USA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT US

Mechanische Eigenschaften des Hydrogels

MECHANISCHE EIGENSCHAFTEN DES HYDROGELS

MIT NANOINDENTATION

MECHANICAL PROPERTIES OF HYDROGEL​

Vorbereitet von

DUANJIE LI, PhD & JORGE RAMIREZ

EINFÜHRUNG

Hydrogel ist dafür bekannt, dass es sehr viel Wasser aufnehmen kann und daher in seiner Flexibilität dem natürlichen Gewebe sehr ähnlich ist. Diese Ähnlichkeit hat dazu geführt, dass Hydrogele nicht nur in Biomaterialien, sondern auch in der Elektronik, im Umweltbereich und bei Verbrauchsgütern wie Kontaktlinsen häufig eingesetzt werden. Jede einzelne Anwendung erfordert spezifische mechanische Eigenschaften des Hydrogels.

BEDEUTUNG DER NANOINDENTATION FÜR HYDROGELE

Hydrogele stellen besondere Anforderungen an die Nanoindentation, wie z. B. die Auswahl der Testparameter und die Probenvorbereitung. Viele Nanoindentationssysteme weisen erhebliche Einschränkungen auf, da sie ursprünglich nicht für folgende Zwecke entwickelt wurden solche weichen Materialien. Einige der Nanoindentationssysteme verwenden eine Spulen-/Magnetanordnung, um Kraft auf die Probe auszuüben. Es erfolgt keine tatsächliche Kraftmessung, was bei der Prüfung weicher Materialien zu ungenauen und nicht linearen Belastungen führt. Materialien. Die Bestimmung des Kontaktpunktes ist äußerst schwierig, da die Die Tiefe ist der einzige Parameter, der tatsächlich gemessen wird. Es ist fast unmöglich, die Veränderung des Gefälles in der Tiefe vs. Zeit Handlung während der Zeitraum, in dem sich die Eindringspitze dem Hydrogelmaterial nähert.

Um die Einschränkungen dieser Systeme zu überwinden, wurde das Nanomodul des NANOVEA Mechanischer Tester Misst die Kraftrückkopplung mit einer einzelnen Kraftmessdose, um eine hohe Genauigkeit bei allen Arten von Materialien, ob weich oder hart, zu gewährleisten. Die piezogesteuerte Verschiebung erfolgt äußerst präzise und schnell. Dies ermöglicht eine beispiellose Messung viskoelastischer Eigenschaften, indem viele theoretische Annahmen eliminiert werden, die Systeme mit einer Spulen-/Magnetanordnung und ohne Kraftrückkopplung berücksichtigen müssen.

MESSZIEL

Bei dieser Anwendung ist die NANOVEA Das mechanische Prüfgerät im Nanoindentationsmodus wird zur Untersuchung der Härte, des Elastizitätsmoduls und des Kriechverhaltens einer Hydrogelprobe verwendet.

NANOVEA PB1000 Mechanischer Tester

TESTBEDINGUNGEN

Eine auf einem Glasobjektträger platzierte Hydrogelprobe wurde mittels Nanoindentationstechnik mit einem NANOVEA Mechanischer Tester. Für dieses weiche Material wurde eine kugelförmige Spitze mit 3 mm Durchmesser verwendet. Die Belastung stieg während des Belastungszeitraums linear von 0,06 bis 10 mN an. Das Kriechen wurde dann durch die Änderung der Eindringtiefe bei der maximalen Belastung von 10 mN für 70 Sekunden gemessen.

