USA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT US

Kategorie: Profilometrie | Stufenhöhe und -dicke

 

Oberflächentopographie von Glasfasern mit 3D-Profilometrie

GLASFASER-OBERFLÄCHENTOPOGRAPHIE

3D-PROFILOMETRIE VERWENDEN

Vorbereitet von

CRAIG LEISING

EINFÜHRUNG

Glasfaser ist ein Material, das aus extrem feinen Glasfasern hergestellt wird. Es wird als Verstärkungsmittel für viele Polymerprodukte verwendet; das daraus resultierende Verbundmaterial, das eigentlich als faserverstärktes Polymer (FRP) oder glasfaserverstärkter Kunststoff (GRP) bezeichnet wird, wird im allgemeinen Sprachgebrauch "Fiberglas" genannt.

BEDEUTUNG DER MESSTECHNISCHEN OBERFLÄCHENPRÜFUNG FÜR DIE QUALITÄTSKONTROLLE

Obwohl es viele Verwendungsmöglichkeiten für Glasfaserverstärkungen gibt, ist es bei den meisten Anwendungen entscheidend, dass sie so stark wie möglich sind. Glasfaserverbundwerkstoffe haben eines der höchsten Festigkeits-Gewichts-Verhältnisse auf dem Markt, und in einigen Fällen sind sie sogar fester als Stahl. Abgesehen von der hohen Festigkeit ist es auch wichtig, dass die exponierte Oberfläche so klein wie möglich ist. Große Glasfaseroberflächen können die Struktur anfälliger für chemische Angriffe und eine mögliche Materialausdehnung machen. Daher ist die Oberflächenprüfung für die Qualitätskontrolle der Produktion von entscheidender Bedeutung.

MESSZIEL

In dieser Anwendung wird das NANOVEA ST400 verwendet, um die Rauheit und Ebenheit einer Glasfaserverbundoberfläche zu messen. Durch die Quantifizierung dieser Oberflächenmerkmale ist es möglich, ein stärkeres und langlebigeres Glasfaserverbundmaterial zu entwickeln oder zu optimieren.

NANOVEA

ST400

MESSPARAMETER

PROBE 1 mm
ERFASSUNGSRATE300 Hz
MITTELWERT1
GEMESSENE OBERFLÄCHE5 mm x 2 mm
SCHRITTGRÖSSE5 µm x 5 µm
SCANING-MODUSKonstante Geschwindigkeit

SONDEN-SPEZIFIKATIONEN

MASSNAHMEN BEREICH1 mm
Z軸分解能 25 nm
Z GENAUIGKEIT200 nm
LATERALE AUFLÖSUNG 2 μm

ERGEBNISSE

FALSCHE FARBANSICHT

3D-Oberflächenebenheit

3D-Oberflächenrauhigkeit

Sa15,716 μmArithmetischer Mittelwert Höhe
Sq19,905 μmWurzelmittelwert der Höhe
Sp116,74 μmMaximale Spitzenhöhe
Sv136,09 μmMaximale Grubenhöhe
Sz252,83 μmMaximale Höhe
Ssk0.556Schrägheit
Ssu3.654Kurtosis

SCHLUSSFOLGERUNG

Wie die Ergebnisse zeigen, ist der NANOVEA ST400 Optical Profiler konnte die Rauheit und Ebenheit der Glasfaserverbundoberfläche genau messen. Daten können über mehrere Chargen von Faserverbundwerkstoffen und/oder über einen bestimmten Zeitraum gemessen werden, um entscheidende Informationen über verschiedene Glasfaserherstellungsprozesse und deren Reaktion im Laufe der Zeit zu liefern. Somit ist der ST400 eine praktikable Option zur Stärkung des Qualitätskontrollprozesses von Glasfaserverbundwerkstoffen.

Konturmessung mit Profilometer von NANOVEA

Messung der Reifenprofiltiefe und der Rauheit der Gummioberfläche | 3D-Optischer Profiler

MESSUNG DER REIFENPROFILTIEFE UND DER RAUHIGKEIT DER GUMMIOBERFLÄCHE Verwendung eines optischen 3D-Profilmessgeräts

Referenz zur Messung der Reifenprofiltiefe mit mehreren Autoreifenprofilen

Vorbereitet von

ANDREA HERRMANN

Während die Profiltiefe von Reifen zur Sicherheit der Verbraucher üblicherweise mit Handmessgeräten gemessen wird, benötigen industrielle Forschungs- und Entwicklungsabteilungen sowie Reifenhersteller fortschrittlichere Methoden. Diese Anwendungsbeschreibung zeigt, wie ein optisches 3D-Profilometer präzise Messungen der Profiltiefe, Konturkartierungen und Analysen der Rauheit der Gummioberfläche für hochgenaue Untersuchungen ermöglicht.

