USA/GLOBALE: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTATTACI

Resistenza allo snervamento e alla trazione di acciaio e alluminio

Importanza della misurazione del carico di snervamento e del carico di rottura con l'indentazione

Tradizionalmente, il carico di snervamento e il carico di rottura sono stati testati utilizzando una macchina per prove di trazione di grandi dimensioni, che richiede una forza enorme per staccare i campioni di prova. È costoso e dispendioso in termini di tempo lavorare adeguatamente molti tagliandi di prova per un materiale in cui ogni campione può essere testato solo una volta. Piccoli difetti nel campione creano una notevole variazione nei risultati delle prove. Le diverse configurazioni e allineamenti dei tester di trazione presenti sul mercato spesso comportano variazioni sostanziali nella meccanica e nei risultati delle prove.

L'innovativo metodo di indentazione di Nanovea fornisce direttamente valori di resistenza allo snervamento e di resistenza alla trazione finale paragonabili ai valori misurati dai test di trazione convenzionali. Questa misurazione apre un nuovo campo di possibilità di test per tutti i settori industriali. Il semplice setup sperimentale riduce significativamente i tempi e i costi di preparazione dei campioni rispetto alla complessa forma delle cedole richiesta per le prove di trazione. Grazie alle dimensioni ridotte dell'indentazione, è possibile eseguire più misure su un singolo campione. Questo sistema evita l'influenza dei difetti che si riscontrano nelle cedole per prove di trazione create durante la lavorazione del campione. Le misure di YS e UTS su piccoli campioni in aree localizzate consentono la mappatura e l'individuazione di difetti locali in tubazioni o strutture auto.
 
 

Obiettivo di misurazione

In questa applicazione, il sistema Nanovea Collaudatore meccanico misura il carico di snervamento e il carico di rottura a trazione di campioni di acciaio inossidabile SS304 e lega metallica di alluminio Al6061. I campioni sono stati scelti per i valori di resistenza allo snervamento e di resistenza alla trazione comunemente riconosciuti, che dimostrano l'affidabilità dei metodi di indentazione di Nanovea.

Procedura di test e procedure

Le prove di resistenza allo snervamento e di resistenza alla trazione finale sono state eseguite con il tester meccanico Nanovea nel Microindentazione modalità. Per questa applicazione è stata utilizzata una punta di diamante cilindrica piatta di 200 μm di diametro. Le leghe SS304 e Al6061 sono state selezionate per la loro vasta applicazione industriale e per i valori di resistenza allo snervamento e resistenza alla trazione finale comunemente riconosciuti, al fine di dimostrare il grande potenziale e l'affidabilità del metodo di indentazione. I campioni sono stati lucidati meccanicamente a specchio prima delle prove per evitare che la rugosità della superficie o i difetti influenzassero i risultati. Le condizioni di prova sono elencate nella Tabella 1. Sono state eseguite più di dieci prove su ciascun campione per garantire la ripetibilità dei valori di prova.

Risultati e discussione

Le curve di carico-spostamento dei campioni di lega SS304 e Al6061 sono mostrate nella Figura 3 con le impronte del penetratore piatto sui campioni di prova. L'analisi della curva di carico a forma di "S", utilizzando speciali algoritmi sviluppati da Nanovea, calcola il carico di snervamento e il carico di rottura. I valori sono calcolati automaticamente dal software, come riassunto nella Tabella 1. I valori di Yield Strength e Ultimate Tensile Strength ottenuti con prove di trazione convenzionali sono elencati per confronto.

 

Conclusione

In questo studio, abbiamo mostrato la capacità del Nanovea Mechanical Tester nel valutare la resistenza allo snervamento e la resistenza alla trazione finale di campioni di fogli di acciaio inossidabile e leghe di alluminio. La semplice configurazione sperimentale riduce significativamente i tempi e i costi per la preparazione dei campioni necessari per le prove di trazione. La dimensione ridotta della rientranza consente di eseguire misurazioni multiple su un singolo campione. Questo metodo consente misurazioni YS/UTS su piccoli campioni e aree localizzate, fornendo una soluzione per la mappatura YS/UTS e il rilevamento locale dei difetti di tubazioni o strutture automobilistiche.

