Medición cíclica de tensión-deformación por nanoindentación
Medición cíclica de tensión-deformación por nanoindentación
Más información
Importancia de la nanoindentación
Mediciones continuas de rigidez (CSM) obtenidas mediante nanoindentación revela la relación tensión-deformación de los materiales con métodos mínimamente invasivos. A diferencia de los métodos tradicionales de ensayo de tracción, la nanoindentación proporciona datos de tensión-deformación a escala nanométrica sin necesidad de utilizar instrumentos de gran tamaño. La curva tensión-deformación proporciona información crucial sobre el umbral entre el comportamiento elástico y el plástico a medida que la muestra se somete a cargas cada vez mayores. CSM ofrece la posibilidad de determinar el límite elástico de un material sin necesidad de utilizar equipos peligrosos.
La nanoindentación ofrece un método confiable y fácil de usar para investigar rápidamente los datos de tensión-deformación. Además, la medición del comportamiento de tensión-deformación a escala nanométrica permite estudiar propiedades importantes en recubrimientos y partículas pequeñas en materiales a medida que estos se vuelven más avanzados. La nanoindentación proporciona información sobre el límite elástico y el límite elástico, además de la dureza, el módulo elástico, la fluencia, la resistencia a la fractura, etc., lo que la convierte en un instrumento de metrología versátil.
Los datos de tensión-deformación proporcionados por la nanoindentación en este estudio identifican el límite elástico del material con solo penetrar 1,2 micras en la superficie. Utilizamos CSM para determinar cómo se desarrollan las propiedades mecánicas de los materiales a medida que el indentador se adentra más en la superficie. Esto resulta especialmente útil en aplicaciones de películas delgadas, donde las propiedades pueden depender de la profundidad. La nanoindentación es un método mínimamente invasivo para confirmar las propiedades de los materiales en muestras de prueba.
La prueba CSM es útil para medir las propiedades de los materiales en función de la profundidad. Se pueden realizar pruebas cíclicas con cargas constantes para determinar propiedades más complejas de los materiales. Esto puede ser útil para estudiar la fatiga o eliminar el efecto de la porosidad y obtener el módulo de elasticidad real.
Objetivo de medición
En esta aplicación, el probador mecánico Nanovea utiliza CSM para estudiar la dureza y el módulo de elasticidad en función de la profundidad y los datos de tensión-deformación en una muestra de acero estándar. Se eligió el acero por sus características comúnmente reconocidas para mostrar el control y la precisión de los datos de tensión-deformación a nanoescala. Se utilizó una punta esférica con un radio de 5 micras para alcanzar tensiones suficientemente altas más allá del límite elástico del acero.
Condiciones y procedimientos de prueba
Se utilizaron los siguientes parámetros de sangría:
Resultados:
El aumento de la carga durante las oscilaciones proporciona la siguiente curva de profundidad frente a carga. Se realizaron más de 100 oscilaciones durante la carga para obtener los datos de tensión-deformación a medida que el penetrador penetraba en el material.
Determinamos la tensión y la deformación a partir de la información obtenida en cada ciclo. La carga y la profundidad máximas en cada ciclo nos permiten calcular la tensión máxima aplicada en cada ciclo al material. La deformación se calcula a partir de la profundidad residual en cada ciclo a partir de la descarga parcial. Esto nos permite calcular el radio de la huella residual dividiendo el radio de la punta para obtener el factor de deformación. Al trazar la tensión frente a la deformación del material, se muestran las zonas elásticas y plásticas con la tensión límite elástica correspondiente. Nuestras pruebas determinaron que la transición entre las zonas elástica y plástica del material se sitúa en torno a una deformación de 0,076, con un límite elástico de 1,45 GPa.
Cada ciclo actúa como una sola hendidura, por lo que, a medida que aumentamos la carga, realizamos pruebas a varias profundidades controladas en el acero. Así, la dureza y el módulo de elasticidad en función de la profundidad se pueden representar gráficamente directamente a partir de los datos obtenidos para cada ciclo.
A medida que el penetrador se adentra en el material, observamos un aumento de la dureza y una disminución del módulo de elasticidad.
Conclusión
Hemos demostrado que el medidor mecánico Nanovea proporciona datos fiables sobre tensión-deformación. El uso de una punta esférica con indentación CSM permite medir las propiedades del material bajo una tensión mayor. La carga y el radio del indentador se pueden modificar para probar diversos materiales a profundidades controladas. Los medidores mecánicos Nanovea realizan estas pruebas de indentación desde el rango sub mN hasta 400 N.