EINFÜHRUNG

Wie bei allen Materialien hängt auch der Reibungskoeffizient von Gummi zum Teil von seiner Oberflächenrauheit ab. Bei Fahrzeugreifen wirken sich sowohl die Profiltiefe als auch die Oberflächenrauheit direkt auf die Traktion, das Bremsverhalten und den Verschleiß aus. In dieser Studie werden die Rauheit und die Abmessungen der Gummioberfläche und des Profils mithilfe einer berührungslosen 3D-Profilometrie analysiert.
Reifenprobe zur Messung der Profiltiefe und der Rauheit der Gummioberfläche

DIE PROBE

BEDEUTUNG DER BERÜHRUNGSLOSEN 3D-PROFILOMETRIE FÜR DIE MESSUNG DER REIFENPROFILTIEFE

Im Gegensatz zu anderen Techniken wie Tastköpfen oder Interferometrie, Die berührungslosen 3D-Optikprofiler von NANOVEA Verwenden Sie den axialen Chromatismus, um nahezu jede Oberfläche zu messen.

Das offene Staging-System des Profilers ermöglicht eine Vielzahl von Probengrößen und erfordert keinerlei Probenvorbereitung. Mit einem einzigen Scan können Benutzer sowohl die gesamte Profiltiefe des Reifens als auch die Oberflächenrauheit auf Mikroebene erfassen, ohne dass die Reflektivität oder Absorption der Probe einen Einfluss hat. Darüber hinaus verfügen diese Profiler über die fortschrittliche Fähigkeit, hohe Oberflächenwinkel zu messen, ohne dass die Ergebnisse softwaremäßig manipuliert werden müssen.

Diese Vielseitigkeit macht die Profilermessgeräte von NANOVEA ideal sowohl für die Prüfung des Reifenprofils als auch für die fortgeschrittene Forschung im Bereich Gummimaterialien.

MESSZIEL

In dieser Anwendung zeigen wir Ihnen die NANOVEA ST400, ein berührungsloses 3D-Optikprofilometer, das die Profiltiefe, Konturgeometrie und Oberflächenrauheit von Reifen misst. Für diese Studie wurde nach dem Zufallsprinzip eine Probefläche ausgewählt, die groß genug war, um die gesamte Reifenoberfläche zu repräsentieren. Zur Quantifizierung der Eigenschaften des Gummis haben wir die Analysesoftware NANOVEA Ultra 3D verwendet, um die Abmessungen der Rillen, die Profiltiefe, die Oberflächenrauheit und die entwickelte Fläche im Vergleich zur projizierten Fläche zu messen.

NANOVEA ST400 Standard
Optisches 3D-Profilometer

ANALYSE: REIFENFADEN
Die 3D-Ansicht und die Falschfarbenansicht der Laufflächen zeigen den Wert der Kartierung von 3D-Oberflächendesigns. Dies bietet Ingenieuren ein einfaches Werkzeug, um die Gleichmäßigkeit der Profiltiefe, das Rillendesign und den Verschleiß aus verschiedenen Blickwinkeln zu bewerten. Die erweiterte Konturanalyse und die Stufenhöhenanalyse sind beide äußerst leistungsstarke Werkzeuge zur präzisen Messung der Abmessungen von Musterformen und -designs.
Falschfarben-3D-Optische Profilometrie der Reifenprofiltiefe und Rillengeometrie
3D-Profilometer-Oberflächenansicht der Reifenprofiltiefenmessung