ANNÄHERUNGSGESCHWINDIGKEIT: 100 μm/min

KONTAKT LADUNG
0,06 mN
MAX BELASTUNG
10 mN
LADUNGSVERFAHREN

20 mN/min

CREEP
70 s
Hydrogel Testing Indentation

ERGEBNISSE & DISKUSSION

Die Entwicklung der Belastung und der Tiefe in Abhängigkeit von der Zeit ist dargestellt in FUGUR 1. Es ist zu beobachten, dass auf dem Diagramm der Tiefe vs. ZeitWenn man den Punkt der Neigungsänderung zu Beginn der Belastungsperiode bestimmt, ist es sehr schwierig, den Punkt zu bestimmen, an dem der Eindringkörper beginnt, das weiche Material zu berühren. Allerdings ist die Darstellung der Last vs. Zeit zeigt das eigentümliche Verhalten des Hydrogels unter einer Belastung. Sobald das Hydrogel mit dem Kugeleindringkörper in Berührung kommt, zieht das Hydrogel den Kugeleindringkörper aufgrund seiner Oberflächenspannung an, was zu einer Verringerung der Oberfläche führt. Dieses Verhalten führt dazu, dass die gemessene Belastung zu Beginn der Belastungsphase negativ ist. Die Belastung nimmt allmählich zu, wenn der Eindringkörper in das Hydrogel eindringt, und wird dann 70 Sekunden lang konstant auf die maximale Belastung von 10 mN geregelt, um das Kriechverhalten des Hydrogels zu untersuchen.

hydrogel characterization
nanoindentation of hydrogels

ABBILDUNG 1: Entwicklung der Belastung und der Tiefe in Abhängigkeit von der Zeit.

Die Handlung des Kriechtiefe vs. Zeit wird gezeigt in ABBILDUNG 2und die Last vs. Verdrängung Das Diagramm des Nanoindentationstests ist dargestellt in ABBILDUNG 3. Das Hydrogel in dieser Studie besitzt eine Härte von 16,9 KPa und einen Elastizitätsmodul von 160,2 KPa, wie anhand der Lastverschiebungskurve nach der Oliver-Pharr-Methode berechnet.

Kriechen ist ein wichtiger Faktor für die Untersuchung der mechanischen Eigenschaften eines Hydrogels. Die enge Rückkopplungsschleife zwischen Piezo und ultrasensibler Kraftmesszelle gewährleistet eine wirklich konstante Belastung während der Kriechzeit bei maximaler Belastung. Wie in ABBILDUNG 2Bei der maximalen Belastung von 10 mN, die von der 3 mm langen Kugelspitze ausgeübt wird, sinkt das Hydrogel in 70 Sekunden um ~42 μm durch Kriechen ab.

mechanical testing of hydrogels

ABBILDUNG 2: Kriechen bei einer maximalen Belastung von 10 mN für 70 Sekunden.

hydrogel durability testing

ABBILDUNG 3: Das Diagramm von Belastung und Verdrängung des Hydrogels.

SCHLUSSFOLGERUNG

In dieser Studie haben wir gezeigt, dass die NANOVEA Der Mechanik-Tester im Nanoindentationsmodus ermöglicht eine präzise und wiederholbare Messung der mechanischen Eigenschaften eines Hydrogels, einschließlich Härte, Elastizitätsmodul und Kriechverhalten. Die große 3 mm-Kugelspitze sorgt für den richtigen Kontakt mit der Hydrogeloberfläche. Der hochpräzise motorisierte Probentisch ermöglicht eine genaue Positionierung der flachen Seite der Hydrogelprobe unter der Kugelspitze. Das Hydrogel in dieser Studie weist eine Härte von 16,9 KPa und einen Elastizitätsmodul von 160,2 KPa auf. Die Kriechtiefe beträgt ~42 μm bei einer Belastung von 10 mN für 70 Sekunden.

NANOVEA Mechanische Prüfgeräte bieten unübertroffene Multifunktions-Nano- und -Mikro-Module auf einer einzigen Plattform. Beide Module umfassen einen Kratzertester, einen Härtetester und einen Verschleißtestermodus und bieten damit das breiteste und benutzerfreundlichste Spektrum an Tests, das auf einer einzigen Plattform verfügbar ist.
System.

Kolbenverschleißprüfung

PISTON WEAR TESTINGMIT NANOVEA TRIBOMETER

Piston wear testing using NANOVEA tribometer under lubricated conditions.