Categorías
- Notas de aplicación
- Bloque sobre tribología anular
- Tribología de la corrosión
- Pruebas de fricción | Coeficiente de fricción
- Pruebas mecánicas a alta temperatura
- Tribología de alta temperatura
- Humedad y gases Tribología
- Humedad Pruebas mecánicas
- Indentación | Fluencia y relajación
- Indentación | Resistencia a la fractura
- Indentación | Dureza y elasticidad
- Indentación | Pérdida y almacenamiento
- Indentación | Esfuerzo frente a deformación
- Indentación | Límite elástico y fatiga
- Pruebas de laboratorio
- Tribología lineal
- Pruebas mecánicas de líquidos
- Tribología de líquidos
- Tribología a baja temperatura
- Pruebas mecánicas
- Comunicado de prensa
- Perfilometría | Planitud y alabeo
- Perfilometría | Geometría y forma
- Perfilometría | Rugosidad y acabado
- Profilometría | Altura y grosor del escalón
- Profilometría | Textura y grano
- Perfilometría | Volumen y área
- Pruebas de perfilometría
- Tribología anillo sobre anillo
- Tribología rotacional
- Prueba de arañazos | Fallo adhesivo
- Prueba del rasguño | Fallo de cohesión
- Pruebas de arañazos | Desgaste en varias pasadas
- Pruebas de rayado | Dureza al rayado
- Pruebas de rayado Tribología
- Pruebas de tribología
- Sin categoría
Archivos
- noviembre 2025
- septiembre 2023
- agosto 2023
- junio 2023
- mayo 2023
- julio 2022
- mayo 2022
- abril 2022
- enero 2022
- diciembre 2021
- noviembre 2021
- octubre 2021
- septiembre 2021
- agosto 2021
- julio 2021
- junio 2021
- mayo 2021
- marzo 2021
- febrero 2021
- diciembre 2020
- noviembre 2020
- octubre 2020
- septiembre 2020
- julio 2020
- mayo 2020
- abril 2020
- marzo 2020
- febrero 2020
- enero 2020
- noviembre 2019
- octubre 2019
- septiembre 2019
- agosto 2019
- julio 2019
- junio 2019
- mayo 2019
- abril 2019
- marzo 2019
- enero 2019
- diciembre 2018
- noviembre 2018
- octubre 2018
- septiembre 2018
- julio 2018
- junio 2018
- abril 2018
- marzo 2018
- febrero 2018
- noviembre 2017
- octubre 2017
- septiembre 2017
- agosto 2017
- junio 2017
- mayo 2017
- marzo 2017
- febrero 2017
- enero 2017
- noviembre 2016
- octubre 2016
- agosto 2016
- julio 2016
- junio 2016
- mayo 2016
- abril 2016
- marzo 2016
- febrero 2016
- enero 2016
- diciembre 2015
- noviembre 2015
- octubre 2015
- septiembre 2015
- agosto 2015
- julio 2015
- junio 2015
- mayo 2015
- abril 2015
- marzo 2015
- febrero 2015
- enero 2015
- noviembre 2014
- octubre 2014
- septiembre 2014
- agosto 2014
- julio 2014
- junio 2014
- mayo 2014
- abril 2014
- marzo 2014
- febrero 2014
- enero 2014
- diciembre 2013
- noviembre 2013
- octubre 2013
- septiembre 2013
- agosto 2013
- julio 2013
- junio 2013
- mayo 2013
- abril 2013
- marzo 2013
- febrero 2013
- enero 2013
- diciembre 2012
- noviembre 2012
- octubre 2012
- septiembre 2012
- agosto 2012
- julio 2012
- junio 2012
- mayo 2012
- abril 2012
- marzo 2012
- febrero 2012
- enero 2012
- diciembre 2011
- noviembre 2011
- octubre 2011
- septiembre 2011
- agosto 2011
- julio 2011
- junio 2011
- mayo 2011
- noviembre 2010
- enero 2010
- abril 2009
- marzo 2009
- enero 2009
- diciembre 2008
- octubre 2008
- agosto 2007
- julio 2006
- marzo 2006
- enero 2005
- abril 2004