ERWEITERTE KONTURANALYSE

Erweiterte Konturanalyse von Reifenprofilrillen mittels 3D-Profilometrie

STUFENHÖHENANALYSE

Stufenhöhenanalyse zur Messung der Reifenprofiltiefe mit einem optischen 3D-Profiler
3D-Profilometrie-Stufenhöhenprofil zur Messung der Reifenprofiltiefe
ANALYSE: GUMMI OBERFLÄCHE
Die Gummioberfläche kann mithilfe integrierter Softwaretools auf vielfältige Weise quantifiziert werden, wie in den folgenden Abbildungen dargestellt. Es ist zu erkennen, dass die Oberflächenrauheit 2,688 μm beträgt und das Verhältnis von entwickelter Fläche zu projizierter Fläche 9,410 mm² zu 8,997 mm² beträgt. Diese Ergebnisse zeigen, wie sich die Rauheit der Gummioberfläche auf die Traktion und Leistung auswirkt, und ermöglichen Vergleiche zwischen verschiedenen Gummimischungen oder unterschiedlichen Abnutzungsgraden der Oberfläche.
Analyse der Rauheit von Gummioberflächen mit einem optischen 3D-Profilometer
ISO 25178 Höhenparameter der Reifengummioberfläche
3D-optische Profilometrieansicht der Oberflächenrauheit von Gummi und der entwickelten Fläche
Parameter für Reifengummioberflächenprofiler

SCHLUSSFOLGERUNG

In dieser Anwendung haben wir gezeigt, wie der berührungslose optische 3D-Profiler von NANOVEA die Profiltiefe, Konturmaße und Oberflächenrauheit von Reifen präzise charakterisieren kann. Die Daten zeigen eine Oberflächenrauheit von 2,69 µm und eine entwickelte Fläche von 9,41 mm² bei einer projizierten Fläche von 9 mm². Außerdem wurden verschiedene Abmessungen und Radien der Gummiprofile gemessen. Diese Informationen können von Reifenherstellern, Automobilforschern und Werkstoffingenieuren verwendet werden, um Profildesigns, Gummimischungen oder Reifen mit unterschiedlichem Verschleißgrad zu vergleichen. Die hier gezeigten Daten stellen nur einen Teil der Berechnungen dar, die in der Ultra 3D-Analysesoftware verfügbar sind.

Analyse der Fischschuppenoberfläche mit einem optischen 3D-Profiler

Analyse der Fischschuppenoberfläche mit einem optischen 3D-Profiler

Mehr erfahren

OBERFLÄCHENANALYSE VON FISCHSCHUPPEN

mit 3D OPTICAL PROFILER

Fischschuppen-Profilometer

Vorbereitet von

Andrea Nowitzki

EINFÜHRUNG

Die Morphologie, Muster und andere Merkmale einer Fischschuppe werden mit dem NANOVEA untersucht Berührungsloser optischer 3D-Profiler. Die empfindliche Beschaffenheit dieser biologischen Probe sowie ihre sehr kleinen und stark abgewinkelten Rillen unterstreichen auch die Bedeutung der berührungslosen Technik des Profilers. Die Rillen auf der Skala werden Zirkuli genannt und können untersucht werden, um das Alter des Fisches abzuschätzen und sogar Perioden mit unterschiedlichen Wachstumsraten zu unterscheiden, ähnlich den Ringen eines Baumes. Dies sind sehr wichtige Informationen für das Management wildlebender Fischbestände, um Überfischung zu verhindern.

Bedeutung der berührungslosen 3D-Profilometrie für BIOLOGISCHE STUDIEN

Im Gegensatz zu anderen Techniken wie Taster oder Interferometrie kann der berührungslose optische 3D-Profiler unter Verwendung von Axialchromatismus nahezu jede Oberfläche messen. Die Probengröße kann aufgrund der offenen Anordnung stark variieren und es ist keine Probenvorbereitung erforderlich. Merkmale im Nano- bis Makrobereich werden während einer Oberflächenprofilmessung ohne Beeinflussung durch Reflexion oder Absorption der Probe erfasst. Das Gerät bietet die Möglichkeit, hohe Oberflächenwinkel ohne Softwaremanipulation der Ergebnisse zu messen. Jedes Material kann leicht gemessen werden, egal ob es transparent, undurchsichtig, spiegelnd, diffus, poliert oder rau ist. Die Technik bietet eine ideale, umfassende und benutzerfreundliche Möglichkeit zur Maximierung von Oberflächenstudien zusammen mit den Vorteilen der kombinierten 2D- und 3D-Funktionen.

MESSZIEL

In dieser Anwendung stellen wir NANOVEA ST400 vor, einen berührungslosen 3D-Profiler mit einem Hochgeschwindigkeitssensor, der eine umfassende Analyse der Oberfläche einer Waage ermöglicht.

