EE.UU./GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTACTO

Categoría: Sin categoría

 

Compresión en materiales blandos y flexibles

Importancia de probar materiales blandos y flexibles

Un ejemplo de muestras muy blandas y flexibles son los sistemas microelectromecánicos. Los MEMS se utilizan en productos comerciales de uso cotidiano, como impresoras, teléfonos móviles y automóviles [1]. Sus usos también incluyen funciones especiales, como biosensores [2] y recolección de energía [3]. Para sus aplicaciones, los MEMS deben ser capaces de pasar de forma reversible y repetida de su configuración original a una configuración comprimida [4]. Para comprender cómo reaccionarán las estructuras ante las fuerzas mecánicas, se pueden realizar ensayos de compresión. Los ensayos de compresión se pueden utilizar para probar y ajustar diversas configuraciones de MEMS, así como para probar los límites de fuerza superior e inferior de estas muestras.

 La Nanovea Comprobador mecánico Nano La capacidad del módulo para recopilar datos con precisión a cargas muy bajas y desplazarse más de 1 mm lo hace ideal para probar muestras blandas y flexibles. Al contar con sensores de carga y profundidad independientes, el gran desplazamiento del indentador no afecta a las lecturas del sensor de carga. La capacidad de realizar pruebas de baja carga en un rango de más de 1 mm de desplazamiento del indentador hace que nuestro sistema sea único en comparación con otros sistemas de nanoindentación. En comparación, una distancia de desplazamiento razonable para un sistema de indentación a nanoescala suele ser inferior a 250 μm.
 

Objetivo de medición

En este estudio de caso, Nanovea realizó pruebas de compresión en dos muestras flexibles y elásticas únicas. Mostramos nuestra capacidad para realizar compresiones con cargas muy bajas y registrar grandes desplazamientos, al tiempo que obtenemos datos precisos con cargas bajas, y cómo esto se puede aplicar a la industria de los MEMS. Debido a las políticas de privacidad, las muestras y su origen no se revelarán en este estudio.

Parámetros de medición

Nota: La velocidad de carga de 1 V/min es proporcional a aproximadamente 100 μm de desplazamiento cuando el penetrador se encuentra en el aire.

Resultados y debate

La respuesta de la muestra a las fuerzas mecánicas se puede observar en las curvas de carga frente a profundidad. La muestra A solo muestra una deformación elástica lineal con los parámetros de prueba indicados anteriormente. La figura 2 es un buen ejemplo de la estabilidad que se puede alcanzar para una curva de carga frente a profundidad a 75 μN. Debido a la estabilidad de los sensores de carga y profundidad, sería fácil percibir cualquier respuesta mecánica significativa de la muestra.

La muestra B muestra una respuesta mecánica diferente a la de la muestra A. A partir de los 750 μm de profundidad, comienza a aparecer un comportamiento similar a una fractura en el gráfico. Esto se observa en las fuertes caídas de carga a 850 y 975 μm de profundidad. A pesar de desplazarse a una alta velocidad de carga durante más de 1 mm en un rango de 8 mN, nuestros sensores de carga y profundidad de alta sensibilidad permiten al usuario obtener las elegantes curvas de carga frente a profundidad que se muestran a continuación.

La rigidez se calculó a partir de la parte de descarga de las curvas de carga frente a profundidad. La rigidez refleja la fuerza necesaria para deformar la muestra. Para este cálculo de rigidez, se utilizó un coeficiente de Poisson pseudo de 0,3, ya que se desconoce el coeficiente real del material. En este caso, la muestra B resultó ser más rígida que la muestra A.

 

Conclusión

Se sometieron a prueba dos muestras flexibles diferentes bajo compresión utilizando el módulo Nano del Nanovea Mechanical Tester. Las pruebas se realizaron con cargas muy bajas (1 mm). Las pruebas de compresión a nanoescala con el módulo Nano han demostrado la capacidad del módulo para probar muestras muy blandas y flexibles. Las pruebas adicionales para este estudio podrían abordar cómo la carga cíclica repetida afecta al aspecto de recuperación elástica de las muestras elásticas a través de la opción de carga múltiple del Nanovea Mechanical Tester.

