USA/GLOBALE: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTATTACI

Ispezione della rugosità superficiale delle compresse farmaceutiche

Compresse farmaceutiche

Ispezione della rugosità con i profilometri 3D

Autore:

Jocelyn Esparza

Introduzione

Le compresse farmaceutiche sono il dosaggio medicinale più diffuso oggi. Ogni compressa è costituita da una combinazione di sostanze attive (le sostanze chimiche che producono l'effetto farmacologico) e di sostanze inattive (disintegrante, legante, lubrificante, diluente - di solito sotto forma di polvere). Le sostanze attive e inattive vengono poi compresse o modellate in un solido. In seguito, a seconda delle specifiche del produttore, le compresse sono rivestite o non rivestite.

Per essere efficaci, i rivestimenti delle compresse devono seguire i contorni sottili dei loghi o dei caratteri in rilievo sulle compresse, devono essere sufficientemente stabili e robusti da sopravvivere alla manipolazione della compressa e non devono far sì che le compresse si attacchino l'una all'altra durante il processo di rivestimento. Le compresse attuali hanno in genere un rivestimento a base di polisaccaridi e polimeri che includono sostanze come pigmenti e plastificanti. I due tipi più comuni di rivestimenti da tavola sono i rivestimenti in pellicola e i rivestimenti in zucchero. Rispetto ai rivestimenti di zucchero, i rivestimenti in pellicola sono meno ingombranti, più durevoli e richiedono meno tempo per la preparazione e l'applicazione. Tuttavia, i rivestimenti in pellicola hanno maggiori difficoltà a nascondere l'aspetto delle compresse.

I rivestimenti delle compresse sono essenziali per proteggere dall'umidità, mascherare il sapore degli ingredienti e rendere le compresse più facili da deglutire. Ma soprattutto, il rivestimento della compressa controlla la posizione e la velocità di rilascio del farmaco.

OBIETTIVO DI MISURAZIONE

In questa applicazione, si utilizza il metodo Profilatore ottico NANOVEA e il software Mountains avanzato per misurare e quantificare la topografia di varie pillole pressate di marca (1 rivestita e 2 non rivestite) per confrontare la loro rugosità superficiale.

Si presume che Advil (rivestito) abbia la rugosità superficiale più bassa grazie al rivestimento protettivo di cui è dotato.

NANOVEA

HS2000

Condizioni di prova

Tre lotti di compresse pressate di marche farmaceutiche sono stati scansionati con Nanovea HS2000.
utilizzando il sensore di linea ad alta velocità per misurare vari parametri di rugosità superficiale secondo la norma ISO 25178.

Area di scansione

2 x 2 mm

Risoluzione della scansione laterale

5 x 5 μm

Tempo di scansione

4 secondi

Campioni

Risultati e discussione

Dopo la scansione delle compresse, è stato condotto uno studio della rugosità superficiale con il software avanzato di analisi Mountains per calcolare la media della superficie, il quadrato medio e l'altezza massima di ogni compressa.

I valori calcolati supportano l'ipotesi che Advil abbia una rugosità superficiale inferiore a causa del rivestimento protettivo che racchiude i suoi ingredienti. Tylenol presenta la rugosità superficiale più elevata di tutte e tre le compresse misurate.

È stata prodotta una mappa di altezza 2D e 3D della topografia della superficie di ciascuna tavoletta, che mostra le distribuzioni di altezza misurate. Una delle cinque tavolette è stata selezionata per rappresentare le mappe di altezza di ciascun marchio. Queste mappe di altezza sono un ottimo strumento per individuare visivamente le caratteristiche della superficie, come buche o picchi.

Conclusione

In questo studio abbiamo analizzato e confrontato la rugosità superficiale di tre pillole farmaceutiche pressate di marca: Advil, Tylenol ed Excedrin. Advil ha dimostrato di avere la rugosità superficiale media più bassa. Ciò può essere attribuito alla presenza del rivestimento arancione che ricopre il farmaco. Al contrario, sia Excedrin che Tylenol sono privi di rivestimento, ma la loro rugosità superficiale è comunque diversa. Tylenol ha dimostrato di avere la rugosità superficiale media più alta tra tutte le compresse studiate.

