USA/GLOBALE: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTATTACI

Misura continua della curva di Stribeck con il tribometro a pin su disco

Introduzione:

Quando si applica la lubrificazione per ridurre l'usura/attrito delle superfici in movimento, il contatto di lubrificazione all'interfaccia può passare da diversi regimi come la lubrificazione limite, mista e idrodinamica. Lo spessore del film fluido gioca un ruolo fondamentale in questo processo, determinato principalmente dalla viscosità del fluido, dal carico applicato all'interfaccia e dalla velocità relativa tra le due superfici. Il modo in cui i regimi di lubrificazione reagiscono all'attrito è rappresentato dalla cosiddetta curva di Stribeck [1-4].

In questo studio dimostriamo per la prima volta la capacità di misurare una curva di Stribeck continua. Utilizzando la Nanovea Tribometro controllo avanzato della velocità senza scatti, da 15000 a 0,01 giri al minuto, entro 10 minuti il software fornisce direttamente una curva Stribeck completa. La semplice configurazione iniziale richiede solo che gli utenti selezionino la modalità rampa esponenziale e inseriscano le velocità iniziali e finali, invece di dover eseguire più test o programmare una procedura graduale a velocità diverse che richiedono l'unione dei dati per le misurazioni convenzionali della curva Stribeck. Questo progresso fornisce dati precisi durante la valutazione del regime di lubrificante e riduce sostanzialmente tempi e costi. Il test mostra un grande potenziale per essere utilizzato in diverse applicazioni di ingegneria industriale.

 

Clicca per saperne di più!

Ruvidità della superficie e caratteristiche di una cella solare

Importanza del test dei pannelli solari

La massimizzazione dell'assorbimento energetico di una cella solare è fondamentale per la sopravvivenza della tecnologia come risorsa rinnovabile. Gli strati multipli di rivestimento e di protezione del vetro consentono l'assorbimento, la trasmissione e la riflessione della luce necessari al funzionamento delle celle fotovoltaiche. Dato che la maggior parte delle celle solari di consumo funziona con un'efficienza di 15-18%, l'ottimizzazione della loro produzione di energia è una battaglia continua.


Gli studi hanno dimostrato che la rugosità della superficie gioca un ruolo fondamentale nella riflessione della luce. Lo strato iniziale di vetro deve essere il più liscio possibile per attenuare la riflessione della luce, ma gli strati successivi non seguono questa linea guida. È necessario un certo grado di rugosità all'interfaccia di ciascun rivestimento per aumentare la possibilità di diffusione della luce all'interno delle rispettive zone di esaurimento e aumentare l'assorbimento della luce all'interno della cella1. L'ottimizzazione della rugosità superficiale in queste regioni consente alla cella solare di funzionare al meglio e con il sensore ad alta velocità Nanovea HS2000 è possibile misurare la rugosità superficiale in modo rapido e preciso.



Obiettivo di misurazione

In questo studio mostreremo le capacità del Nanovea Profilometro HS2000 con sensore ad alta velocità misurando la rugosità superficiale e le caratteristiche geometriche di una cella fotovoltaica. Per questa dimostrazione verrà misurata una cella solare monocristallina senza protezione in vetro, ma la metodologia può essere utilizzata per diverse altre applicazioni.




Procedura di test e procedure

Per misurare la superficie della cella solare sono stati utilizzati i seguenti parametri di prova.




Risultati e discussione

Di seguito sono rappresentate la vista 2D in falsi colori della cella solare e l'estrazione dell'area della superficie con i rispettivi parametri di altezza. A entrambe le superfici è stato applicato un filtro gaussiano ed è stato utilizzato un indice più aggressivo per appiattire l'area estratta. In questo modo si esclude la forma (o ondulazione) più grande dell'indice di cut-off, lasciando le caratteristiche che rappresentano la rugosità della cella solare.











Per misurare le caratteristiche geometriche delle linee di griglia è stato tracciato un profilo perpendicolare all'orientamento delle stesse, come mostrato di seguito. La larghezza della linea di griglia, l'altezza del gradino e il passo possono essere misurati per qualsiasi punto specifico della cella solare.









Conclusione





In questo studio abbiamo potuto mostrare la capacità del sensore di linea Nanovea HS2000 di misurare la rugosità superficiale e le caratteristiche di una cella fotovoltaica monocristallina. Grazie alla possibilità di automatizzare misurazioni accurate di più campioni e di impostare limiti di accettazione e rifiuto, il sensore di linea Nanovea HS2000 è la scelta perfetta per le ispezioni di controllo qualità.

