Archivos mensuales: septiembre 2020
Inspección de piezas mecanizadas
PIEZAS MECANIZADAS
inspección a partir de un modelo CAD mediante perfilometría 3D
Autor:
Doctor Duanjie Li
Revisado por
Jocelyn Esparza
INTRODUCCIÓN
La demanda de mecanizado de precisión capaz de crear geometrías complejas ha ido en aumento en todo un espectro de industrias. Desde la industria aeroespacial, médica y automovilística hasta los engranajes tecnológicos, la maquinaria y los instrumentos musicales, la innovación y la evolución continuas llevan las expectativas y los niveles de precisión a nuevas cotas. En consecuencia, asistimos al aumento de la demanda de técnicas e instrumentos de inspección rigurosos para garantizar la máxima calidad de los productos.
Importancia de la perfilometría 3D sin contacto para la inspección de piezas
La comparación de las propiedades de las piezas mecanizadas con sus modelos CAD es esencial para verificar las tolerancias y el cumplimiento de las normas de producción. La inspección durante el tiempo de servicio también es crucial, ya que el desgaste de las piezas puede exigir su sustitución. Identificar a tiempo cualquier desviación de las especificaciones requeridas ayudará a evitar costosas reparaciones, paradas de producción y una reputación empañada.
A diferencia de la técnica de palpación, el NANOVEA Perfiladores ópticos realizan escaneados de superficies 3D con contacto cero, lo que permite realizar mediciones rápidas, precisas y no destructivas de formas complejas con la máxima precisión.
MODELO CAD
Una medición precisa de la dimensión y la rugosidad superficial de la pieza mecanizada es fundamental para asegurarse de que cumple las especificaciones, tolerancias y acabados superficiales deseados. A continuación se presentan el modelo 3D y el plano de ingeniería de la pieza que se va a inspeccionar.
VISTA EN FALSO COLOR
La vista en falso color del modelo CAD y la superficie de la pieza mecanizada escaneada se comparan en la FIGURA 3. La variación de altura en la superficie de la muestra puede observarse por el cambio de color.
Se extraen tres perfiles 2D del escaneado 3D de la superficie, como se indica en la FIGURA 2, para verificar aún más la tolerancia dimensional de la pieza mecanizada.
COMPARACIÓN DE PERFILES Y RESULTADOS
Los perfiles 1 a 3 se muestran en las FIGURAS 3 a 5. La inspección de tolerancia cuantitativa se lleva a cabo comparando el perfil medido con el modelo CAD para mantener unos estándares de fabricación rigurosos. El Perfil 1 y el Perfil 2 miden el radio de diferentes zonas de la pieza mecanizada curva. La variación de altura del Perfil 2 es de 30 µm en una longitud de 156 mm, lo que cumple el requisito de tolerancia deseado de ±125 µm.
Estableciendo un valor límite de tolerancia, el software de análisis puede determinar automáticamente el aprobado o el suspenso de la pieza mecanizada.
La rugosidad y la uniformidad de la superficie de la pieza mecanizada desempeñan un papel importante para garantizar su calidad y funcionalidad. La FIGURA 6 es una superficie extraída del escaneado padre de la pieza mecanizada que se utilizó para cuantificar el acabado superficial. La rugosidad superficial media (Sa) se calculó en 2,31 µm.
CONCLUSIÓN
En este estudio, hemos mostrado cómo el perfilador sin contacto NANOVEA HS2000, equipado con un sensor de alta velocidad, realiza una inspección superficial exhaustiva de las dimensiones y la rugosidad.
Los escaneados de alta resolución permiten a los usuarios medir con detalle la morfología y las características superficiales de las piezas mecanizadas y compararlas cuantitativamente con sus modelos CAD. El instrumento también es capaz de detectar cualquier defecto, incluidos arañazos y grietas.
El análisis avanzado de contornos sirve como herramienta inigualable no sólo para determinar si las piezas mecanizadas cumplen las especificaciones establecidas, sino también para evaluar los mecanismos de fallo de los componentes desgastados.