Mit dem Gerät wurde die gesamte Probe gescannt, zusammen mit einem höher aufgelösten Scan des mittleren Bereichs. Zum Vergleich wurde auch die äußere und innere Oberflächenrauheit des Maßstabs gemessen.

NANOVEA

ST400

3D- und 2D-Oberflächencharakterisierung von Outer Scale

Die 3D-Ansicht und die Falschfarbenansicht des äußeren Maßstabs zeigen eine komplexe Struktur, die einem Fingerabdruck oder den Ringen eines Baumes ähnelt. Dies bietet dem Benutzer ein einfaches Werkzeug, um die Oberflächenbeschaffenheit des Maßstabs aus verschiedenen Blickwinkeln direkt zu betrachten. Verschiedene andere Messungen des äußeren Maßstabs werden zusammen mit dem Vergleich der Außen- und Innenseite des Maßstabs gezeigt.

Fischschuppen-Scan 3D-Ansicht Profilometer
Fischschuppen-Scanvolumen 3D-Profilometer
Fischschuppen-Scan Stufenhöhe 3D Optischer Profiler

VERGLEICH DER OBERFLÄCHENRAUHIGKEIT

Fischschuppen-Profilometer 3D-Scannen

SCHLUSSFOLGERUNG

In dieser Anwendung haben wir gezeigt, wie der berührungslose optische 3D-Profiler NANOVEA eine Fischschuppe auf vielfältige Weise charakterisieren kann. 

Die Außen- und Innenflächen der Schuppe lassen sich allein durch die Oberflächenrauheit leicht unterscheiden, mit Rauheitswerten von 15,92μm bzw. 1,56μm. Darüber hinaus können präzise und genaue Informationen über eine Fischschuppe durch die Analyse der Rillen oder Zirkuli auf der Außenfläche der Schuppe gewonnen werden. Der Abstand der Bänder der Zirkuli vom Mittelpunkt wurde gemessen, und auch die Höhe der Zirkuli betrug im Durchschnitt etwa 58μm. 

Die hier gezeigten Daten stellen nur einen Teil der in der Analysesoftware verfügbaren Berechnungen dar.

Topographie der Fresnel-Linse

FRESNEL-LINSENTOPOGRAPHIEVERWENDUNG 3D BERÜHRUNGSLOSES OPTISCHES PROFILOMETER

Vorbereitet von

Duanjie Li & Benjamin Mell

EINFÜHRUNG

Eine Linse ist ein optisches Gerät mit axialer Symmetrie, das Licht durchlässt und bricht. Eine einfache Linse besteht aus einer einzigen optischen Komponente zur Konvergenz oder Divergenz des Lichts. Obwohl kugelförmige Oberflächen nicht die ideale Form für die Herstellung einer Linse sind, werden sie häufig als einfachste Form verwendet, zu der Glas geschliffen und poliert werden kann.

Eine Fresnel-Linse besteht aus einer Reihe von konzentrischen Ringen, die dünne Teile einer einfachen Linse mit einer Breite von nur wenigen tausendstel Zoll sind. Fresnel-Linsen haben eine große Öffnung und eine kurze Brennweite, wobei die kompakte Bauweise das Gewicht und das benötigte Materialvolumen im Vergleich zu herkömmlichen Linsen mit den gleichen optischen Eigenschaften reduziert. Aufgrund der dünnen Geometrie der Fresnel-Linse geht nur ein sehr geringer Teil des Lichts durch Absorption verloren.

BEDEUTUNG DER BERÜHRUNGSLOSEN 3D-PROFILOMETRIE FÜR DIE PRÜFUNG VON FRESNELLINSEN

Fresnel-Linsen werden häufig in der Automobilindustrie, in Leuchttürmen, in der Solarenergie und in optischen Landesystemen für Flugzeugträger eingesetzt. Das Formen oder Stanzen der Linsen aus transparentem Kunststoff kann ihre Herstellung kostengünstiger machen. Die Servicequalität von Fresnel-Linsen hängt hauptsächlich von der Präzision und Oberflächenqualität ihres konzentrischen Rings ab. Im Gegensatz zu einer Touch-Probe-Technik bietet NANOVEA Optische Profiler Führen Sie 3D-Oberflächenmessungen durch, ohne die Oberfläche zu berühren, und vermeiden Sie so das Risiko neuer Kratzer. Die Chromatic Light-Technik eignet sich ideal zum präzisen Scannen komplexer Formen, beispielsweise von Linsen unterschiedlicher Geometrie.

SCHEMA EINER FRESNEL-LINSE

Transparente Fresnel-Linsen aus Kunststoff können durch Gießen oder Stanzen hergestellt werden. Eine genaue und effiziente Qualitätskontrolle ist von entscheidender Bedeutung, um fehlerhafte Produktionsformen oder -stempel zu erkennen. Durch Messung der Höhe und des Abstands der konzentrischen Ringe können Produktionsabweichungen festgestellt werden, indem die gemessenen Werte mit den vom Hersteller der Linse angegebenen Spezifikationswerten verglichen werden.

Durch die genaue Messung des Linsenprofils wird sichergestellt, dass die Formen oder Stempel entsprechend den Spezifikationen des Herstellers bearbeitet werden. Außerdem kann sich der Stempel im Laufe der Zeit abnutzen, so dass er seine ursprüngliche Form verliert. Eine ständige Abweichung von den Spezifikationen des Glasherstellers ist ein eindeutiges Indiz dafür, dass die Form ersetzt werden muss.

MESSZIEL

In dieser Anwendung präsentieren wir NANOVEA ST400, einen 3D-Berührungslos-Profiler mit einem Hochgeschwindigkeitssensor, der eine umfassende 3D-Profilanalyse einer optischen Komponente mit komplexer Form ermöglicht. Um die bemerkenswerten Fähigkeiten unserer Chromatic Light-Technologie zu demonstrieren, wird die Konturanalyse an einer Fresnel-Linse durchgeführt.

NANOVEA ST400 Großfläche
Optisches 3D-Profilometer

Die für diese Studie verwendete 2,3" x 2,3" Acryl-Fresnel-Linse besteht aus 

eine Reihe von konzentrischen Ringen und ein komplexes, gezacktes Querschnittsprofil. 

Es hat eine Brennweite von 1,5" und einen effektiven Durchmesser von 2,0", 

125 Rillen pro Zoll und einem Brechungsindex von 1,49.

Der NANOVEA ST400-Scan der Fresnellinse zeigt eine deutliche Zunahme der Höhe der konzentrischen Ringe, die sich vom Zentrum nach außen bewegen.

2D FALSCH FARBE

Darstellung der Höhe

3D-ANSICHT

EXTRAHIERTES PROFIL

GIPFEL & TAL

Dimensionale Analyse des Profils

SCHLUSSFOLGERUNG

In dieser Anwendung haben wir gezeigt, dass der berührungslose optische Profiler NANOVEA ST400 die Oberflächentopographie von Fresnel-Linsen genau misst. 

Mit der NANOVEA-Analysesoftware können die Abmessungen der Höhe und der Teilung anhand des komplexen gezackten Profils genau bestimmt werden. Benutzer können die Qualität der Produktionsformen oder Stempel effektiv prüfen, indem sie die Ringhöhe und -teilung der hergestellten Linsen mit der idealen Ringspezifikation vergleichen.

Die hier gezeigten Daten stellen nur einen Teil der in der Analysesoftware verfügbaren Berechnungen dar. 

NANOVEA Optical Profilers messen praktisch jede Oberfläche in Bereichen wie Halbleiter, Mikroelektronik, Solar, Faseroptik, Automobil, Luft- und Raumfahrt, Metallurgie, Bearbeitung, Beschichtungen, Pharmazeutik, Biomedizin, Umwelt und vielen anderen.

 

Verständnis von Beschichtungsfehlern durch Kratztests

Einleitung:

Die Oberflächentechnik von Werkstoffen spielt eine wichtige Rolle bei einer Vielzahl von funktionellen Anwendungen, die vom dekorativen Aussehen bis zum Schutz der Substrate vor Verschleiß, Korrosion und anderen Angriffen reichen. Ein wichtiger und übergeordneter Faktor, der die Qualität und Lebensdauer der Beschichtungen bestimmt, ist ihre Kohäsions- und Haftfestigkeit.

Zum Lesen hier klicken!

Oberflächenrauhigkeit und Eigenschaften einer Solarzelle

Die Bedeutung der Solarmodulprüfung

Die Maximierung der Energieabsorption einer Solarzelle ist der Schlüssel für das Überleben dieser Technologie als erneuerbare Ressource. Die verschiedenen Beschichtungs- und Glasschutzschichten ermöglichen die Absorption, Durchlässigkeit und Reflexion von Licht, die für das Funktionieren der Solarzellen erforderlich sind. Da die meisten Verbraucher-Solarzellen mit einem Wirkungsgrad von 15-18% arbeiten, ist die Optimierung ihrer Energieausbeute ein ständiger Kampf.


Studien haben gezeigt, dass die Oberflächenrauhigkeit eine entscheidende Rolle bei der Lichtreflexion spielt. Die erste Glasschicht muss so glatt wie möglich sein, um die Lichtreflexion zu vermindern, aber die nachfolgenden Schichten folgen nicht dieser Vorgabe. An den Grenzflächen zwischen den einzelnen Schichten ist ein gewisses Maß an Rauheit erforderlich, um die Möglichkeit der Lichtstreuung in den jeweiligen Verarmungszonen zu erhöhen und die Lichtabsorption innerhalb der Zelle zu steigern1. Die Optimierung der Oberflächenrauheit in diesen Bereichen ermöglicht es der Solarzelle, optimal zu funktionieren, und mit dem Nanovea HS2000 High Speed Sensor kann die Oberflächenrauheit schnell und genau gemessen werden.



Messung Zielsetzung

In dieser Studie werden wir die Möglichkeiten des Nanovea Profilometer HS2000 mit Hochgeschwindigkeitssensor durch Messung der Oberflächenrauheit und der geometrischen Merkmale einer Solarzelle. Für diese Demonstration wird eine monokristalline Solarzelle ohne Schutzglas gemessen, aber die Methodik kann auch für verschiedene andere Anwendungen verwendet werden.




Testverfahren und -abläufe

Die folgenden Testparameter wurden zur Messung der Oberfläche der Solarzelle verwendet.




Ergebnisse und Diskussion

Die folgende Abbildung zeigt die 2D-Falschfarbenansicht der Solarzelle und eine Flächenextraktion der Oberfläche mit den entsprechenden Höhenparametern. Auf beide Oberflächen wurde ein Gauß-Filter angewendet und ein aggressiverer Index verwendet, um die extrahierte Fläche zu glätten. Dadurch werden Formen (oder Welligkeiten), die größer als der Cut-off-Index sind, ausgeschlossen, so dass Merkmale zurückbleiben, die die Rauheit der Solarzelle darstellen.











Zur Messung der geometrischen Merkmale wurde ein Profil senkrecht zur Ausrichtung der Rasterlinien aufgenommen, das unten abgebildet ist. Die Breite der Gitterlinien, die Stufenhöhe und der Abstand können an jeder beliebigen Stelle der Solarzelle gemessen werden.









Schlussfolgerung





In dieser Studie konnten wir die Fähigkeit des Nanovea HS2000 Zeilensensors zur Messung der Oberflächenrauhigkeit und -merkmale einer monokristallinen Photovoltaikzelle zeigen. Mit der Möglichkeit, genaue Messungen mehrerer Proben zu automatisieren und Grenzwerte für das Bestehen und Nichtbestehen festzulegen, ist der Nanovea HS2000 Zeilensensor eine perfekte Wahl für Qualitätskontrollprüfungen.

Referenz

1 Scholtz, Lubomir. Ladanyi, Libor. Mullerova, Jarmila. "Influence of Surface Roughness on Optical Characteristics of Multilayer Solar Cells " Advances in Electrical and Electronic Engineering, vol. 12, no. 6, 2014, pp. 631-638.

UND NUN ZU IHRER BEWERBUNG

Rotativer oder linearer Verschleiß & COF? (Eine umfassende Studie unter Verwendung des Nanovea Tribometers)

Unter Verschleiß versteht man den Prozess der Abtragung und Verformung von Material auf einer Oberfläche infolge der mechanischen Einwirkung der gegenüberliegenden Oberfläche. Es wird durch eine Vielzahl von Faktoren beeinflusst, darunter unidirektionales Gleiten, Rollen, Geschwindigkeit, Temperatur und viele andere. Das Studium des Verschleißes, der Tribologie, umfasst viele Disziplinen, von Physik und Chemie bis hin zu Maschinenbau und Materialwissenschaften. Die komplexe Natur des Verschleißes erfordert isolierte Studien zu spezifischen Verschleißmechanismen oder -prozessen, wie z. B. adhäsiver Verschleiß, abrasiver Verschleiß, Oberflächenermüdung, Reibverschleiß und erosiver Verschleiß. Bei „industrieller Abnutzung“ handelt es sich jedoch häufig um mehrere Verschleißmechanismen, die synergetisch wirken.

Lineare hin- und hergehende und rotative Verschleißtests (Stift auf Scheibe) sind zwei weit verbreitete ASTM-konforme Aufbauten zur Messung des Gleitverschleißverhaltens von Materialien. Da der Verschleißratenwert einer Verschleißtestmethode häufig zur Vorhersage der relativen Rangfolge von Materialkombinationen verwendet wird, ist es äußerst wichtig, die Wiederholbarkeit der mit verschiedenen Testaufbauten gemessenen Verschleißrate zu bestätigen. Dadurch können Benutzer den in der Literatur angegebenen Verschleißratenwert sorgfältig berücksichtigen, was für das Verständnis der tribologischen Eigenschaften von Materialien von entscheidender Bedeutung ist.

Mehr lesen!

Tragbarkeit und Flexibilität des berührungslosen 3D-Profilometers Jr25

Das Verständnis und die Quantifizierung der Probenoberfläche ist für viele Anwendungen, einschließlich Qualitätskontrolle und Forschung, von entscheidender Bedeutung. Zur Untersuchung von Oberflächen werden häufig Profilometer verwendet, um Proben zu scannen und abzubilden. Ein großes Problem bei herkömmlichen Profilometrieinstrumenten ist die Unfähigkeit, nicht herkömmliche Proben aufzunehmen. Schwierigkeiten bei der Messung nicht konventioneller Proben können aufgrund der Probengröße, der Geometrie, der Unfähigkeit, die Probe zu bewegen, oder anderer umständlicher Probenvorbereitungen auftreten. Nanovea ist tragbar 3D berührungslose ProfilometerDie JR-Serie ist in der Lage, die meisten dieser Probleme zu lösen, da sie Probenoberflächen aus verschiedenen Winkeln scannen kann und tragbar ist.

Lesen Sie über das berührungslose Profilometer Jr25!

500nm Glas Stufenhöhe: Extreme Genauigkeit mit berührungsloser Profilometrie

Die Charakterisierung von Oberflächen ist ein aktuelles Thema, das intensiv untersucht wird. Die Oberflächen von Werkstoffen sind wichtig, da sie die Bereiche sind, in denen physikalische und chemische Wechselwirkungen zwischen dem Werkstoff und der Umgebung stattfinden. Daher ist es wünschenswert, die Oberfläche mit hoher Auflösung abbilden zu können, da die Wissenschaftler so die kleinsten Oberflächendetails visuell beobachten können. Zu den üblichen Oberflächenabbildungsdaten gehören Topografie, Rauheit, seitliche und vertikale Abmessungen. Die Identifizierung der tragenden Oberfläche, des Abstands und der Stufenhöhe von hergestellten Mikrostrukturen und von Defekten auf der Oberfläche sind einige Anwendungen, die sich mit Hilfe der Oberflächenabbildung erzielen lassen. Allerdings sind nicht alle Oberflächenabbildungsmethoden gleich.

500nm Glas Stufenhöhe: Extreme Genauigkeit mit berührungsloser Profilometrie

Wafer-Beschichtungsdickenmessung mit 3D-Profilometrie

Die Messung der Wafer-Beschichtungsdicke ist entscheidend. Silizium-Wafer werden in großem Umfang für die Herstellung von integrierten Schaltkreisen und anderen Mikrobauteilen verwendet, die in einer Vielzahl von Branchen zum Einsatz kommen. Die ständige Nachfrage nach dünneren und glatteren Wafern und Waferbeschichtungen macht das berührungslose Nanovea 3D Profilometer ein großartiges Werkzeug zur Quantifizierung der Schichtdicke und Rauheit von nahezu jeder Oberfläche. Die Messungen in diesem Artikel wurden an einer beschichteten Waferprobe vorgenommen, um die Fähigkeiten unseres berührungslosen 3D-Profilometers zu demonstrieren.

Wafer-Beschichtungsdickenmessung mit 3D-Profilometrie