Para obtener más información sobre este método de prueba, no dude en ponerse en contacto con nosotros en info@nanovea.com y, si desea consultar otras notas de aplicación, visite nuestra amplia biblioteca digital de notas de aplicación.

Referencias

[1] “Introducción y áreas de aplicación de los MEMS”. EEHerald, 1 de marzo de 2017., www.eeherald.com/section/design-guide/mems_application_introduction.html.

[2] Louizos, Louizos-Alexandros; Athanasopoulos, Panagiotis G.; Varty, Kevin (2012). “Sistemas microelectromecánicos y nanotecnología. Una plataforma para la próxima era tecnológica de los stents”. Vasc Endovascular Surg. 46 (8): 605-609. doi:10.1177/1538574412462637. PMID 23047818.

[3] Hajati, Arman; Sang-Gook Kim (2011). “Recolección de energía piezoeléctrica de ancho de banda ultraamplio”. Applied Physics Letters. 99 (8): 083105. doi:10.1063/1.3629551.

[4] Fu, Haoran, et al. “Mesostructuras 3D moldeables y dispositivos microelectrónicos mediante mecánica de pandeo multiestable”. Nature materials 17.3 (2018): 268.

AHORA, HABLEMOS DE SU SOLICITUD

Evaluación de las pastillas de freno mediante tribología


Importancia de evaluar el rendimiento de las almohadillas de freno

Las pastillas de freno son compuestos, un material formado por múltiples ingredientes, que debe ser capaz de satisfacer un gran número de requisitos de seguridad. Las pastillas de freno ideales tienen un alto coeficiente de fricción (COF), un bajo índice de desgaste, un ruido mínimo y siguen siendo fiables en entornos variables. Para garantizar que la calidad de las pastillas de freno es capaz de satisfacer sus requisitos, pueden utilizarse ensayos tribológicos para identificar las especificaciones críticas.


La importancia de la fiabilidad de las pastillas de freno es muy alta; nunca debe descuidarse la seguridad de los pasajeros. Por ello, es fundamental reproducir las condiciones de funcionamiento e identificar posibles puntos de fallo.
Con el Nanovea Tribómetro, se aplica una carga constante entre un pasador, bola o plano y un contramaterial en constante movimiento. La fricción entre los dos materiales se recoge con una célula de carga rígida, lo que permite recoger las propiedades del material a diferentes cargas y velocidades y probarlo en entornos de alta temperatura, corrosivos o líquidos.



Objetivo de medición

En este estudio, se estudió el coeficiente de fricción de las pastillas de freno en un entorno de temperatura en continuo aumento desde la temperatura ambiente hasta 700°C. La temperatura ambiente se elevó in situ hasta que se observó un fallo apreciable de la pastilla de freno. Se colocó un termopar en la parte posterior de la clavija para medir la temperatura cerca de la interfaz de deslizamiento.



Procedimiento de ensayo y procedimientos




Resultados y debate

Este estudio se centra principalmente en la temperatura a la que empiezan a fallar las pastillas de freno. Los COF obtenidos no representan valores reales; el material de las patillas no es el mismo que el de los rotores de freno. También debe tenerse en cuenta que los datos de temperatura recogidos corresponden a la temperatura de la clavija y no a la temperatura de la interfaz de deslizamiento.

 








Al inicio de la prueba (temperatura ambiente), el COF entre el pasador SS440C y la pastilla de freno dio un valor constante de aproximadamente 0,2. A medida que aumentaba la temperatura, el COF aumentaba constantemente y alcanzaba un valor máximo de 0,26 cerca de 350°C. Por encima de 390°C, el COF empieza a disminuir rápidamente. El COF empezó a aumentar de nuevo hasta 0,2 a 450°C, pero poco después empezó a disminuir hasta un valor de 0,05.