Los datos mostrados aquí representan sólo una parte de los cálculos posibles con el software de análisis avanzado que viene equipado con cada Perfilador Óptico NANOVEA.
AHORA, HABLEMOS DE SU SOLICITUD
Evaluación del desgaste por rozamiento
EVALUACIÓN DEL DESGASTE POR ROZAMIENTO
Autor:
Doctor Duanjie Li
Revisado por
Jocelyn Esparza
INTRODUCCIÓN
El rozamiento es "un proceso especial de desgaste que se produce en la zona de contacto entre dos materiales sometidos a carga y sometidos a un movimiento relativo mínimo por vibración u otra fuerza". Cuando las máquinas están en funcionamiento, se producen inevitablemente vibraciones en las uniones atornilladas o con pasadores, entre componentes que no están destinados a moverse y en acoplamientos y cojinetes oscilantes. La amplitud de este movimiento de deslizamiento relativo suele ser del orden de micrómetros a milímetros. Este movimiento repetitivo de baja amplitud provoca un grave desgaste mecánico localizado y transferencia de material en la superficie, lo que puede reducir la eficacia de la producción, el rendimiento de la máquina o incluso dañarla.
Importancia de lo cuantitativo
Evaluación del desgaste por rozamiento
El desgaste por frotamiento a menudo implica varios mecanismos de desgaste complejos que tienen lugar en la superficie de contacto, incluida la abrasión de dos cuerpos, la adhesión y/o el desgaste por fatiga por frotamiento. Con el fin de comprender el mecanismo de desgaste por frotamiento y seleccionar el mejor material para la protección contra el desgaste por frotamiento, es necesaria una evaluación fiable y cuantitativa del desgaste por frotamiento. El comportamiento del desgaste por frotamiento se ve influido significativamente por el entorno de trabajo, como la amplitud de desplazamiento, la carga normal, la corrosión, la temperatura, la humedad y la lubricación. Un método versátil tribómetro que puedan simular las diferentes condiciones de trabajo realistas serán ideales para la evaluación del desgaste por rozamiento.
Steven R. Lampman, Manual ASM: Volumen 19: Fatiga y fractura
http://www.machinerylubrication.com/Read/693/fretting-wear
OBJETIVO DE MEDICIÓN
En este estudio, evaluamos los comportamientos de desgaste por rozamiento de una muestra de acero inoxidable SS304 a diferentes velocidades de oscilación y temperaturas para mostrar la capacidad de NANOVEA T50 Tribómetro en la simulación del proceso de desgaste por frotamiento del metal de forma bien controlada y supervisada.
NANOVEA
T50
CONDICIONES DE ENSAYO
La resistencia al desgaste por frotamiento de una muestra de acero inoxidable SS304 se evaluó mediante NANOVEA Tribómetro utilizando un módulo de desgaste alternativo lineal. Se utilizó una bola de WC (6 mm de diámetro) como contramaterial. La pista de desgaste se examinó utilizando un NANOVEA Perfilómetro 3D sin contacto.
La prueba de rozamiento se realizó a temperatura ambiente (TA) y a 200 °C para estudiar el efecto de la alta temperatura en la resistencia al desgaste por frotamiento de la muestra SS304. Una placa calefactora situada en la platina de la muestra calentó la muestra durante el ensayo de desgaste por fricción a 200 °C. La tasa de desgaste, Kse evaluó mediante la fórmula K=V/(F×s)donde V es el volumen desgastado, F es la carga normal, y s es la distancia de deslizamiento.
Tenga en cuenta que en este estudio se ha utilizado como ejemplo una bola de WC como contramaterial. Se puede aplicar cualquier material sólido con diferentes formas y acabados superficiales utilizando un accesorio personalizado para simular la situación de aplicación real.
PARÁMETROS DE PRUEBA
de las mediciones de desgaste
RESULTADOS Y DEBATE
El perfil 3D de la huella de desgaste permite determinar de forma directa y precisa la pérdida de volumen de la huella de desgaste calculada por el NANOVEA Software de análisis de montañas.