Utilizzando il NANOVEA HS2000 con sensore di linea ad alta velocità, siamo stati in grado di misurare 5 compresse in meno di 1 minuto. Questo può rivelarsi utile per il controllo di qualità di centinaia di pillole in una produzione odierna.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Microparticelle: Forza di compressione e microindentazione

MICROPARTICELLE

RESISTENZA ALLA COMPRESSIONE E MICROINDENTAZIONE
ATTRAVERSO L'ANALISI DEI SALI

Autore:
Jorge Ramirez

Revisionato da:
Jocelyn Esparza

INTRODUZIONE

La resistenza alla compressione è diventata fondamentale per le misure di controllo della qualità nello sviluppo e nel miglioramento delle microparticelle e dei microelementi (pilastri e sfere) nuovi ed esistenti. Le microparticelle hanno forme e dimensioni diverse e possono essere sviluppate a partire da ceramica, vetro, polimeri e metalli. Gli usi includono la somministrazione di farmaci, l'esaltazione del sapore degli alimenti, le formulazioni di calcestruzzo e molti altri. Il controllo delle proprietà meccaniche delle microparticelle o delle microcaratteristiche è fondamentale per il loro successo e richiede la capacità di caratterizzare quantitativamente la loro integrità meccanica.  

IMPORTANZA DELLA PROFONDITÀ RISPETTO ALLA RESISTENZA ALLA COMPRESSIONE DEL CARICO

Gli strumenti standard per la misurazione della compressione non sono in grado di sopportare carichi ridotti e non riescono a fornire un'adeguata dati di profondità per le microparticelle. Utilizzando i dati di profondità per le microparticelle. MicroindentazioneLa resistenza alla compressione di nano o microparticelle (morbide o dure) può essere misurata con precisione e accuratezza.  

OBIETTIVO DI MISURAZIONE

In questa nota applicativa misuriamo  la resistenza alla compressione del sale con il Tester meccanico NANOVEA in modalità microindentazione.

NANOVEA

CB500

CONDIZIONI DI PROVA

forza massima

30 N

tasso di carico

60 N/min

tasso di scarico

60 N/min

tipo di penetratore

Punzone piatto

Acciaio | Diametro 1 mm

Curve carico/profondità

Risultati e discussione

Altezza, forza di rottura e resistenza per la particella 1 e la particella 2

Il cedimento delle particelle è stato determinato come il punto in cui la pendenza iniziale della curva forza/profondità ha iniziato a diminuire sensibilmente. Questo comportamento indica che il materiale ha raggiunto un punto di snervamento e non è più in grado di resistere alle forze di compressione applicate. Una volta superato il punto di snervamento, la profondità di penetrazione inizia ad aumentare esponenzialmente per tutta la durata del periodo di carico. Questi comportamenti possono essere osservati in Curve di carico in funzione della profondità per entrambi i campioni.

CONCLUSIONE

In conclusione, abbiamo mostrato come il NANOVEA Collaudatore meccanico in modalità di microindentazione è un ottimo strumento per testare la resistenza alla compressione delle microparticelle. Sebbene le particelle testate siano fatte dello stesso materiale, si sospetta che i diversi punti di rottura misurati in questo studio siano probabilmente dovuti a microcricche preesistenti nelle particelle e a dimensioni diverse delle stesse. Va notato che per i materiali fragili sono disponibili sensori di emissione acustica per misurare l'inizio della propagazione della cricca durante una prova.


Il
NANOVEA Collaudatore meccanico offre risoluzioni di spostamento in profondità fino al livello sub nanometrico,
che lo rende un ottimo strumento per lo studio di microparticelle o elementi molto fragili. Per i materiali morbidi e fragili
materiali, con il nostro modulo di nano-indentazione è possibile ottenere carichi fino a 0,1 mN.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Cuscinetti a sfere: studio sulla resistenza all'usura ad alta forza



INTRODUZIONE

Un cuscinetto a sfere utilizza sfere per ridurre l'attrito rotazionale e supportare carichi radiali e assiali. Le sfere che rotolano tra le piste dei cuscinetti producono un coefficiente di attrito (COF) molto più basso rispetto a due superfici piane che scorrono l'una contro l'altra. I cuscinetti a sfere sono spesso esposti a livelli elevati di stress da contatto, usura e condizioni ambientali estreme come le alte temperature. Pertanto, la resistenza all'usura delle sfere sotto carichi elevati e condizioni ambientali estreme è fondamentale per prolungare la durata del cuscinetto a sfere e ridurre costi e tempi di riparazioni e sostituzioni.
I cuscinetti a sfere si trovano in quasi tutte le applicazioni che coinvolgono parti in movimento. Sono comunemente utilizzati nei settori dei trasporti come quello aerospaziale e automobilistico, nonché nell'industria dei giocattoli che produce articoli come fidget spinner e skateboard.