La temperatura a la que fallaron sistemáticamente las pastillas de freno se identifica a temperaturas superiores a 500°C. Por encima de esta temperatura, el COF ya no era capaz de mantener el COF inicial de 0,2.



Conclusión




Las pastillas de freno han mostrado un fallo constante a una temperatura superior a 500°C. Su COF de 0,2 aumenta lentamente hasta un valor de 0,26 antes de descender a 0,05 al final de la prueba (580°C). La diferencia entre 0,05 y 0,2 es un factor de 4. ¡Esto significa que la fuerza normal a 580°C debe ser cuatro veces mayor que a temperatura ambiente para conseguir la misma fuerza de frenado!


Aunque no se incluye en este estudio, el tribómetro Nanovea también puede realizar pruebas para observar otra propiedad importante de las pastillas de freno: la velocidad de desgaste. Utilizando nuestros perfilómetros 3D sin contacto, se puede obtener el volumen de la huella de desgaste para calcular la rapidez con la que se desgastan las muestras. Las pruebas de desgaste pueden realizarse con el tribómetro Nanovea en diferentes condiciones y entornos de prueba para simular mejor las condiciones de funcionamiento.

AHORA, HABLEMOS DE SU SOLICITUD

Análisis de calidad de metales mecanizados por descarga eléctrica

El mecanizado por descarga eléctrica, o EDM, es un proceso de fabricación que elimina material mediante descargas eléctricas.
descargas [1]. Este proceso de mecanizado se utiliza generalmente con metales conductores que serían difíciles de
mecanizar con métodos convencionales.

Al igual que con todos los procesos de mecanizado, la precisión y la exactitud deben ser altas para cumplir con los requisitos aceptables.
niveles de tolerancia. En esta nota de aplicación, la calidad de los metales mecanizados se evaluará con un
Nanovea Perfilómetro 3D sin contacto.

¡Haga clic para leer!

Análisis viscoelástico del caucho

Análisis viscoelástico del caucho

Más información

 

Los neumáticos están sometidos a altas deformaciones cíclicas cuando los vehículos circulan por la carretera. Cuando se exponen a condiciones adversas, la vida útil de los neumáticos se ve comprometida por muchos factores, como el desgaste de la banda de rodadura, el calor generado por la fricción, el envejecimiento del caucho y otros.

Como resultado, los neumáticos suelen tener estructuras de capas compuestas de caucho relleno de carbono, cordones de nylon y alambres de acero, entre otros. En particular, la composición del caucho en las diferentes zonas de los sistemas de neumáticos se optimiza para proporcionar diferentes propiedades funcionales, entre las que se incluyen, entre otras, hilo resistente al desgaste, capa de caucho amortiguadora y capa base de caucho duro.

Una prueba confiable y repetible del comportamiento viscoelástico del caucho es fundamental para el control de calidad y la investigación y desarrollo de neumáticos nuevos, así como para la evaluación de la vida útil de los neumáticos viejos. Análisis mecánico dinámico (DMA) durante Nanoindentación Es una técnica para caracterizar la viscoelasticidad. Cuando se aplica una tensión oscilatoria controlada, se mide la deformación resultante, lo que permite a los usuarios determinar el módulo complejo de los materiales sometidos a prueba.

Una mejor perspectiva del papel

El papel ha desempeñado un papel importante en la distribución de información desde su invención en el siglo II [1]. El papel está compuesto por fibras entrelazadas, normalmente obtenidas de los árboles, que se han secado para formar láminas finas. Como medio para almacenar información, el papel ha permitido la difusión de ideas, arte e historia a lo largo de grandes distancias y a través del tiempo.