I moduli Nano, Micro o Macro del Nanovea Mechanical Tester includono tutti modalità di test di indentazione, graffiatura e usura conformi ISO e ASTM, fornendo la gamma di test più ampia e intuitiva disponibile in un unico sistema. L'impareggiabile gamma di Nanovea è una soluzione ideale per determinare l'intera gamma di proprietà meccaniche di rivestimenti, pellicole e substrati sottili o spessi, morbidi o duri, tra cui durezza, modulo di Young, tenacità alla frattura, adesione, resistenza all'usura e molti altri. Inoltre, sono disponibili un profilatore 3D senza contatto opzionale e un modulo AFM per l'imaging 3D ad alta risoluzione di rientranze, graffi e tracce di usura oltre ad altre misurazioni superficiali come la rugosità.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Tribologia del carico dinamico

Tribologia del carico dinamico

Introduzione

L'usura si verifica praticamente in ogni settore industriale e comporta costi pari a ~0,75% del PIL1. La ricerca tribologica è fondamentale per migliorare l'efficienza produttiva, le prestazioni delle applicazioni e la conservazione di materiali, energia e ambiente. Le vibrazioni e le oscillazioni si verificano inevitabilmente in un'ampia gamma di applicazioni tribologiche. Un'eccessiva vibrazione esterna accelera il processo di usura e riduce le prestazioni di servizio, portando a guasti catastrofici delle parti meccaniche.

I tribometri convenzionali a carico morto applicano carichi normali mediante pesi di massa. Questa tecnica di carico non solo limita le opzioni di carico a un carico costante, ma crea anche intense vibrazioni incontrollate a carichi e velocità elevati che portano a valutazioni limitate e incoerenti del comportamento all'usura. Una valutazione affidabile dell'effetto dell'oscillazione controllata sul comportamento all'usura dei materiali è auspicabile per la R&S e il controllo qualità in diverse applicazioni industriali.

L'innovativo carico elevato di Nanovea tribometro ha una capacità di carico massima di 2000 N con un sistema di controllo dinamico del carico. L'avanzato sistema di caricamento pneumatico dell'aria compressa consente agli utenti di valutare il comportamento tribologico di un materiale sotto carichi normali elevati con il vantaggio di smorzare le vibrazioni indesiderate create durante il processo di usura. Pertanto, il carico viene misurato direttamente senza la necessità di molle tampone utilizzate nei modelli più vecchi. Un modulo di carico oscillante con elettromagnete parallelo applica un'oscillazione ben controllata dell'ampiezza desiderata fino a 20 N e della frequenza fino a 150 Hz.

L'attrito viene misurato con elevata precisione direttamente dalla forza laterale applicata al supporto superiore. Lo spostamento viene monitorato in situ, fornendo informazioni sull'evoluzione del comportamento all'usura dei campioni di prova. Il test di usura con carico a oscillazione controllata può essere eseguito anche in ambienti di corrosione, alta temperatura, umidità e lubrificazione per simulare le reali condizioni di lavoro per le applicazioni tribologiche. Un integrato ad alta velocità profilometro senza contatto misura automaticamente la morfologia della traccia di usura e il volume di usura in pochi secondi.

Obiettivo di misurazione

In questo studio, mostriamo la capacità del tribometro a carico dinamico Nanovea T2000 di studiare il comportamento tribologico di diversi campioni di rivestimento e di metallo in condizioni di carico oscillante controllato.

 

Procedura di prova

Il comportamento tribologico, ad esempio il coefficiente di attrito, COF, e la resistenza all'usura di un rivestimento resistente all'usura di 300 µm di spessore è stato valutato e confrontato dal tribometro Nanovea T2000 con un tribometro convenzionale a carico morto, utilizzando una configurazione perno su disco conforme alla norma ASTM G992.

Campioni separati rivestiti di Cu e TiN contro una sfera di Al₂0₃ da 6 mm sotto oscillazione controllata sono stati valutati mediante la modalità tribologica a carico dinamico del tribometro Nanovea T2000.

I parametri del test sono riassunti nella Tabella 1.

Il profilometro 3D integrato, dotato di un sensore di linea, esegue automaticamente la scansione della pista di usura dopo i test, fornendo la misura più accurata del volume di usura in pochi secondi.