VALUTAZIONE DELL'USURA DEI CUSCINETTI A SFERE CON CARICHI ELEVATI

I cuscinetti a sfere possono essere realizzati da un ampio elenco di materiali. I materiali comunemente utilizzati vanno dai metalli come l'acciaio inossidabile e l'acciaio al cromo o dalla ceramica come il carburo di tungsteno (WC) e il nitruro di silicio (Si3n4). Per garantire che i cuscinetti a sfere prodotti possiedano la resistenza all'usura richiesta, ideale per le condizioni dell'applicazione data, sono necessarie valutazioni tribologiche affidabili sotto carichi elevati. I test tribologici aiutano a quantificare e confrontare i comportamenti di usura dei diversi cuscinetti a sfere in modo controllato e monitorato per selezionare il miglior candidato per l'applicazione mirata.

OBIETTIVO DI MISURAZIONE

In questo studio, mostriamo una Nanovea Tribometro come strumento ideale per confrontare la resistenza all'usura di diversi cuscinetti a sfere sottoposti a carichi elevati.

Figura 1: Impostazione della prova dei cuscinetti.

PROCEDURA DI PROVA

Il coefficiente di attrito, COF e la resistenza all'usura dei cuscinetti a sfera realizzati in diversi materiali sono stati valutati mediante un tribometro Nanovea. Come materiale di supporto è stata utilizzata carta vetrata a grana P100. I segni di usura dei cuscinetti a sfera sono stati esaminati utilizzando a Nanovea Profiler 3D senza contatto al termine dei test di usura. I parametri del test sono riepilogati nella Tabella 1. Il tasso di usura, Kè stato valutato con la formula K=V/(F×s), dove V è il volume consumato, F è il carico normale e s è la distanza di scorrimento. Le cicatrici da usura della palla sono state valutate da a Nanovea Profiler 3D senza contatto per garantire una misurazione precisa del volume di usura.
La funzione di posizionamento radiale motorizzato automatizzato consente al tribometro di diminuire il raggio della traccia di usura per la durata di una prova. Questa modalità di test è chiamata test a spirale e garantisce che il cuscinetto a sfere scivoli sempre su una nuova superficie della carta vetrata (Figura 2). Migliora significativamente la ripetibilità del test di resistenza all'usura sulla sfera. L'encoder avanzato a 20 bit per il controllo della velocità interno e l'encoder a 16 bit per il controllo della posizione esterno forniscono informazioni precise su velocità e posizione in tempo reale, consentendo una regolazione continua della velocità di rotazione per ottenere una velocità di scorrimento lineare costante al contatto.
Si prega di notare che la carta vetrata a grana P100 è stata utilizzata per semplificare il comportamento di usura tra i vari materiali delle sfere in questo studio e può essere sostituita con qualsiasi altra superficie di materiale. Qualsiasi materiale solido può essere sostituito per simulare le prestazioni di un'ampia gamma di accoppiamenti di materiali in condizioni applicative reali, ad esempio in liquidi o lubrificanti.

Figura 2: Illustrazione dei passaggi a spirale del cuscinetto a sfera sulla carta vetrata.
Tabella 1: parametri di prova delle misurazioni dell'usura.

 

RISULTATI E DISCUSSIONE

Il tasso di usura è un fattore vitale per determinare la durata di servizio del cuscinetto a sfere, mentre un COF basso è auspicabile per migliorare le prestazioni e l'efficienza del cuscinetto. La Figura 3 confronta l'evoluzione del COF per diversi cuscinetti a sfera rispetto alla carta vetrata durante i test. La sfera in acciaio al cromo mostra un COF aumentato di ~0,4 durante il test di usura, rispetto a ~0,32 e ~0,28 per i cuscinetti a sfera SS440 e Al2O3. D'altro canto, la sfera WC presenta un COF costante di ~0,2 durante tutto il test di usura. Durante ogni test è possibile osservare una variazione COF osservabile, attribuita alle vibrazioni causate dal movimento di scorrimento dei cuscinetti a sfera contro la superficie ruvida della carta vetrata.

 

Figura 3: Evoluzione del COF durante le prove di usura.