Hoy en día, el papel se utiliza habitualmente para fabricar moneda, libros, artículos de higiene personal, envases y mucho más. El papel se procesa de diferentes maneras para obtener las propiedades adecuadas para cada aplicación. Por ejemplo, el papel brillante y visualmente atractivo de una revista es diferente al papel rugoso y prensado en frío que se utiliza para la acuarela. El método de producción del papel afecta a las propiedades de su superficie. Esto influye en cómo se fija y se ve la tinta (u otro medio) sobre el papel. Para examinar cómo los diferentes procesos de fabricación del papel afectan a las propiedades de la superficie, Nanovea inspeccionó la rugosidad y la textura de varios tipos de papel mediante un escaneo de gran superficie con nuestro Perfilómetro 3D sin contacto.

Haga clic para obtener más información sobre el Rugosidad superficial del papel!

Una mejor visión de las lentes de policarbonato

Una mejor visión de las lentes de policarbonato Más información
 
Las lentes de policarbonato se utilizan habitualmente en muchas aplicaciones ópticas. Su gran resistencia a los impactos, su bajo peso y su bajo coste de producción a gran escala las hacen más prácticas que el vidrio tradicional en diversas aplicaciones [1]. Algunas de estas aplicaciones requieren criterios de seguridad (por ejemplo, gafas de seguridad), complejidad (por ejemplo, lentes Fresnel) o durabilidad (por ejemplo, lentes para semáforos) difíciles de cumplir sin el uso de plásticos. Su capacidad para satisfacer a bajo coste muchos requisitos, manteniendo al mismo tiempo cualidades ópticas suficientes, hace que las lentes de plástico destaquen en su campo. Las lentes de policarbonato también tienen limitaciones. La principal preocupación de los consumidores es la facilidad con que pueden rayarse. Para compensarlo, se pueden llevar a cabo procesos adicionales para aplicar un revestimiento antirrayado. Nanovea analiza algunas propiedades importantes de las lentes de plástico utilizando nuestros tres instrumentos de metrología: Perfilómetro, Tribómetroy Comprobador mecánico.   Más información

Nanovea 2018 Cambio de imagen Visítenos en MRS Boston

Visita Nanovea @ MRS Boston, ¡Nanovea se enorgullece de presentar toda su línea de instrumentos! Entre ellos se incluyen el probador mecánico PB1000, completamente rediseñado, y el perfilómetro PS50 y el tribómetro T50, con nueva marca. Además de la nueva marca, todos los instrumentos han sido renovados para aumentar su precisión y amortiguación acústica. ¡Estén atentos, porque Nanovea tiene otras novedades técnicas revolucionarias que se darán a conocer próximamente! Para obtener más información, por favor Póngase en contacto con Nanovea.

Medición cíclica de tensión-deformación por nanoindentación

Medición cíclica de tensión-deformación por nanoindentación

Más información

 

Importancia de la nanoindentación

Mediciones continuas de rigidez (CSM) obtenidas mediante nanoindentación revela la relación tensión-deformación de los materiales con métodos mínimamente invasivos. A diferencia de los métodos tradicionales de ensayo de tracción, la nanoindentación proporciona datos de tensión-deformación a escala nanométrica sin necesidad de utilizar instrumentos de gran tamaño. La curva tensión-deformación proporciona información crucial sobre el umbral entre el comportamiento elástico y el plástico a medida que la muestra se somete a cargas cada vez mayores. CSM ofrece la posibilidad de determinar el límite elástico de un material sin necesidad de utilizar equipos peligrosos.

 

La nanoindentación ofrece un método confiable y fácil de usar para investigar rápidamente los datos de tensión-deformación. Además, la medición del comportamiento de tensión-deformación a escala nanométrica permite estudiar propiedades importantes en recubrimientos y partículas pequeñas en materiales a medida que estos se vuelven más avanzados. La nanoindentación proporciona información sobre el límite elástico y el límite elástico, además de la dureza, el módulo elástico, la fluencia, la resistencia a la fractura, etc., lo que la convierte en un instrumento de metrología versátil.