Riferimento

1 Scholtz, Lubomir. Ladanyi, Libor. Mullerova, Jarmila. "Influenza della rugosità superficiale sulle caratteristiche ottiche delle celle solari multistrato", Advances in Electrical and Electronic Engineering, vol. 12, n. 6, 2014, pp. 631-638.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Resistenza ai graffi delle protezioni dello schermo del cellulare

Resistenza ai graffi delle protezioni dello schermo del cellulare

Per saperne di più
 

Importanza di testare le protezioni per lo schermo

Sebbene gli schermi dei telefoni siano progettati per resistere a frantumi e graffi, sono comunque suscettibili di danni. L'uso quotidiano del telefono ne provoca l'usura, ad esempio l'accumulo di graffi e crepe. Poiché la riparazione di questi schermi può essere costosa, le protezioni per lo schermo sono un articolo economico per la prevenzione dei danni, comunemente acquistato e utilizzato per aumentare la durata dello schermo.


Utilizzando il modulo Macro del tester meccanico Nanovea PB1000 in combinazione con il sensore di emissioni acustiche (AE), possiamo identificare chiaramente i carichi critici ai quali le protezioni per schermi mostrano cedimenti dovuti a graffi1 per creare uno studio comparativo tra due tipi di protezioni per schermi.


Due tipi comuni di materiali per la protezione dello schermo sono il TPU (poliuretano termoplastico) e il vetro temperato. Tra i due, il vetro temperato è considerato il migliore in quanto offre una migliore protezione dagli urti e dai graffi. Tuttavia, è anche il più costoso. Le protezioni per schermo in TPU, invece, sono meno costose e rappresentano una scelta popolare per i consumatori che preferiscono le protezioni per schermo in plastica. Poiché le protezioni per schermi sono progettate per assorbire graffi e urti e sono solitamente realizzate in materiali con proprietà fragili, i test controllati sui graffi abbinati al rilevamento AE in situ sono una configurazione di test ottimale per determinare i carichi ai quali si verificano i cedimenti coesivi (ad esempio, cricche, scheggiature e fratture) e/o i cedimenti adesivi (ad esempio, delaminazione e spallazione).



Obiettivo di misurazione

In questo studio sono stati eseguiti tre test di graffiatura su due diversi screen protector commerciali utilizzando il modulo Macro del tester meccanico PB1000 di Nanovea. Utilizzando un sensore di emissioni acustiche e un microscopio ottico, sono stati identificati i carichi critici ai quali ogni pellicola protettiva ha mostrato dei cedimenti.




Procedura di test e procedure

Il tester meccanico Nanovea PB1000 è stato utilizzato per testare due protezioni dello schermo applicate allo schermo di un telefono e fissate a un tavolo con sensore di attrito. I parametri di prova per tutti i graffi sono riportati nella Tabella 1.




Risultati e discussione

Poiché le protezioni per lo schermo erano realizzate con materiali diversi, ciascuna di esse ha mostrato diversi tipi di guasti. Per la protezione dello schermo in TPU è stato osservato un solo guasto critico, mentre per la protezione dello schermo in vetro temperato se ne sono verificati due. I risultati per ciascun campione sono riportati nella Tabella 2. Il carico critico #1 è definito come il carico al quale le protezioni dello schermo hanno iniziato a mostrare segni di rottura coesiva al microscopio. Il carico critico #2 è definito dal primo cambiamento di picco osservato nei dati del grafico delle emissioni acustiche.


Per la protezione dello schermo in TPU, il carico critico #2 è correlato alla posizione del graffio in cui la protezione ha iniziato a staccarsi visibilmente dallo schermo del telefono. Una volta superato il carico critico #2, è apparso un graffio sulla superficie dello schermo del telefono per il resto dei test di graffiatura. Per la protezione dello schermo in vetro temperato, il carico critico #1 è correlato alla posizione in cui hanno iniziato a comparire le fratture radiali. Il carico critico #2 si verifica verso la fine del graffio a carichi più elevati. L'emissione acustica è di entità maggiore rispetto alla protezione dello schermo in TPU, tuttavia non si sono verificati danni allo schermo del telefono. In entrambi i casi, il carico critico #2 corrisponde a un'ampia variazione di profondità, che indica che il penetratore ha perforato la protezione dello schermo.