Risultati e discussione

 

Sistema di carico pneumatico vs. sistema a carico morto

 

Il comportamento tribologico di un rivestimento resistente all'usura utilizzando il tribometro Nanovea T2000 viene confrontato con un tribometro convenzionale a carico morto (DL). L'evoluzione del COF del rivestimento è illustrata nella Fig. 2. Si osserva che il rivestimento presenta un valore COF comparabile di ~0,6 durante il test di usura. Tuttavia, i 20 profili delle sezioni trasversali in diversi punti della pista di usura nella Fig. 3 indicano che il rivestimento ha subito un'usura molto più grave con il sistema a carico morto.

Le vibrazioni intense sono state generate dal processo di usura del sistema a carico morto a carico e velocità elevati. L'enorme pressione concentrata sulla superficie di contatto, combinata con un'elevata velocità di scorrimento, crea vibrazioni sostanziali del peso e della struttura che portano a un'usura accelerata. Il tribometro a carico morto convenzionale applica il carico utilizzando pesi di massa. Questo metodo è affidabile ai carichi di contatto più bassi e in condizioni di usura lievi; tuttavia, in condizioni di usura aggressiva a carichi e velocità più elevati, le vibrazioni significative fanno rimbalzare ripetutamente i pesi, dando luogo a una traccia di usura irregolare che causa una valutazione tribologica inaffidabile. Il tasso di usura calcolato è di 8,0±2,4 x 10-4 mm3/N m, con un tasso di usura elevato e un'ampia deviazione standard.

Il tribometro Nanovea T2000 è progettato con un sistema di carico a controllo dinamico per smorzare le oscillazioni. Il sistema applica il carico normale con aria compressa, riducendo al minimo le vibrazioni indesiderate che si creano durante il processo di usura. Inoltre, il controllo attivo del carico ad anello chiuso garantisce l'applicazione di un carico costante per tutta la durata del test di usura e lo stilo segue la variazione di profondità della traccia di usura. Come mostrato nella Fig. 3a, è stato misurato un profilo della traccia d'usura significativamente più coerente, che ha portato a un basso tasso di usura di 3,4±0,5 x 10-4 mm3/Nm.

L'analisi della traccia di usura mostrata nella Fig. 4 conferma che il test di usura eseguito con il sistema di caricamento pneumatico ad aria compressa del tribometro Nanovea T2000 crea una traccia di usura più uniforme e coerente rispetto al tribometro convenzionale a carico morto. Inoltre, il tribometro Nanovea T2000 misura lo spostamento dello stilo durante il processo di usura, fornendo ulteriori informazioni sull'andamento del comportamento dell'usura in situ.

 

 

Oscillazione controllata sull'usura del campione di Cu

Il modulo elettromagnetico a carico oscillante parallelo del tribometro Nanovea T2000 consente di studiare l'effetto delle oscillazioni di ampiezza e frequenza controllate sul comportamento all'usura dei materiali. La COF dei campioni di Cu è stata registrata in situ, come mostrato nella Fig. 6. Il campione di Cu mostra una COF costante. Il campione di Cu presenta una COF costante di ~0,3 durante la prima misurazione a 330 giri, a indicare la formazione di un contatto stabile all'interfaccia e di una pista di usura relativamente liscia. Con il proseguire della prova di usura, la variazione del COF indica un cambiamento nel meccanismo di usura. In confronto, le prove di usura sotto un'oscillazione di 5 N controllata in ampiezza a 50 N mostrano un comportamento diverso: il COF aumenta rapidamente all'inizio del processo di usura e mostra una variazione significativa per tutta la durata della prova. Questo comportamento del COF indica che l'oscillazione imposta nel carico normale gioca un ruolo nello stato di scorrimento instabile del contatto.

La Fig. 7 confronta la morfologia della traccia di usura misurata dal profilometro ottico integrato senza contatto. Si può osservare che il campione di Cu sottoposto a un'ampiezza di oscillazione controllata di 5 N presenta una traccia di usura molto più grande, con un volume di 1,35 x 109 µm3, rispetto a 5,03 x 108 µm3 in assenza di oscillazioni imposte. L'oscillazione controllata accelera significativamente il tasso di usura di un fattore pari a ~2,7, dimostrando l'effetto critico dell'oscillazione sul comportamento dell'usura.