La Figura 4 e la Figura 5 confrontano le tracce di usura dei cuscinetti a sfera dopo che sono stati misurati rispettivamente con un microscopio ottico e un profilatore ottico Nanovea Non-Contact, e la Tabella 2 riassume i risultati dell'analisi della traccia di usura. Il profilatore Nanovea 3D determina con precisione il volume di usura dei cuscinetti a sfere, consentendo di calcolare e confrontare i tassi di usura di diversi cuscinetti a sfere. Si può osservare che le sfere in acciaio al cromo e SS440 mostrano segni di usura appiattiti molto più grandi rispetto alle sfere in ceramica, cioè Al2O3 e WC dopo i test di usura. Le sfere in acciaio al cromo e SS440 hanno tassi di usura comparabili rispettivamente di 3,7×10-3 e 3,2×10-3 m3/N m. In confronto, la sfera Al2O3 mostra una maggiore resistenza all'usura con un tasso di usura di 7,2×10-4 m3/N m. La sfera WC presenta appena piccoli graffi sulla zona di usura poco profonda, con un conseguente tasso di usura significativamente ridotto di 3,3×10-6 mm3/N m.

Figura 4: Usura dei cuscinetti a sfera dopo i test.

Figura 5: Morfologia 3D delle tracce di usura sui cuscinetti a sfere.

Tabella 2: Analisi dei segni di usura dei cuscinetti a sfera.

La Figura 6 mostra le immagini al microscopio delle tracce di usura prodotte sulla carta vetrata dai quattro cuscinetti a sfera. È evidente che la sfera WC ha prodotto la pista di usura più severa (rimuovendo quasi tutte le particelle di sabbia sul suo percorso) e possiede la migliore resistenza all'usura. In confronto, le sfere Cr Steel e SS440 hanno lasciato una grande quantità di detriti metallici sulla traccia di usura della carta vetrata.
Queste osservazioni dimostrano ulteriormente l’importanza del beneficio di un test a spirale. Garantisce che il cuscinetto a sfere scivoli sempre su una nuova superficie della carta vetrata, migliorando significativamente la ripetibilità di un test di resistenza all'usura.

Figura 6: tracce di usura sulla carta vetrata contro diversi cuscinetti a sfera.

CONCLUSIONE

La resistenza all'usura dei cuscinetti a sfera ad alta pressione gioca un ruolo fondamentale nelle loro prestazioni di servizio. I cuscinetti a sfere in ceramica possiedono una resistenza all'usura notevolmente migliorata in condizioni di stress elevato e riducono i tempi e i costi dovuti alla riparazione o alla sostituzione dei cuscinetti. In questo studio, il cuscinetto a sfere WC mostra una resistenza all'usura sostanzialmente più elevata rispetto ai cuscinetti in acciaio, rendendolo un candidato ideale per applicazioni di cuscinetti in cui si verifica un'usura grave.
Un tribometro Nanovea è progettato con capacità di coppia elevata per carichi fino a 2000 N e un motore preciso e controllato per velocità di rotazione da 0,01 a 15.000 giri/min. Offre test ripetibili di usura e attrito utilizzando modalità rotativa e lineare conformi a ISO e ASTM, con moduli opzionali di usura e lubrificazione ad alta temperatura disponibili in un unico sistema preintegrato. Questa gamma senza eguali consente agli utenti di simulare diversi ambienti di lavoro gravosi dei cuscinetti a sfere, tra cui stress elevato, usura e alta temperatura, ecc. Funziona anche come strumento ideale per valutare quantitativamente i comportamenti tribologici di materiali resistenti all'usura superiori sotto carichi elevati.
Un profilatore senza contatto 3D Nanovea fornisce misurazioni precise del volume di usura e funge da strumento per analizzare la morfologia dettagliata delle tracce di usura, fornendo ulteriori approfondimenti nella comprensione fondamentale dei meccanismi di usura.

Preparato da
Duanjie Li, PhD, Jonathan Thomas e Pierre Leroux

Viti dentali-misurazione dimensionale con profilometro 3D

Strumenti dentali: Analisi dimensionale e della rugosità superficiale



INTRODUZIONE

 

Avere dimensioni precise e rugosità superficiale ottimale sono vitali per la funzionalità delle viti dentali. Molte dimensioni delle viti dentali richiedono un'elevata precisione come raggi, angoli, distanze e altezze dei gradini. Comprendere la ruvidità della superficie locale è inoltre estremamente importante per qualsiasi strumento medico o parte inserita all'interno del corpo umano per ridurre al minimo l'attrito radente.

 

 

PROFILOMETRIA SENZA CONTATTO PER LO STUDIO DIMENSIONALE

 

Nanovea Profilatori 3D senza contatto utilizzano una tecnologia basata sulla luce cromatica per misurare qualsiasi superficie materiale: trasparente, opaca, speculare, diffusiva, lucida o ruvida. A differenza della tecnica con tastatore a contatto, la tecnica senza contatto può misurare all'interno di aree ristrette e non aggiunge errori intrinseci dovuti alla deformazione causata dalla pressione della punta su un materiale plastico più morbido. La tecnologia basata sulla luce cromatica offre inoltre una precisione laterale e di altezza superiore rispetto alla tecnologia di variazione della messa a fuoco. I Nanovea Profiler possono scansionare grandi superfici direttamente senza cuciture e profilare la lunghezza di una parte in pochi secondi. È possibile misurare caratteristiche superficiali della gamma da nano a macro e angoli di superficie elevati grazie alla capacità del profilatore di misurare le superfici senza che alcun algoritmo complesso manipoli i risultati.

 

 

OBIETTIVO DI MISURAZIONE

 

In questa applicazione, il profilatore ottico Nanovea ST400 è stato utilizzato per misurare una vite dentale lungo le caratteristiche piatte e filettate in un'unica misurazione. La rugosità superficiale è stata calcolata dall'area piana e sono state determinate le varie dimensioni delle caratteristiche filettate.

 

controllo qualità delle viti dentali

Campione di vite dentale analizzato da NANOVEA Profilatore ottico.

 

Campione di vite dentale analizzato.

 

RISULTATI

 

Superficie 3D

La vista 3D e la vista in falsi colori della vite dentale mostrano un'area piatta con filettatura che inizia su entrambi i lati. Fornisce agli utenti uno strumento semplice per osservare direttamente la morfologia della vite da diverse angolazioni. L'area piatta è stata estratta dalla scansione completa per misurarne la rugosità superficiale.

 

 

Analisi della superficie 2D

I profili lineari possono anche essere estratti dalla superficie per mostrare una vista in sezione trasversale della vite. L'analisi del contorno e gli studi sull'altezza del gradino sono stati utilizzati per misurare dimensioni precise in una determinata posizione sulla vite.

 

 

CONCLUSIONE

 

In questa applicazione, abbiamo mostrato la capacità del profilatore senza contatto Nanovea 3D di calcolare con precisione la rugosità superficiale locale e misurare caratteristiche di grandi dimensioni in un'unica scansione.

I dati mostrano una rugosità superficiale locale di 0,9637 μm. Il raggio della vite tra le filettature è risultato essere di 1,729 mm e le filettature avevano un'altezza media di 0,413 mm. L'angolo medio tra i fili è stato determinato pari a 61,3°.

I dati qui riportati rappresentano solo una parte dei calcoli disponibili nel software di analisi.

 

Preparato da
Duanjie Li, PhD., Jonathan Thomas e Pierre Leroux

Ceramica: Mappatura veloce di nanoindentazione per il rilevamento dei grani

INTRODUZIONE

 

Nanoindentazione è diventata una tecnica ampiamente applicata per misurare il comportamento meccanico dei materiali su piccola scalai ii. Le curve di spostamento del carico ad alta risoluzione derivanti da una misurazione di nanoindentazione possono fornire una varietà di proprietà fisico-meccaniche, tra cui durezza, modulo di Young, scorrimento, resistenza alla frattura e molte altre.

 

 

Importanza dell'indentazione della mappatura rapida

 

Un ostacolo significativo per l’ulteriore divulgazione della tecnica di nanoindentazione è il consumo di tempo. Una mappatura delle proprietà meccaniche mediante la procedura di nanoindentazione convenzionale può facilmente richiedere ore, il che ostacola l'applicazione della tecnica nei settori della produzione di massa, come quello dei semiconduttori, aerospaziale, MEMS, prodotti di consumo come piastrelle di ceramica e molti altri.

La mappatura rapida può rivelarsi essenziale nel settore della produzione di piastrelle di ceramica. Le mappature dei moduli di Durezza e Young su una singola piastrella di ceramica possono presentare una distribuzione di dati che indica quanto omogenea sia la superficie. In questa mappatura è possibile delineare le regioni più morbide su un riquadro e mostrare le posizioni più soggette a guasti a causa degli impatti fisici che si verificano quotidianamente nella residenza di qualcuno. È possibile effettuare mappature su diversi tipi di piastrelle per studi comparativi e su un lotto di piastrelle simili per misurarne la consistenza nei processi di controllo qualità. La combinazione di configurazioni di misurazione può essere ampia, nonché accurata ed efficiente con il metodo di mappatura rapida.