El ensayo de desgaste alternativo a baja velocidad de 100 rpm y temperatura ambiente muestra una pequeña huella de desgaste de 0,014 mm.³. En comparación, la prueba de desgaste por rozamiento realizada a una velocidad elevada de 1.000 rpm crea una huella de desgaste sustancialmente mayor, con un volumen de 0,12 mm.³. Este proceso de desgaste acelerado puede atribuirse al elevado calor y a la intensa vibración generados durante el ensayo de desgaste por frotamiento, que favorecen la oxidación de los restos metálicos y provocan una abrasión severa de tres cuerpos. El ensayo de desgaste por frotamiento a una temperatura elevada de 200 °C forma una huella de desgaste mayor de 0,27 mm³.
La prueba de desgaste por rozamiento a 1000 rpm tiene una tasa de desgaste de 1,5×10-4 mm³/Nm, que es casi nueve veces superior a la del ensayo de desgaste alternativo a 100 rpm. La prueba de desgaste por rozamiento a temperatura elevada acelera aún más la tasa de desgaste hasta 3,4×10-4 mm³/Nm. Una diferencia tan significativa en la resistencia al desgaste medida a diferentes velocidades y temperaturas muestra la importancia de simulaciones adecuadas del desgaste por rozamiento para aplicaciones realistas.
El comportamiento del desgaste puede cambiar drásticamente cuando se introducen en el tribosistema pequeños cambios en las condiciones de ensayo. La versatilidad del NANOVEA El tribómetro permite medir el desgaste en diversas condiciones, como alta temperatura, lubricación, corrosión y otras. El control preciso de la velocidad y la posición mediante el motor avanzado permite a los usuarios realizar la prueba de desgaste a velocidades que oscilan entre 0,001 y 5000 rpm, lo que lo convierte en una herramienta ideal para que los laboratorios de investigación/pruebas investiguen el desgaste por rozamiento en diferentes condiciones tribológicas.
Pistas de desgaste por rozamiento en diversas condiciones
bajo el microscopio óptico
PERFILES 3D WEAR TRACKs
profundizar en los conocimientos fundamentales
del mecanismo de desgaste por rozamiento
RESUMEN DE RESULTADOS DE LAS PISTAS DE DESGASTE
medido utilizando diferentes parámetros de ensayo
CONCLUSIÓN
En este estudio, mostramos la capacidad del NANOVEA Tribometer en la evaluación del comportamiento de desgaste por rozamiento de una muestra de acero inoxidable SS304 de forma bien controlada y cuantitativa.
La velocidad y la temperatura de ensayo desempeñan un papel fundamental en la resistencia al desgaste por frotamiento de los materiales. El elevado calor y la intensa vibración durante el fretado provocaron un desgaste sustancialmente acelerado de la muestra de SS304 en cerca de nueve veces. La elevada temperatura de 200 °C aumentó la tasa de desgaste a 3,4×10-4 mm3/Nm.
La versatilidad del NANOVEA El tribómetro lo convierte en una herramienta ideal para medir el desgaste por rozamiento en diversas condiciones, como alta temperatura, lubricación, corrosión y otras.
NANOVEA Los tribómetros ofrecen pruebas de desgaste y fricción precisas y repetibles mediante modos rotativos y lineales conformes con las normas ISO y ASTM, con módulos opcionales de desgaste a alta temperatura, lubricación y tribo-corrosión disponibles en un sistema preintegrado. Nuestra incomparable gama es una solución ideal para determinar toda la gama de propiedades tribológicas de revestimientos, películas y sustratos finos o gruesos, blandos o duros.