 

Oscillazione controllata sull'usura del rivestimento TiN

La COF e le tracce di usura del campione con rivestimento in TiN sono mostrate nella Fig. 8. Il rivestimento TiN presenta comportamenti di usura significativamente diversi in condizioni di oscillazione, come indicato dall'evoluzione della COF durante le prove. Il rivestimento TiN mostra un COF costante di ~0,3 dopo il periodo di rodaggio all'inizio della prova di usura, a causa del contatto stabile di scorrimento all'interfaccia tra il rivestimento TiN e la sfera di Al₂O₃. Tuttavia, quando il rivestimento TiN inizia a cedere, la sfera di Al₂O₃ penetra attraverso il rivestimento e scivola contro il substrato di acciaio fresco sottostante. Contemporaneamente, nella pista di usura si genera una quantità significativa di detriti di rivestimento TiN duro, trasformando l'usura da scorrimento stabile a due corpi in usura da abrasione a tre corpi. Questo cambiamento delle caratteristiche di coppia del materiale porta a maggiori variazioni nell'evoluzione del COF. L'oscillazione imposta di 5 N e 10 N accelera il cedimento del rivestimento TiN da ~400 giri a meno di 100 giri. Le tracce di usura più grandi sui campioni di rivestimento TiN dopo le prove di usura con oscillazione controllata sono in accordo con tale variazione della COF.

Conclusione

L'avanzato sistema di carico pneumatico del Tribometro Nanovea T2000 possiede un vantaggio intrinseco come smorzatore di vibrazioni naturalmente rapido rispetto ai tradizionali sistemi a carico morto. Questo vantaggio tecnologico dei sistemi pneumatici è vero rispetto ai sistemi a carico controllato che utilizzano una combinazione di servomotori e molle per applicare il carico. Questa tecnologia garantisce una valutazione dell'usura affidabile e meglio controllata a carichi elevati, come dimostrato in questo studio. Inoltre, il sistema di carico attivo ad anello chiuso può modificare il carico normale a un valore desiderato durante i test di usura per simulare le applicazioni reali viste nei sistemi frenanti.

Invece di subire l'influenza di condizioni di vibrazione incontrollate durante i test, abbiamo dimostrato che il tribometro Nanovea T2000 a carico dinamico consente agli utenti di valutare quantitativamente i comportamenti tribologici dei materiali in diverse condizioni di oscillazione controllata. Le vibrazioni giocano un ruolo significativo nel comportamento all'usura dei campioni di rivestimento metallico e ceramico.

Il modulo di carico oscillante ad elettromagneti paralleli fornisce oscillazioni controllate con precisione ad ampiezze e frequenze prestabilite, consentendo agli utenti di simulare il processo di usura in condizioni reali, quando le vibrazioni ambientali sono spesso un fattore importante. In presenza di oscillazioni imposte durante l'usura, sia i campioni di Cu che quelli di rivestimento TiN mostrano un tasso di usura sostanzialmente aumentato. L'evoluzione del coefficiente di attrito e lo spostamento dello stilo misurato in situ sono indicatori importanti per le prestazioni del materiale durante le applicazioni tribologiche. Il profilometro 3D senza contatto integrato offre uno strumento per misurare con precisione il volume di usura e analizzare la morfologia dettagliata delle tracce di usura in pochi secondi, fornendo maggiori informazioni sulla comprensione fondamentale del meccanismo di usura.

Il T2000 è dotato di un motore autotarato, di alta qualità e ad alta coppia, con una velocità interna a 20 bit e un encoder di posizione esterno a 16 bit. Ciò consente al tribometro di fornire una gamma ineguagliata di velocità di rotazione, da 0,01 a 5000 giri/min, che possono variare a scatti graduali o in modo continuo. A differenza dei sistemi che utilizzano un sensore di coppia posizionato in basso, il tribometro Nanovea utilizza una cella di carico ad alta precisione posizionata in alto per misurare accuratamente e separatamente le forze di attrito.

