EE.UU./GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTACTO

Categoría: Tribología a altas temperaturas

 

Dureza al rayado a alta temperatura utilizando un tribómetro

DUREZA AL RAYADO A ALTA TEMPERATURA

UTILIZANDO UN TRIBÓMETRO

Preparado por

DUANJIE, Doctor

INTRODUCCIÓN

La dureza mide la resistencia de los materiales a la deformación permanente o plástica. Desarrollado originalmente por el mineralogista alemán Friedrich Mohs en 1820, el ensayo de dureza al rayado determina la dureza de un material a los arañazos y la abrasión debidos a la fricción de un objeto afilado.1. La escala de Mohs es un índice comparativo más que una escala lineal, por lo que se desarrolló una medición de la dureza al rayado más precisa y cualitativa, tal como se describe en la norma ASTM G171-032. Mide la anchura media del arañazo creado por un estilete de diamante y calcula el número de dureza del arañazo (HSP).

IMPORTANCIA DE LA MEDICIÓN DE LA DUREZA AL RAYADO A ALTAS TEMPERATURAS

Los materiales se seleccionan en función de los requisitos de servicio. Para aplicaciones que implican cambios de temperatura y gradientes térmicos significativos, es fundamental investigar las propiedades mecánicas de los materiales a altas temperaturas para conocer a fondo los límites mecánicos. Los materiales, especialmente los polímeros, suelen ablandarse a altas temperaturas. Muchos fallos mecánicos se deben a la deformación por fluencia y a la fatiga térmica que sólo tienen lugar a temperaturas elevadas. Por lo tanto, se necesita una técnica fiable para medir la dureza a altas temperaturas con el fin de garantizar una selección adecuada de los materiales para aplicaciones a altas temperaturas.

OBJETIVO DE MEDICIÓN

En este estudio, el Tribómetro NANOVEA T50 mide la dureza al rayado de una muestra de teflón a diferentes temperaturas, desde temperatura ambiente hasta 300ºC. La capacidad de realizar mediciones de dureza al rayado a alta temperatura hace que el NANOVEA Tribómetro un sistema versátil para evaluaciones tribológicas y mecánicas de materiales para aplicaciones de alta temperatura.

NANOVEA

T50

CONDICIONES DE ENSAYO

Se utilizó el tribómetro estándar de peso libre NANOVEA T50 para realizar los ensayos de dureza al rayado en una muestra de teflón a temperaturas que oscilaban entre la temperatura ambiente (TA) y 300°C. El teflón tiene un punto de fusión de 326,8°C. Se utilizó un palpador cónico de diamante con un ángulo de vértice de 120° y un radio de punta de 200 µm. La muestra de teflón se fijó en la platina giratoria con una distancia de 10 mm al centro de la platina. La muestra se calentó en un horno y se probó a temperaturas de RT, 50°C, 100°C, 150°C, 200°C, 250°C y 300°C.

PARÁMETROS DE PRUEBA

de la medición de la dureza al rayado a alta temperatura

FUERZA NORMAL 2 N
VELOCIDAD DE DESLIZAMIENTO 1 mm/s
DISTANCIA DE DESLIZAMIENTO 8 mm por temperatura
ATMÓSFERA Aire
TEMPERATURA RT, 50°C, 100°C, 150°C, 200°C, 250°C, 300°C.

RESULTADOS Y DEBATE

En la FIGURA 1 se muestran los perfiles de la pista de rayado de la muestra de teflón a diferentes temperaturas con el fin de comparar la dureza del rayado a diferentes temperaturas elevadas. La acumulación de material en los bordes de la pista de rayado se forma a medida que el palpador se desplaza con una carga constante de 2 N y penetra en la muestra de teflón, empujando y deformando el material de la pista de rayado hacia un lado.

Las huellas de rayado se examinaron al microscopio óptico como se muestra en la FIGURA 2. Las anchuras de las huellas de rayado medidas y los números de dureza de rayado (HSP) calculados se resumen en la FIGURA 3. En la FIGURA 3 se resumen y comparan las anchuras de las pistas de rayado medidas y los números de dureza de rayado (HSP) calculados. La anchura de la pista de rayado medida con el microscopio coincide con la medida con el NANOVEA Profiler: la muestra de teflón presenta una anchura de rayado mayor a temperaturas más altas. La anchura de la pista de rayado aumenta de 281 a 539 µm a medida que la temperatura se eleva de RT a 300oC, lo que resulta en una disminución de la HSP de 65 a 18 MPa.