Conclusione




In questo studio mostriamo la capacità del tester meccanico Nanovea PB1000 di eseguire test di graffiatura controllati e ripetibili e di utilizzare contemporaneamente il rilevamento delle emissioni acustiche per identificare con precisione i carichi ai quali si verificano i cedimenti adesivi e coesivi nelle protezioni dello schermo in TPU e vetro temperato. I dati sperimentali presentati in questo documento supportano l'ipotesi iniziale che il vetro temperato sia il migliore per la prevenzione dei graffi sugli schermi dei telefoni.


Il tester meccanico Nanovea offre funzionalità di misurazione di indentazione, graffi e usura accurate e ripetibili utilizzando moduli Nano e Micro conformi a ISO e ASTM. IL Collaudatore meccanico è un sistema completo, che lo rende la soluzione ideale per determinare l'intera gamma di proprietà meccaniche di rivestimenti, pellicole e substrati sottili o spessi, morbidi o duri.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Confronto tra gocce oculari lubrificanti con il tribometro Nanovea T50

Importanza di testare le soluzioni per le gocce oculari

Le soluzioni di collirio sono utilizzate per alleviare i sintomi causati da una serie di problemi oculari. Ad esempio, possono essere utilizzate per trattare piccole irritazioni oculari (ad esempio, secchezza e arrossamento), ritardare l'insorgenza del glaucoma o trattare le infezioni. Le soluzioni di collirio vendute al banco sono utilizzate principalmente per trattare la secchezza oculare. La loro efficacia nella lubrificazione dell'occhio può essere confrontata e misurata con un test del coefficiente di attrito.
 
La secchezza oculare può essere causata da un'ampia gamma di fattori, ad esempio l'affaticamento degli occhi al computer o la permanenza all'aperto in condizioni climatiche estreme. Un buon collirio lubrificante aiuta a mantenere e integrare l'umidità sulla superficie esterna degli occhi. Ciò contribuisce ad alleviare il disagio, il bruciore o l'irritazione e l'arrossamento associati alla secchezza oculare. Misurando il coefficiente di attrito (COF) di un collirio, è possibile determinarne l'efficacia lubrificante e il confronto con altre soluzioni.

Obiettivo di misurazione

In questo studio, il coefficiente di attrito (COF) di tre diverse soluzioni di collirio lubrificanti è stato misurato utilizzando la configurazione pin-on-disk sul tribometro Nanovea T50.

Procedura di test e procedure

Un perno sferico di 6 mm di diametro in allumina è stato applicato a un vetrino con ogni soluzione di collirio che fungeva da lubrificante tra le due superfici. I parametri di prova utilizzati per tutti gli esperimenti sono riassunti nella Tabella 1.

Risultati e discussione

I valori massimi, minimi e medi del coefficiente di attrito per le tre diverse soluzioni di collirio testate sono riportati nella Tabella 2. I grafici del COF in funzione delle rotazioni per ciascuna soluzione di collirio sono illustrati nelle Figure 2-4. La COF durante ogni test è rimasta relativamente costante per la maggior parte della durata totale del test. Il campione A ha registrato il COF medio più basso, indicando le migliori proprietà di lubrificazione.

 

Conclusione

In questo studio mostriamo la capacità del tribometro Nanovea T50 di misurare il coefficiente di attrito di tre soluzioni di collirio. Sulla base di questi valori, dimostriamo che il campione A ha un coefficiente di attrito inferiore e quindi presenta una migliore lubrificazione rispetto agli altri due campioni.

Nanovea Tribometri offre test di usura e attrito precisi e ripetibili utilizzando moduli rotanti e lineari conformi ISO e ASTM. Fornisce inoltre moduli opzionali antiusura ad alta temperatura, lubrificazione e tribocorrosione disponibili in un unico sistema preintegrato. Tale versatilità consente agli utenti di simulare meglio l'ambiente applicativo reale e di migliorare la comprensione fondamentale del meccanismo di usura e delle caratteristiche tribologiche di vari materiali.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Automazione multigraffio di campioni simili con il tester meccanico PB1000

Introduzione :

I rivestimenti sono ampiamente utilizzati in vari settori industriali grazie alle loro proprietà funzionali. La durezza, la resistenza all'erosione, il basso attrito e l'elevata resistenza all'usura sono solo alcune delle numerose proprietà che rendono importanti i rivestimenti. Un metodo comunemente utilizzato per quantificare queste proprietà è il test di graffiatura, che consente di misurare in modo ripetibile le proprietà adesive e/o coesive di un rivestimento. Confrontando i carichi critici ai quali si verifica il cedimento, è possibile valutare le proprietà intrinseche di un rivestimento.