Vorbereitet von

FRANK LIU

What Is Piston Wear Testing?

Piston wear testing evaluates the friction, lubrication, and material durability between piston skirts and cylinder liners under controlled laboratory conditions. Using a Tribometer, engineers can replicate real reciprocating motion and precisely measure the coefficient of friction, wear rate, and 3D surface topography. These results provide key insights into the tribological behavior of coatings, lubricants, and alloys used in engine pistons, helping optimize performance, fuel efficiency, and long-term reliability.

schematic showing piston skirt and cylinder liner lubrication interface during wear testing

 Schematische Darstellung des Antriebszylindersystems und der Schnittstellen Kolbenschaft-Schmiermittel-Zylinderlaufbuchse.

💡 Want to quantify wear rate and friction of your own samples? Request a custom tribology test tailored to your application.

Why Piston Wear Testing Matters in Engine Development

Motoröl ist ein Schmiermittel, das speziell für seine Anwendung entwickelt wurde. Zusätzlich zum Grundöl werden Additive wie Reinigungsmittel, Dispergiermittel, Viskositätsverbesserer (VI), Verschleißschutz-/Friktionsschutzmittel und Korrosionsinhibitoren zugesetzt, um die Leistung des Öls zu verbessern. Diese Additive wirken sich darauf aus, wie sich das Öl unter verschiedenen Betriebsbedingungen verhält. Das Verhalten des Öls wirkt sich auf die P-L-C-Grenzflächen aus und bestimmt, ob erheblicher Verschleiß durch Metall-Metall-Kontakt oder hydrodynamische Schmierung (sehr geringer Verschleiß) auftritt.

Es ist schwierig, die P-L-C-Schnittstellen zu verstehen, ohne den Bereich von externen Variablen zu isolieren. Es ist praktischer, das Ereignis unter Bedingungen zu simulieren, die für die reale Anwendung repräsentativ sind. Die Website NANOVEA Tribometer ist dafür ideal geeignet. Ausgestattet mit mehreren Kraftsensoren, einem Tiefensensor, einem Drop-by-Drop-Schmierstoffmodul und einem linearen Wechseltisch, ist das NANOVEA T2000 is able to closely mimic events occurring within an engine block and obtain valuable data to better understand the P-L-C interfaces.

nanovea tribometer kolbenverschleiß- und reibungstestmodulaufbau

Flüssigkeitsmodul auf dem Tribometer NANOVEA T2000

Das Drop-by-Drop-Modul ist für diese Studie von entscheidender Bedeutung. Da sich Kolben sehr schnell bewegen können (über 3000 U/min), ist es schwierig, durch Eintauchen der Probe einen dünnen Schmierstofffilm zu erzeugen. Um dieses Problem zu beheben, ist das Drop-by-Drop-Modul in der Lage, eine konstante Menge an Schmiermittel auf die Oberfläche des Kolbenschafts aufzutragen.

Die Verwendung von frischem Schmierstoff beseitigt auch die Gefahr, dass gelöste Verschleißverunreinigungen die Eigenschaften des Schmierstoffs beeinträchtigen.

How Tribometers Simulate
Real Piston–Liner Wear

The piston skirt-lubricant-cylinder liner interfaces will be studied in this report. The interfaces will be replicated by conducting a linear reciprocating wear test with drop-by-drop lubricant module.

Der Schmierstoff wird bei Raumtemperatur und unter erwärmten Bedingungen aufgetragen, um Kaltstart- und optimale Betriebsbedingungen zu vergleichen. Die COF und die Verschleißrate werden beobachtet, um besser zu verstehen, wie sich die Schnittstellen in realen Anwendungen verhalten.