La dureza al rayado a temperaturas elevadas puede medirse con alta precisión y repetibilidad utilizando el Tribómetro NANOVEA T50. Proporciona una solución alternativa a otras mediciones de dureza y convierte a los tribómetros NANOVEA en un sistema más completo para evaluaciones tribo-mecánicas exhaustivas a altas temperaturas.

FIGURA 1: Perfiles de huellas de arañazos tras los ensayos de dureza al rayado a diferentes temperaturas.

FIGURA 2: Huellas de arañazos bajo el microscopio tras las mediciones a diferentes temperaturas.

FIGURA 3: Evolución de la anchura de la pista de rayado y de la dureza del rayado en función de la temperatura.

CONCLUSIÓN

En este estudio, mostramos cómo el tribómetro NANOVEA mide la dureza al rayado a temperaturas elevadas de conformidad con la norma ASTM G171-03. El ensayo de dureza al rayado con carga constante proporciona una solución alternativa sencilla para comparar la dureza de los materiales utilizando el tribómetro. La capacidad de realizar mediciones de dureza al rayado a temperaturas elevadas convierte al Tribómetro NANOVEA en una herramienta ideal para evaluar las propiedades tribo-mecánicas de los materiales a altas temperaturas.

El tribómetro NANOVEA también ofrece pruebas de desgaste y fricción precisas y repetibles mediante modos rotativos y lineales conformes con ISO y ASTM, con módulos opcionales de desgaste a alta temperatura, lubricación y tribo-corrosión disponibles en un sistema preintegrado. Hay disponible un perfilador 3D sin contacto opcional para obtener imágenes 3D de alta resolución de las huellas de desgaste, además de otras mediciones de superficies como la rugosidad.

1 Wredenberg, Fredrik; PL Larsson (2009). "Ensayo de rayado de metales y polímeros: Experiments and numerics". Wear 266 (1-2): 76
2 ASTM G171-03 (2009), "Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus" (Método de ensayo estándar para la dureza al rayado de materiales utilizando un estilete de diamante).

Medición del desgaste in situ a alta temperatura

MEDICIÓN DEL DESGASTE IN SITU A ALTA TEMPERATURA

USO DEL TRIBÓMETRO

MEDICIÓN DEL DESGASTE IN SITU Tribómetro aeroespacial

Preparado por

Doctor Duanjie Li

INTRODUCCIÓN

El transformador diferencial variable lineal (LVDT) es un tipo de transformador eléctrico robusto que se utiliza para medir el desplazamiento lineal. Se ha utilizado ampliamente en una gran variedad de aplicaciones industriales, entre las que se incluyen turbinas eléctricas, sistemas hidráulicos, automatización, aeronáutica, satélites, reactores nucleares y muchas otras.

En este estudio, presentamos los complementos LVDT y los módulos para altas temperaturas de NANOVEA. Tribómetro que permiten medir el cambio en la profundidad de la huella de desgaste de la muestra sometida a prueba durante el proceso de desgaste a temperaturas elevadas. Esto permite a los usuarios correlacionar las diferentes etapas del proceso de desgaste con la evolución del COF, lo cual es fundamental para mejorar la comprensión básica del mecanismo de desgaste y las características tribológicas de los materiales para aplicaciones a altas temperaturas.

OBJETIVO DE MEDICIÓN

En este estudio, nos gustaría mostrar la capacidad del tribómetro NANOVEA T50 para monitorear in situ la evolución del proceso de desgaste de los materiales a temperaturas elevadas.

El proceso de desgaste de la cerámica de silicato de alúmina a diferentes temperaturas se simula de manera controlada y supervisada.

NANOVEA

T50

PROCEDIMIENTO DE PRUEBA

El comportamiento tribológico, por ejemplo, el coeficiente de fricción (COF) y la resistencia al desgaste de las placas cerámicas de silicato de alúmina, se evaluó con el tribómetro NANOVEA. La placa cerámica de silicato de alúmina se calentó en un horno desde temperatura ambiente (TA) hasta temperaturas elevadas (400 °C y 800 °C), y a continuación se realizaron ensayos de desgaste a dichas temperaturas. 

A modo de comparación, las pruebas de desgaste se llevaron a cabo cuando la muestra se enfrió de 800 °C a 400 °C y, posteriormente, a temperatura ambiente. Se aplicó una punta de bola de AI2O3 (6 mm de diámetro, grado 100) contra las muestras sometidas a prueba. Se supervisaron in situ el COF, la profundidad de desgaste y la temperatura.

PARÁMETROS DE PRUEBA

de la medición del pin sobre disco

Tribómetro LVDT Muestra

La tasa de desgaste, K, se evaluó utilizando la fórmula K=V/(Fxs)=A/(Fxn), donde V es el volumen desgastado, F es la carga normal, s es la distancia de deslizamiento, A es el área transversal de la huella de desgaste y n es el número de revoluciones. La rugosidad de la superficie y los perfiles de las huellas de desgaste se evaluaron con el perfilómetro óptico NANOVEA, y la morfología de las huellas de desgaste se examinó con un microscopio óptico.

RESULTADOS Y DEBATE

El COF y la profundidad de la huella de desgaste registrados in situ se muestran en la FIGURA 1 y la FIGURA 2, respectivamente. En la FIGURA 1, “-I” indica la prueba realizada cuando la temperatura se incrementó desde la temperatura ambiente hasta una temperatura elevada. “-D” representa la temperatura disminuida desde una temperatura más alta de 800 °C.

Como se muestra en la FIGURA 1, las muestras probadas a diferentes temperaturas presentan un COF comparable de ~0,6 en todas las mediciones. Un COF tan alto provoca un proceso de desgaste acelerado que genera una cantidad considerable de residuos. La profundidad de la huella de desgaste se supervisó durante las pruebas de desgaste mediante LVDT, como se muestra en la FIGURA 2. Las pruebas realizadas a temperatura ambiente antes del calentamiento de la muestra y después de su enfriamiento muestran que la placa cerámica de silicato de alúmina presenta un proceso de desgaste progresivo a temperatura ambiente, y que la profundidad de la huella de desgaste aumenta gradualmente a lo largo de la prueba de desgaste hasta ~170 y ~150 μm, respectivamente. 

En comparación, las pruebas de desgaste a temperaturas elevadas (400 °C y 800 °C) muestran un comportamiento de desgaste diferente: la profundidad de la huella de desgaste aumenta rápidamente al inicio del proceso de desgaste y se ralentiza a medida que avanza la prueba. Las profundidades de las marcas de desgaste para las pruebas realizadas a temperaturas de 400 °C-I, 800 °C y 400 °C-D son de aproximadamente 140, 350 y 210 μm, respectivamente.

COF durante pruebas con pin sobre escritorio a diferentes temperaturas

FIGURA 1. Coeficiente de fricción durante pruebas de clavija sobre disco a diferentes temperaturas

Profundidad de desgaste de la placa cerámica de silicato de alúmina a diferentes temperaturas

FIGURA 2. Evolución de la profundidad de la huella de desgaste de la placa cerámica de silicato de alúmina a diferentes temperaturas.

Se midieron la tasa de desgaste promedio y la profundidad de la huella de desgaste de las placas de cerámica de silicato de alúmina a diferentes temperaturas utilizando NANOVEA Perfilómetro óptico, tal y como se resume en FIGURA 3. La profundidad de la huella de desgaste coincide con la registrada mediante LVDT. La placa cerámica de silicato de alúmina muestra una tasa de desgaste sustancialmente mayor, de ~0,5 mm3/Nm a 800 °C, en comparación con las tasas de desgaste inferiores a 0,2 mm3/N a temperaturas inferiores a 400 °C. La placa cerámica de silicato de alúmina no muestra una mejora significativa de sus propiedades mecánicas/tribológicas tras el breve proceso de calentamiento, ya que presenta una tasa de desgaste comparable antes y después del tratamiento térmico.

La cerámica de silicato de alúmina, también conocida como lava y piedra maravillosa, es blanda y mecanizable antes del tratamiento térmico. Un largo proceso de cocción a temperaturas elevadas de hasta 1093 °C puede mejorar sustancialmente su dureza y resistencia, tras lo cual se requiere un mecanizado con diamante. Esta característica única hace que la cerámica de silicato de alúmina sea un material ideal para la escultura.