I tribometri Nanovea offrono test di usura e attrito precisi e ripetibili utilizzando modalità rotative e lineari conformi alle norme ISO e ASTM (compresi i test con 4 sfere, rondelle di spinta e blocchi su anelli), con moduli opzionali per l'usura ad alta temperatura, la lubrificazione e la tribocorrosione disponibili in un unico sistema pre-integrato. La gamma impareggiabile di Nanovea T2000 è la soluzione ideale per determinare l'intera gamma di proprietà tribologiche di rivestimenti, film e substrati sottili o spessi, morbidi o duri.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Analisi della texture della buccia d'arancia della vernice con la profilometria 3D

Analisi della texture della buccia d'arancia della vernice con la profilometria 3D

Introduzione

Le dimensioni e la frequenza delle strutture superficiali sui substrati influenzano la qualità dei rivestimenti lucidi. La struttura a buccia d'arancia, che prende il nome dal suo aspetto, può svilupparsi a causa dell'influenza del substrato e della tecnica di applicazione della vernice. I problemi di struttura sono comunemente quantificati in base all'ondulazione, alla lunghezza d'onda e all'effetto visivo che hanno sui rivestimenti lucidi. Le texture più piccole riducono la brillantezza, mentre quelle più grandi provocano increspature visibili sulla superficie rivestita. La comprensione dello sviluppo di queste texture e la loro relazione con i substrati e le tecniche sono fondamentali per il controllo della qualità.

Importanza della profilometria per la misurazione della struttura

A differenza dei tradizionali strumenti 2D utilizzati per misurare la struttura della lucentezza, la misurazione 3D senza contatto fornisce rapidamente un'immagine 3D utilizzata per comprendere le caratteristiche della superficie, con l'ulteriore possibilità di esaminare rapidamente le aree di interesse. Senza la velocità e l'esame 3D, un ambiente di controllo della qualità si baserebbe esclusivamente su informazioni 2D che forniscono una scarsa prevedibilità dell'intera superficie. La comprensione delle texture in 3D consente di selezionare al meglio le misure di lavorazione e di controllo. La garanzia di un controllo di qualità di questi parametri si basa molto su un'ispezione quantificabile, riproducibile e affidabile. Nanovea 3D senza contatto Profilometri utilizzano la tecnologia confocale cromatica per avere la capacità unica di misurare gli angoli ripidi che si trovano durante le misure veloci. I profilometri Nanovea riescono dove altre tecniche non riescono a fornire dati affidabili a causa del contatto con la sonda, della variazione della superficie, dell'angolo o della riflettività.

Obiettivo di misurazione

In questa applicazione, il Nanovea HS2000L misura la struttura a buccia d'arancia di una vernice lucida. Ci sono infiniti parametri di superficie calcolati automaticamente dalla scansione della superficie 3D. Qui analizziamo una superficie 3D scansionata quantificando le caratteristiche della texture a buccia d'arancia della vernice.

Risultati e discussione

Il Nanovea HS2000L ha quantificato i parametri di isotropia e altezza della vernice a buccia d'arancia. La texture a buccia d'arancia ha quantificato la direzione del modello casuale con un'isotropia di 94,4%. I parametri di altezza quantificano la texture con una differenza di altezza di 24,84 µm.

La curva del rapporto di portanza nella Figura 4 è una rappresentazione grafica della distribuzione della profondità. Si tratta di una funzione interattiva del software che consente all'utente di visualizzare le distribuzioni e le percentuali a diverse profondità. Il profilo estratto nella Figura 5 fornisce valori di rugosità utili per la texture a buccia d'arancia. I picchi di estrazione al di sopra di una soglia di 144 micron mostrano la texture a buccia d'arancia. Questi parametri possono essere facilmente adattati ad altre aree o parametri di interesse.

Conclusione

In questa applicazione, il profilometro 3D senza contatto Nanovea HS2000L caratterizza con precisione sia la topografia che i dettagli nanometrici della struttura a buccia d'arancia della vernice su un rivestimento lucido. Le aree di interesse delle misurazioni 3D della superficie vengono rapidamente identificate e analizzate con molte misure utili (dimensione, rugosità della finitura, topografia della forma, planarità della curvatura, area del volume, altezza del gradino, ecc.) Sezioni trasversali 2D di rapida scelta forniscono una serie completa di risorse per la misurazione della superficie sulla struttura della lucentezza. Aree speciali di interesse possono essere ulteriormente analizzate con un modulo AFM integrato. La velocità del profilometro 3D Nanovea varia da <1 mm/s a 500 mm/s per adattarsi alle applicazioni di ricerca e alle esigenze di ispezione ad alta velocità. I profilometri 3D Nanovea hanno un'ampia gamma di configurazioni per adattarsi alle vostre applicazioni.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE