EEUU/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTÁCTENOS

Micropartículas: Resistencia a la compresión y microindentación

MICROPARTÍCULAS

RESISTENCIA A LA COMPRESIÓN Y MICRO INDENTACIÓN
MEDIANTE EL ANÁLISIS DE LAS SALES

El autor:
Jorge Ramírez

Revisado por:
Jocelyn Esparza

INTRODUCCIÓN

La resistencia a la compresión se ha convertido en algo vital para la medición del control de calidad en el desarrollo y la mejora de las micropartículas nuevas y existentes y de las microcaracterísticas (pilares y esferas) que se ven hoy en día. Las micropartículas tienen diversas formas y tamaños y pueden desarrollarse a partir de cerámica, vidrio, polímeros y metales. Sus usos incluyen la administración de fármacos, la mejora del sabor de los alimentos y las formulaciones de hormigón, entre muchos otros. El control de las propiedades mecánicas de las micropartículas o las microfiguras es fundamental para su éxito y requiere la capacidad de caracterizar cuantitativamente su integridad mecánica  

IMPORTANCIA DE LA PROFUNDIDAD FRENTE A LA RESISTENCIA A LA COMPRESIÓN DE LA CARGA

Los instrumentos estándar de medición de la compresión no son capaces de soportar cargas bajas y no proporcionan datos de profundidad de las micropartículas. Mediante el uso de Nano o Microindentaciónla resistencia a la compresión de las nanopartículas o micropartículas (blandas o duras) puede medirse con exactitud y precisión.  

OBJETIVO DE MEDICIÓN

En esta nota de aplicación medimos  la resistencia a la compresión de la sal con el Comprobador mecánico NANOVEA en modo de micro indentación.

NANOVEA

CB500

CONDICIONES DE PRUEBA

fuerza máxima

30 N

tasa de carga

60 N/min

tasa de descarga

60 N/min

tipo de penetrador

Punzón plano

Acero | 1mm de diámetro

Curvas de carga en función de la profundidad

Resultados y debate

Altura, fuerza de rotura y resistencia para la partícula 1 y la partícula 2

El fallo de la partícula se determinó como el punto en el que la pendiente inicial de la curva de fuerza frente a la profundidad comenzó a disminuir notablemente, lo que indica que el material ha alcanzado un punto de fluencia y ya no es capaz de resistir las fuerzas de compresión aplicadas. Una vez superado el punto de fluencia, la profundidad de indentación comienza a aumentar exponencialmente durante el periodo de carga. Estos comportamientos pueden verse en Curvas de carga en función de la profundidad para ambas muestras.

CONCLUSIÓN

En conclusión, hemos mostrado cómo el NANOVEA Probador Mecánico en modo de microindentación es una gran herramienta para las pruebas de resistencia a la compresión de las micropartículas. Aunque las partículas ensayadas están hechas del mismo material, se sospecha que los diferentes puntos de fallo medidos en este estudio se debieron probablemente a microfisuras preexistentes en las partículas y a los diferentes tamaños de las mismas. Cabe señalar que, en el caso de los materiales frágiles, existen sensores de emisión acústica para medir el inicio de la propagación de la grieta durante un ensayo.


El
NANOVEA Probador Mecánico ofrece resoluciones de desplazamiento en profundidad hasta el nivel sub nanométrico,
lo que la convierte en una gran herramienta para el estudio de micropartículas o rasgos muy frágiles. Para las micropartículas blandas y frágiles
materiales, las cargas de hasta 0,1mN son posibles con nuestro módulo de nano indentación

AHORA, HABLEMOS DE SU SOLICITUD

Comentario