En este estudio, demostramos que el tratamiento térmico a una temperatura inferior a la requerida para la cocción (800 °C frente a 1093 °C) en un tiempo breve no mejora las características mecánicas y tribológicas de la cerámica de silicato de alúmina, lo que hace que la cocción adecuada sea un proceso esencial para este material antes de su uso en aplicaciones reales.

 
Tasa de desgaste y profundidad de la huella de desgaste de la muestra a diferentes temperaturas 1

FIGURA 3. Tasa de desgaste y profundidad de la huella de desgaste de la muestra a diferentes temperaturas.

CONCLUSIÓN

Basándonos en el análisis tribológico exhaustivo realizado en este estudio, demostramos que la placa cerámica de silicato de alúmina presenta un coeficiente de fricción comparable a diferentes temperaturas, desde la temperatura ambiente hasta los 800 °C. Sin embargo, muestra un aumento sustancial de la tasa de desgaste de ~0,5 mm3/Nm a 800 °C, lo que demuestra la importancia de un tratamiento térmico adecuado de esta cerámica.

Los tribómetros NANOVEA son capaces de evaluar las propiedades tribológicas de los materiales para aplicaciones a altas temperaturas de hasta 1000 °C. La función de medición in situ del coeficiente de fricción (COF) y la profundidad de la huella de desgaste permite a los usuarios correlacionar las diferentes etapas del proceso de desgaste con la evolución del COF, lo cual es fundamental para mejorar la comprensión básica del mecanismo de desgaste y las características tribológicas de los materiales utilizados a temperaturas elevadas.

Los tribómetros NANOVEA ofrecen pruebas de desgaste y fricción precisas y repetibles utilizando modos rotativos y lineales que cumplen con las normas ISO y ASTM, con módulos opcionales de desgaste a alta temperatura, lubricación y tribocorrosión disponibles en un sistema preintegrado. La inigualable gama de NANOVEA es una solución ideal para determinar toda la gama de propiedades tribológicas de recubrimientos, películas y sustratos delgados o gruesos, blandos o duros.

Hay disponibles perfiladores 3D sin contacto opcionales para obtener imágenes 3D de alta resolución de las huellas de desgaste, además de otras mediciones superficiales, como la rugosidad.

MEDICIÓN DEL DESGASTE IN SITU

¿Desgaste Rotativo o Lineal y COF? (Un estudio exhaustivo con el tribómetro Nanovea)

El desgaste es el proceso de eliminación y deformación de material en una superficie como resultado de la acción mecánica de la superficie opuesta. En él influyen diversos factores, como el deslizamiento unidireccional, la rodadura, la velocidad, la temperatura y muchos otros. El estudio del desgaste, la tribología, abarca muchas disciplinas, desde la física y la química hasta la ingeniería mecánica y la ciencia de los materiales. La compleja naturaleza del desgaste requiere estudios aislados sobre mecanismos o procesos de desgaste específicos, como el desgaste adhesivo, el desgaste abrasivo, la fatiga superficial, el desgaste por rozamiento y el desgaste erosivo. Sin embargo, el "desgaste industrial" suele implicar múltiples mecanismos de desgaste que se producen en sinergia.

Los ensayos de desgaste lineal alternativo y rotativo (clavija sobre disco) son dos configuraciones ampliamente utilizadas de conformidad con ASTM para medir los comportamientos de desgaste por deslizamiento de los materiales. Dado que el valor de la tasa de desgaste de cualquier método de ensayo de desgaste se utiliza a menudo para predecir la clasificación relativa de las combinaciones de materiales, es extremadamente importante confirmar la repetibilidad de la tasa de desgaste medida utilizando diferentes configuraciones de ensayo. Esto permite a los usuarios considerar cuidadosamente el valor de la tasa de desgaste reportado en la literatura, lo cual es crítico para entender las características tribológicas de los materiales.

Más información

Evaluación de las pastillas de freno mediante tribología


Importancia de evaluar el rendimiento de las almohadillas de freno

Las pastillas de freno son compuestos, un material formado por múltiples ingredientes, que debe ser capaz de satisfacer un gran número de requisitos de seguridad. Las pastillas de freno ideales tienen un alto coeficiente de fricción (COF), un bajo índice de desgaste, un ruido mínimo y siguen siendo fiables en entornos variables. Para garantizar que la calidad de las pastillas de freno es capaz de satisfacer sus requisitos, pueden utilizarse ensayos tribológicos para identificar las especificaciones críticas.