 

OBIETTIVO DI MISURAZIONE

 

In questo studio, la Nanovea Collaudatore meccanico, in modalità FastMap viene utilizzato per mappare le proprietà meccaniche di una piastrella ad alta velocità. Mostriamo la capacità del Nanovea Mechanical Tester di eseguire due veloci mappature di nanoindentazione con elevata precisione e riproducibilità.

 

Condizioni di prova

 

Il Nanovea Mechanical Tester è stato utilizzato per eseguire una serie di nanoindentazioni con la modalità FastMap su una piastrella del pavimento utilizzando un penetratore Berkovich. I parametri del test sono riepilogati di seguito per le due matrici di rientro create.

 

Tabella 1: riepilogo dei parametri del test.

 

RISULTATI E DISCUSSIONE 

 

Figura 1: vista 2D e 3D della mappatura della durezza a 625 rientranze.

 

 

 

Figura 2: Micrografia della matrice a 625 rientranze che mostra la grana.

 

 

Una matrice da 625 rientranti è stata condotta su uno spessore di 0,20 mm2 area con una grande grana visibile presente. Questa grana (Figura 2) aveva una durezza media inferiore alla superficie complessiva della piastrella. Il software Nanovea Mechanical consente all'utente di vedere la mappa di distribuzione della durezza in modalità 2D e 3D, illustrata nella Figura 1. Utilizzando il controllo della posizione ad alta precisione del tavolino campione, il software consente agli utenti di individuare aree come queste in modo approfondito mappatura delle proprietà meccaniche.

Figura 3: vista 2D e 3D della mappatura della durezza a 1600 trattini.

 

 

Figura 4: Micrografia della matrice a 1600 rientranze.

 

 

Sulla stessa piastrella è stata inoltre creata una matrice da 1600 denti per misurare l'omogeneità della superficie. Anche in questo caso l'utente ha la possibilità di vedere la distribuzione della durezza in modalità 3D o 2D (Figura 3) nonché l'immagine al microscopio della superficie dentellata. Sulla base della distribuzione della durezza presentata, si può concludere che il materiale è poroso a causa della distribuzione uniforme dei punti dati di durezza alta e bassa.

Rispetto alle procedure convenzionali di nanoindentazione, la modalità FastMap in questo studio richiede sostanzialmente meno tempo ed è più economica. Consente una rapida mappatura quantitativa delle proprietà meccaniche, tra cui la durezza e il modulo di Young, e fornisce una soluzione per il rilevamento dei grani e della consistenza dei materiali, che è fondamentale per il controllo di qualità di una varietà di materiali nella produzione di massa.

 

 

CONCLUSIONE

 

In questo studio, abbiamo dimostrato la capacità del Nanovea Mechanical Tester nell'eseguire una mappatura della nanoindentazione rapida e precisa utilizzando la modalità FastMap. Le mappe delle proprietà meccaniche sulla piastrella in ceramica utilizzano il controllo della posizione (con precisione di 0,2 µm) degli stadi e la sensibilità del modulo di forza per rilevare i grani superficiali e misurare l'omogeneità di una superficie ad alta velocità.

I parametri di test utilizzati in questo studio sono stati determinati in base alle dimensioni della matrice e del materiale campione. È possibile scegliere una varietà di parametri di test per ottimizzare il tempo totale del ciclo di rientranza a 3 secondi per rientranza (o 30 secondi per ogni 10 rientranze).

I moduli Nano e Micro del Nanovea Mechanical Tester includono tutti modalità di test di indentazione, graffiatura e usura conformi ISO e ASTM, fornendo la gamma di test più ampia e intuitiva disponibile in un unico sistema. L'impareggiabile gamma di Nanovea è una soluzione ideale per determinare l'intera gamma di proprietà meccaniche di rivestimenti, pellicole e substrati sottili o spessi, morbidi o duri, tra cui durezza, modulo di Young, tenacità alla frattura, adesione, resistenza all'usura e molti altri.

Inoltre, sono disponibili un profilatore 3D senza contatto opzionale e un modulo AFM per l'imaging 3D ad alta risoluzione di rientranze, graffi e tracce di usura oltre ad altre misurazioni superficiali come la rugosità.

 

Autore: Duanjie Li, PhD Rivisto da Pierre Leroux e Jocelyn Esparza