graffiatura su due diversi screen protector commerciali utilizzando il modulo Macro del tester meccanico PB1000 di Nanovea. Utilizzando un sensore di emissioni acustiche e un microscopio ottico, sono stati identificati i carichi critici ai quali ogni pellicola protettiva ha mostrato dei cedimenti.




Procedura di test e procedure

Il tester meccanico Nanovea PB1000 è stato utilizzato per testare due protezioni dello schermo applicate allo schermo di un telefono e fissate a un tavolo con sensore di attrito. I parametri di prova per tutti i graffi sono riportati nella Tabella 1.




Risultati e discussione

Poiché le protezioni per lo schermo erano realizzate con materiali diversi, ciascuna di esse ha mostrato diversi tipi di guasti. Per la protezione dello schermo in TPU è stato osservato un solo guasto critico, mentre per la protezione dello schermo in vetro temperato se ne sono verificati due. I risultati per ciascun campione sono riportati nella Tabella 2. Il carico critico #1 è definito come il carico al quale le protezioni dello schermo hanno iniziato a mostrare segni di rottura coesiva al microscopio. Il carico critico #2 è definito dal primo cambiamento di picco osservato nei dati del grafico delle emissioni acustiche.


Per la protezione dello schermo in TPU, il carico critico #2 è correlato alla posizione del graffio in cui la protezione ha iniziato a staccarsi visibilmente dallo schermo del telefono. Una volta superato il carico critico #2, è apparso un graffio sulla superficie dello schermo del telefono per il resto dei test di graffiatura. Per la protezione dello schermo in vetro temperato, il carico critico #1 è correlato alla posizione in cui hanno iniziato a comparire le fratture radiali. Il carico critico #2 si verifica verso la fine del graffio a carichi più elevati. L'emissione acustica è di entità maggiore rispetto alla protezione dello schermo in TPU, tuttavia non si sono verificati danni allo schermo del telefono. In entrambi i casi, il carico critico #2 corrisponde a un'ampia variazione di profondità, che indica che il penetratore ha perforato la protezione dello schermo.













Conclusione




In questo studio mostriamo la capacità del tester meccanico Nanovea PB1000 di eseguire test di graffiatura controllati e ripetibili e di utilizzare contemporaneamente il rilevamento delle emissioni acustiche per identificare con precisione i carichi ai quali si verificano i cedimenti adesivi e coesivi nelle protezioni dello schermo in TPU e vetro temperato. I dati sperimentali presentati in questo documento supportano l'ipotesi iniziale che il vetro temperato sia il migliore per la prevenzione dei graffi sugli schermi dei telefoni.


Il tester meccanico Nanovea offre funzionalità di misurazione di indentazione, graffi e usura accurate e ripetibili utilizzando moduli Nano e Micro conformi a ISO e ASTM. IL Collaudatore meccanico è un sistema completo, che lo rende la soluzione ideale per determinare l'intera gamma di proprietà meccaniche di rivestimenti, pellicole e substrati sottili o spessi, morbidi o duri.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Automazione multigraffio di campioni simili con il tester meccanico PB1000

Introduzione :

I rivestimenti sono ampiamente utilizzati in vari settori industriali grazie alle loro proprietà funzionali. La durezza, la resistenza all'erosione, il basso attrito e l'elevata resistenza all'usura sono solo alcune delle numerose proprietà che rendono importanti i rivestimenti. Un metodo comunemente utilizzato per quantificare queste proprietà è il test di graffiatura, che consente di misurare in modo ripetibile le proprietà adesive e/o coesive di un rivestimento. Confrontando i carichi critici ai quali si verifica il cedimento, è possibile valutare le proprietà intrinseche di un rivestimento.

Clicca per saperne di più!

Uno sguardo migliore alle lenti in policarbonato

Uno sguardo migliore alle lenti in policarbonato Per saperne di più
 
Le lenti in policarbonato sono comunemente utilizzate in molte applicazioni ottiche. L'elevata resistenza agli urti, il peso ridotto e il costo contenuto della produzione in grandi volumi le rendono più pratiche del vetro tradizionale in diverse applicazioni [1]. Alcune di queste applicazioni richiedono criteri di sicurezza (ad esempio, occhiali di sicurezza), complessità (ad esempio, lenti Fresnel) o durata (ad esempio, lenti per semafori) che sono difficili da soddisfare senza l'uso della plastica. La capacità di soddisfare in modo economico molti requisiti, mantenendo allo stesso tempo qualità ottiche sufficienti, fa sì che le lenti in plastica si distinguano nel loro campo. Anche le lenti in policarbonato hanno dei limiti. La principale preoccupazione dei consumatori è la facilità con cui si possono graffiare. Per ovviare a questo inconveniente, si possono eseguire processi aggiuntivi per applicare un rivestimento antigraffio. Nanovea analizza alcune importanti proprietà delle lenti in plastica utilizzando i nostri tre strumenti metrologici: Profilometro, Tribometro, e Collaudatore meccanico.   Clicca per saperne di più!