La importancia de la fiabilidad de las pastillas de freno es muy alta; nunca debe descuidarse la seguridad de los pasajeros. Por ello, es fundamental reproducir las condiciones de funcionamiento e identificar posibles puntos de fallo.
Con el Nanovea Tribómetro, se aplica una carga constante entre un pasador, bola o plano y un contramaterial en constante movimiento. La fricción entre los dos materiales se recoge con una célula de carga rígida, lo que permite recoger las propiedades del material a diferentes cargas y velocidades y probarlo en entornos de alta temperatura, corrosivos o líquidos.



Objetivo de medición

En este estudio, se estudió el coeficiente de fricción de las pastillas de freno en un entorno de temperatura en continuo aumento desde la temperatura ambiente hasta 700°C. La temperatura ambiente se elevó in situ hasta que se observó un fallo apreciable de la pastilla de freno. Se colocó un termopar en la parte posterior de la clavija para medir la temperatura cerca de la interfaz de deslizamiento.



Procedimiento de ensayo y procedimientos




Resultados y debate

Este estudio se centra principalmente en la temperatura a la que empiezan a fallar las pastillas de freno. Los COF obtenidos no representan valores reales; el material de las patillas no es el mismo que el de los rotores de freno. También debe tenerse en cuenta que los datos de temperatura recogidos corresponden a la temperatura de la clavija y no a la temperatura de la interfaz de deslizamiento.

 








Al inicio de la prueba (temperatura ambiente), el COF entre el pasador SS440C y la pastilla de freno dio un valor constante de aproximadamente 0,2. A medida que aumentaba la temperatura, el COF aumentaba constantemente y alcanzaba un valor máximo de 0,26 cerca de 350°C. Por encima de 390°C, el COF empieza a disminuir rápidamente. El COF empezó a aumentar de nuevo hasta 0,2 a 450°C, pero poco después empezó a disminuir hasta un valor de 0,05.


La temperatura a la que fallaron sistemáticamente las pastillas de freno se identifica a temperaturas superiores a 500°C. Por encima de esta temperatura, el COF ya no era capaz de mantener el COF inicial de 0,2.



Conclusión




Las pastillas de freno han mostrado un fallo constante a una temperatura superior a 500°C. Su COF de 0,2 aumenta lentamente hasta un valor de 0,26 antes de descender a 0,05 al final de la prueba (580°C). La diferencia entre 0,05 y 0,2 es un factor de 4. ¡Esto significa que la fuerza normal a 580°C debe ser cuatro veces mayor que a temperatura ambiente para conseguir la misma fuerza de frenado!


Aunque no se incluye en este estudio, el tribómetro Nanovea también puede realizar pruebas para observar otra propiedad importante de las pastillas de freno: la velocidad de desgaste. Utilizando nuestros perfilómetros 3D sin contacto, se puede obtener el volumen de la huella de desgaste para calcular la rapidez con la que se desgastan las muestras. Las pruebas de desgaste pueden realizarse con el tribómetro Nanovea en diferentes condiciones y entornos de prueba para simular mejor las condiciones de funcionamiento.

AHORA, HABLEMOS DE SU SOLICITUD

Tribología de alta temperatura

Dureza al rayado a alta temperatura mediante tribómetro

Los materiales se seleccionan en función de los requisitos de servicio. Para aplicaciones que implican cambios de temperatura y gradientes térmicos significativos, es fundamental investigar las propiedades mecánicas de los materiales a altas temperaturas para conocer a fondo los límites mecánicos. Los materiales, especialmente los polímeros, suelen ablandarse a altas temperaturas. Muchos fallos mecánicos se deben a la deformación por fluencia y a la fatiga térmica que sólo tienen lugar a temperaturas elevadas. Por lo tanto, se necesita una técnica fiable para medir la dureza al rayado a altas temperaturas con el fin de garantizar una selección adecuada de los materiales para aplicaciones a altas temperaturas.

Dureza al rayado a alta temperatura mediante tribómetro