AHORA, HABLEMOS DE SU SOLICITUD
Categorías
- Notas de aplicación
- Bloque sobre tribología anular
- Tribología de la corrosión
- Pruebas de fricción | Coeficiente de fricción
- Pruebas mecánicas a alta temperatura
- Tribología de alta temperatura
- Humedad y gases Tribología
- Humedad Pruebas mecánicas
- Indentación | Fluencia y relajación
- Indentación | Resistencia a la fractura
- Indentación | Dureza y elasticidad
- Indentación | Pérdida y almacenamiento
- Indentación | Esfuerzo frente a deformación
- Indentación | Límite elástico y fatiga
- Pruebas de laboratorio
- Tribología lineal
- Pruebas mecánicas de líquidos
- Tribología de líquidos
- Tribología a baja temperatura
- Pruebas mecánicas
- Comunicado de prensa
- Perfilometría | Planitud y alabeo
- Perfilometría | Geometría y forma
- Perfilometría | Rugosidad y acabado
- Profilometría | Altura y grosor del escalón
- Profilometría | Textura y grano
- Perfilometría | Volumen y área
- Pruebas de perfilometría
- Tribología anillo sobre anillo
- Tribología rotacional
- Prueba de arañazos | Fallo adhesivo
- Prueba del rasguño | Fallo de cohesión
- Pruebas de arañazos | Desgaste en varias pasadas
- Pruebas de rayado | Dureza al rayado
- Pruebas de rayado Tribología
- Feria de muestras
- Pruebas de tribología
- Sin categoría
Archivos
- septiembre 2023
- agosto 2023
- junio 2023
- mayo 2023
- julio 2022
- mayo 2022
- abril 2022
- enero 2022
- diciembre 2021
- noviembre 2021
- octubre 2021
- septiembre 2021
- agosto 2021
- julio 2021
- junio 2021
- mayo 2021
- marzo 2021
- febrero 2021
- diciembre 2020
- noviembre 2020
- octubre 2020
- septiembre 2020
- julio 2020
- mayo 2020
- abril 2020
- marzo 2020
- febrero 2020
- enero 2020
- noviembre 2019
- octubre 2019
- septiembre 2019
- agosto 2019
- julio 2019
- junio 2019
- mayo 2019
- abril 2019
- marzo 2019
- enero 2019
- diciembre 2018
- noviembre 2018
- octubre 2018
- septiembre 2018
- julio 2018
- junio 2018
- mayo 2018
- abril 2018
- marzo 2018
- febrero 2018
- noviembre 2017
- octubre 2017
- septiembre 2017
- agosto 2017
- junio 2017
- mayo 2017
- abril 2017
- marzo 2017
- febrero 2017
- enero 2017
- noviembre 2016
- octubre 2016
- agosto 2016
- julio 2016
- junio 2016
- mayo 2016
- abril 2016
- marzo 2016
- febrero 2016
- enero 2016
- diciembre 2015
- noviembre 2015
- octubre 2015
- septiembre 2015
- agosto 2015
- julio 2015
- junio 2015
- mayo 2015
- abril 2015
- marzo 2015
- febrero 2015
- enero 2015
- noviembre 2014
- octubre 2014
- septiembre 2014
- agosto 2014
- julio 2014
- junio 2014
- mayo 2014
- abril 2014
- marzo 2014
- febrero 2014
- enero 2014
- diciembre 2013
- noviembre 2013
- octubre 2013
- septiembre 2013
- agosto 2013
- julio 2013
- junio 2013
- mayo 2013
- abril 2013
- marzo 2013
- febrero 2013
- enero 2013
- diciembre 2012
- noviembre 2012
- octubre 2012
- septiembre 2012
- agosto 2012
- julio 2012
- junio 2012
- mayo 2012
- abril 2012
- marzo 2012
- febrero 2012
- enero 2012
- diciembre 2011
- noviembre 2011
- octubre 2011
- septiembre 2011
- agosto 2011
- julio 2011
- junio 2011
- mayo 2011
- noviembre 2010
- enero 2010
- abril 2009
- marzo 2009
- enero 2009
- diciembre 2008
- octubre 2008
- agosto 2007
- julio 2006
- marzo 2006
- enero 2005
- abril 2004