Evaluación de la dureza de tejidos biológicos mediante nanoindentación
Importancia de la nanoindentación de tejidos biológicos
Los ensayos mecánicos tradicionales (dureza, adherencia, compresión, punción, límite elástico, etc.) requieren una mayor precisión y fiabilidad en los entornos actuales de control de calidad con una amplia gama de materiales avanzados, desde tejidos hasta materiales quebradizos. La instrumentación mecánica tradicional no proporciona el control de carga sensible y la resolución que requieren los materiales avanzados. Los retos asociados a los biomateriales exigen el desarrollo de ensayos mecánicos capaces de controlar con precisión la carga en materiales extremadamente blandos. Estos materiales requieren cargas de ensayo muy bajas por debajo de mN con un amplio rango de profundidad para garantizar una medición adecuada de las propiedades. Además, se pueden realizar muchos tipos de ensayos mecánicos diferentes en un único sistema, lo que permite una mayor funcionalidad. Esto permite realizar una serie de mediciones importantes en biomateriales, como la dureza, el módulo elástico, el módulo de pérdida y almacenamiento y la fluencia, además de la resistencia al rayado y los puntos de fallo de límite elástico.
Objetivo de medición
En esta aplicación se utiliza el probador mecánico de Nanovea en modo de nanoindentación para estudiar la dureza y el módulo elástico de 3 áreas separadas de un sustituto biomaterial en regiones de grasa, carne clara y carne oscura de prosciutto.
La nanoindentación se basa en las normas de indentación instrumentada ASTM E2546 e ISO 14577. Utiliza métodos establecidos en los que una punta de indentación de geometría conocida se introduce en un lugar específico del material de ensayo con una carga normal creciente controlada. Cuando se alcanza una profundidad máxima preestablecida, la carga normal se reduce hasta que se produce una relajación completa. La carga se aplica mediante un actuador piezoeléctrico y se mide en un bucle controlado con una célula de carga de alta sensibilidad. Durante los experimentos, la posición del penetrador respecto a la superficie de la muestra se controla con un sensor capacitivo de alta precisión. Las curvas de carga y desplazamiento resultantes proporcionan datos específicos de la naturaleza mecánica del material ensayado. Los modelos establecidos calculan valores cuantitativos de dureza y módulo con los datos medidos. La nanoindentación es adecuada para mediciones de baja carga y profundidad de penetración a escalas nanométricas.
Resultados y debate
Estas tablas presentan los valores medidos de dureza y módulo de Young con medias y desviaciones estándar. Una alta rugosidad superficial puede causar grandes variaciones en los resultados debido al pequeño tamaño de la indentación.
La zona de grasa tenía aproximadamente la mitad de dureza que las zonas de carne. El tratamiento de la carne hizo que la zona de carne más oscura fuera más dura que la zona de carne clara. El módulo elástico y la dureza están en relación directa con la sensación en boca de masticabilidad de las zonas de grasa y carne. La grasa y la zona de carne clara presentan una fluencia continua superior a la de la carne oscura después de 60 segundos.
Resultados detallados - Grasa
Resultados detallados - Carne ligera
Resultados detallados - Carne oscura
Conclusión
En esta aplicación, Nanovea comprobador mecánico en modo de nanoindentación determinó con fiabilidad las propiedades mecánicas de las zonas de grasa y carne, superando al mismo tiempo la elevada rugosidad de la superficie de la muestra. Esto demostró la amplia e inigualable capacidad del comprobador mecánico de Nanovea. El sistema proporciona simultáneamente mediciones precisas de propiedades mecánicas en materiales extremadamente duros y tejidos biológicos blandos.
La célula de carga en control de bucle cerrado con la mesa piezoeléctrica garantiza una medición precisa de materiales de gel duros o blandos de 1 a 5kPa. Utilizando el mismo sistema, es posible ensayar biomateriales con cargas superiores de hasta 400N. La carga multiciclo puede utilizarse para ensayos de fatiga y puede obtenerse información sobre el límite elástico en cada zona utilizando una punta de diamante cilíndrica plana. Además, con el Análisis Mecánico Dinámico (AMD), las propiedades viscoelásticas de pérdida y los módulos de almacenamiento pueden evaluarse con gran precisión utilizando el control de carga de bucle cerrado. También se pueden realizar ensayos a distintas temperaturas y bajo líquidos con el mismo sistema.