Clicca per saperne di più!

Confronto dell'usura da abrasione sul denim

Introduzione

La forma e la funzione di un tessuto sono determinate dalla sua qualità e durata. L'uso quotidiano dei tessuti ne provoca l'usura, ad esempio l'impilamento, l'increspatura e lo scolorimento. La qualità inferiore dei tessuti utilizzati per l'abbigliamento può spesso portare all'insoddisfazione dei consumatori e al danneggiamento del marchio.

Il tentativo di quantificare le proprietà meccaniche dei tessuti può porre molte sfide. La struttura del filato e persino la fabbrica in cui è stato prodotto possono determinare una scarsa riproducibilità dei risultati dei test. È quindi difficile confrontare i risultati di test provenienti da laboratori diversi. La misurazione delle prestazioni di usura dei tessuti è fondamentale per i produttori, i distributori e i rivenditori della catena di produzione tessile. Una misurazione della resistenza all'usura ben controllata e riproducibile è fondamentale per garantire un controllo affidabile della qualità del tessuto.

Fate clic per leggere la nota applicativa completa!

Usura rotativa o lineare e COF? (Uno studio completo con il tribometro Nanovea)

L'usura è il processo di asportazione e deformazione di materiale su una superficie a seguito dell'azione meccanica della superficie opposta. È influenzato da una varietà di fattori, tra cui lo scorrimento unidirezionale, il rotolamento, la velocità, la temperatura e molti altri. Lo studio dell'usura, della tribologia, abbraccia molte discipline, dalla fisica e chimica all'ingegneria meccanica e alla scienza dei materiali. La natura complessa dell’usura richiede studi isolati su meccanismi o processi di usura specifici, come usura adesiva, usura abrasiva, fatica superficiale, usura da sfregamento e usura erosiva. Tuttavia, l’“usura industriale” implica comunemente molteplici meccanismi di usura che si verificano in sinergia.

I test di usura lineare alternativa e rotativa (perno su disco) sono due configurazioni conformi a ASTM ampiamente utilizzate per misurare il comportamento di usura da scorrimento dei materiali. Poiché il valore del tasso di usura di qualsiasi metodo di prova di usura viene spesso utilizzato per prevedere la classifica relativa delle combinazioni di materiali, è estremamente importante confermare la ripetibilità del tasso di usura misurato utilizzando diverse configurazioni di prova. Ciò consente agli utenti di considerare attentamente il valore del tasso di usura riportato in letteratura, fondamentale per comprendere le caratteristiche tribologiche dei materiali.

Per saperne di più!

Caratterizzazione nano-meccanica delle costanti di primavera

La capacità della molla di immagazzinare energia meccanica ha una lunga storia di utilizzo. Dagli archi per la caccia alle serrature per le porte, la tecnologia delle molle esiste da molti secoli. Oggi ci affidiamo alle molle, che si tratti di materassi, penne o sospensioni automobilistiche, perché svolgono un ruolo fondamentale nella nostra vita quotidiana. Con una tale varietà di usi e progetti, è necessario poter quantificare le loro proprietà meccaniche.

Per saperne di più

Caratterizzazione ad alta velocità di un guscio d'ostrica

I campioni di grandi dimensioni con geometrie complesse possono rivelarsi difficili da lavorare a causa della preparazione del campione, delle dimensioni, degli angoli acuti e della curvatura. In questo studio verrà scansionata una conchiglia di ostrica per dimostrare la capacità del sensore di linea Nanovea HS2000 di scansionare un campione biologico di grandi dimensioni con una geometria complessa. Anche se in questo studio è stato utilizzato un campione biologico, gli stessi concetti possono essere applicati ad altri campioni.

Per saperne di più

 

 

 

 

 

 

 

 

 

 

Strumento di selezione della mappa meccanica Broadview

Abbiamo tutti sentito l'espressione "il tempo è denaro". Ecco perché molte aziende cercano costantemente metodi per accelerare e migliorare i vari processi: si risparmia tempo. Quando si tratta di prove di indentazione, la velocità, l'efficienza e la precisione possono essere integrate in un processo di controllo qualità o di ricerca e sviluppo utilizzando uno dei nostri tester meccanici Nanovea. In questa nota applicativa, illustreremo un modo semplice per risparmiare tempo grazie alle funzioni del nostro tester meccanico Nanovea e del software Broad View Map and Selection Tool.

Fate clic per leggere la nota applicativa completa!