Los datos de tensión-deformación proporcionados por la nanoindentación en este estudio identifican el límite elástico del material con solo penetrar 1,2 micras en la superficie. Utilizamos CSM para determinar cómo se desarrollan las propiedades mecánicas de los materiales a medida que el indentador se adentra más en la superficie. Esto resulta especialmente útil en aplicaciones de películas delgadas, donde las propiedades pueden depender de la profundidad. La nanoindentación es un método mínimamente invasivo para confirmar las propiedades de los materiales en muestras de prueba.

La prueba CSM es útil para medir las propiedades de los materiales en función de la profundidad. Se pueden realizar pruebas cíclicas con cargas constantes para determinar propiedades más complejas de los materiales. Esto puede ser útil para estudiar la fatiga o eliminar el efecto de la porosidad y obtener el módulo de elasticidad real.

Objetivo de medición

En esta aplicación, el probador mecánico Nanovea utiliza CSM para estudiar la dureza y el módulo de elasticidad en función de la profundidad y los datos de tensión-deformación en una muestra de acero estándar. Se eligió el acero por sus características comúnmente reconocidas para mostrar el control y la precisión de los datos de tensión-deformación a nanoescala. Se utilizó una punta esférica con un radio de 5 micras para alcanzar tensiones suficientemente altas más allá del límite elástico del acero.

 

Condiciones y procedimientos de prueba

Se utilizaron los siguientes parámetros de sangría:

Resultados:

 

El aumento de la carga durante las oscilaciones proporciona la siguiente curva de profundidad frente a carga. Se realizaron más de 100 oscilaciones durante la carga para obtener los datos de tensión-deformación a medida que el penetrador penetraba en el material.

 

Determinamos la tensión y la deformación a partir de la información obtenida en cada ciclo. La carga y la profundidad máximas en cada ciclo nos permiten calcular la tensión máxima aplicada en cada ciclo al material. La deformación se calcula a partir de la profundidad residual en cada ciclo a partir de la descarga parcial. Esto nos permite calcular el radio de la huella residual dividiendo el radio de la punta para obtener el factor de deformación. Al trazar la tensión frente a la deformación del material, se muestran las zonas elásticas y plásticas con la tensión límite elástica correspondiente. Nuestras pruebas determinaron que la transición entre las zonas elástica y plástica del material se sitúa en torno a una deformación de 0,076, con un límite elástico de 1,45 GPa.

Cada ciclo actúa como una sola hendidura, por lo que, a medida que aumentamos la carga, realizamos pruebas a varias profundidades controladas en el acero. Así, la dureza y el módulo de elasticidad en función de la profundidad se pueden representar gráficamente directamente a partir de los datos obtenidos para cada ciclo.

A medida que el penetrador se adentra en el material, observamos un aumento de la dureza y una disminución del módulo de elasticidad.

Conclusión

Hemos demostrado que el medidor mecánico Nanovea proporciona datos fiables sobre tensión-deformación. El uso de una punta esférica con indentación CSM permite medir las propiedades del material bajo una tensión mayor. La carga y el radio del indentador se pueden modificar para probar diversos materiales a profundidades controladas. Los medidores mecánicos Nanovea realizan estas pruebas de indentación desde el rango sub mN hasta 400 N.

 

Medición confocal cromática de 5 ejes

Nanovea ha respondido a la solicitud de un sistema de medición de 5 ejes combinado con un sensor lineal confocal cromático para el control de calidad rápido de piezas especializadas. Ver vídeo breve Video. Para obtener más información sobre los perfilómetros de Nanovea Más información

Visita de Nanovea a Asia 2016

Nanovea acaba de terminar con éxito una gira de seminarios por todo Japón y ahora se encuentra reunida en China. Queremos agradecer a nuestros distribuidores y clientes actuales y potenciales por su tiempo y hospitalidad.