El comprobador mecánico de Nanovea sigue siendo la herramienta superior para aplicaciones biológicas y de polímeros/geles blandos.
AHORA, HABLEMOS DE SU SOLICITUD
Categorías
- Notas de aplicación
- Bloque sobre tribología anular
- Tribología de la corrosión
- Pruebas de fricción | Coeficiente de fricción
- Pruebas mecánicas a alta temperatura
- Tribología de alta temperatura
- Humedad y gases Tribología
- Humedad Pruebas mecánicas
- Indentación | Fluencia y relajación
- Indentación | Resistencia a la fractura
- Indentación | Dureza y elasticidad
- Indentación | Pérdida y almacenamiento
- Indentación | Esfuerzo frente a deformación
- Indentación | Límite elástico y fatiga
- Pruebas de laboratorio
- Tribología lineal
- Pruebas mecánicas de líquidos
- Tribología de líquidos
- Tribología a baja temperatura
- Pruebas mecánicas
- Comunicado de prensa
- Perfilometría | Planitud y alabeo
- Perfilometría | Geometría y forma
- Perfilometría | Rugosidad y acabado
- Profilometría | Altura y grosor del escalón
- Profilometría | Textura y grano
- Perfilometría | Volumen y área
- Pruebas de perfilometría
- Tribología anillo sobre anillo
- Tribología rotacional
- Prueba de arañazos | Fallo adhesivo
- Prueba del rasguño | Fallo de cohesión
- Pruebas de arañazos | Desgaste en varias pasadas
- Pruebas de rayado | Dureza al rayado
- Pruebas de rayado Tribología
- Feria de muestras
- Pruebas de tribología
- Sin categoría
Archivos
- septiembre 2023
- agosto 2023
- junio 2023
- mayo 2023
- julio 2022
- mayo 2022
- abril 2022
- enero 2022
- diciembre 2021
- noviembre 2021
- octubre 2021
- septiembre 2021
- agosto 2021
- julio 2021
- junio 2021
- mayo 2021
- marzo 2021
- febrero 2021
- diciembre 2020
- noviembre 2020
- octubre 2020
- septiembre 2020
- julio 2020
- mayo 2020
- abril 2020
- marzo 2020
- febrero 2020
- enero 2020
- noviembre 2019
- octubre 2019
- septiembre 2019
- agosto 2019
- julio 2019
- junio 2019
- mayo 2019
- abril 2019
- marzo 2019
- enero 2019
- diciembre 2018
- noviembre 2018
- octubre 2018
- septiembre 2018
- julio 2018
- junio 2018
- mayo 2018
- abril 2018
- marzo 2018
- febrero 2018
- noviembre 2017
- octubre 2017
- septiembre 2017
- agosto 2017
- junio 2017
- mayo 2017
- abril 2017
- marzo 2017
- febrero 2017
- enero 2017
- noviembre 2016
- octubre 2016
- agosto 2016
- julio 2016
- junio 2016
- mayo 2016
- abril 2016
- marzo 2016
- febrero 2016
- enero 2016
- diciembre 2015
- noviembre 2015
- octubre 2015
- septiembre 2015
- agosto 2015
- julio 2015
- junio 2015
- mayo 2015
- abril 2015
- marzo 2015
- febrero 2015
- enero 2015
- noviembre 2014
- octubre 2014
- septiembre 2014
- agosto 2014
- julio 2014
- junio 2014
- mayo 2014
- abril 2014
- marzo 2014
- febrero 2014
- enero 2014
- diciembre 2013
- noviembre 2013
- octubre 2013
- septiembre 2013
- agosto 2013
- julio 2013
- junio 2013
- mayo 2013
- abril 2013
- marzo 2013
- febrero 2013
- enero 2013
- diciembre 2012
- noviembre 2012
- octubre 2012
- septiembre 2012
- agosto 2012
- julio 2012
- junio 2012
- mayo 2012
- abril 2012
- marzo 2012
- febrero 2012
- enero 2012
- diciembre 2011
- noviembre 2011
- octubre 2011
- septiembre 2011
- agosto 2011
- julio 2011
- junio 2011
- mayo 2011
- noviembre 2010
- enero 2010
- abril 2009
- marzo 2009
- enero 2009
- diciembre 2008
- octubre 2008
- agosto 2007
- julio 2006
- marzo 2006
- enero 2005
- abril 2004