NANOVEA T2000
Tribometer für hohe Belastungen

Piston Wear Test Parameters & Setup

LOAD ............................ 100 N

TESTDAUER ............................ 30 min

SPEED ............................ 2000 Umdrehungen pro Minute

AMPLITUDE ............................ 10 mm

GESAMTE ENTFERNUNG ............................ 1200 m

SKIRT-BESCHICHTUNG ............................ Molybdän-Graphit

PIN-MATERIAL ............................ Aluminiumlegierung 5052

PIN-DIAMETER ............................ 10 mm

SCHMIERMITTEL ............................ Motoröl (10W-30)

ANSCHLUSS. DURCHFLUSSRATE ............................ 60 mL/min

TEMPERATUR ............................ Raumtemperatur & 90°C

Real-World Relevance of
Kolbenverschleißprüfung

Tribometer-based piston wear testing provides critical insight into how material choices and lubrication strategies affect real engine reliability. Instead of relying on costly full-engine tests, laboratories can evaluate coatings, oils, and alloy surfaces under realistic mechanical load and temperature conditions. NANOVEA’s 3D profilometry and tribology modules allow precise mapping of wear depth and friction stability, helping R&D teams optimize performance and reduce development cycles.

Piston Wear Test Results & Analysis

piston wear scar comparison from tribometer lubricated wear test

In this experiment, A5052 was used as the counter material. While engine blocks are usually made of cast aluminum such as A356, A5052 have mechanical properties similar to A356 for this simulative testing [1].

Under the testing conditions, significant wear was observed on the piston skirt at room temperature compared to at 90°C. The deep scratches seen on the samples suggest that contact between the static material and the piston skirt occurs frequently throughout the test. The high viscosity at room temperature may be restricting the oil from completely filling gaps at the interfaces and creating metal-metal contact. At higher temperature, the oil thins and is able to flow between the pin and the piston. As a result, significantly less wear is observed at higher temperature. FIGURE 5 shows one side of the wear scar wore significantly less than the other side. This is most likely due to the location of the oil output. The lubricant film thickness was thicker on one side than the other, causing uneven wearing.

[1] “5052 Aluminum vs 356.0 Aluminum.” MakeItFrom.com, makeitfrom.com/compare/5052-O-Aluminum/A356.0-SG70B-A13560-Cast-Aluminum

Der COF von linearen Tribologietests mit Hin- und Herbewegung kann in einen hohen und einen niedrigen Durchgang unterteilt werden. Der hohe Durchlauf bezieht sich auf die Bewegung der Probe in Vorwärts- oder positiver Richtung und der niedrige Durchlauf auf die Bewegung der Probe in Rückwärts- oder negativer Richtung. Der durchschnittliche COF für das RT-Öl lag in beiden Richtungen unter 0,1. Der durchschnittliche COF zwischen den Durchgängen betrug 0,072 und 0,080. Der durchschnittliche COF des 90°C-Öls wurde zwischen den Durchgängen unterschiedlich festgestellt. Es wurden durchschnittliche COF-Werte von 0,167 und 0,09 festgestellt. Der Unterschied im COF ist ein weiterer Beweis dafür, dass das Öl nur eine Seite des Stifts richtig benetzen konnte. Ein hoher COF-Wert wurde erreicht, wenn sich aufgrund der hydrodynamischen Schmierung ein dicker Film zwischen dem Bolzen und dem Kolbenschaft bildete. Ein niedrigerer COF wird in der anderen Richtung beobachtet, wenn eine Mischschmierung auftritt. Weitere Informationen über hydrodynamische Schmierung und Mischschmierung finden Sie in unserem Anwendungshinweis auf Stribeck-Kurven.
coefficient of friction and wear rate results from lubricated piston wear test

Tabelle 1: Ergebnisse der geschmierten Verschleißprüfung an Kolben.

friction coefficient graphs for piston wear test at room temperature showing raw high and low pass profiles

ABBILDUNG 1: COF-Diagramme für den Ölverschleißtest bei Raumtemperatur A Rohprofil B Hochpass C Tiefpass.

friction coefficient graphs for piston wear test at 90 degrees Celsius showing raw high and low pass profiles

ABBILDUNG 2: COF-Diagramme für den 90°C-Verschleißöltest A Rohprofil B Hochpass C Tiefpass.

optical microscope image of piston wear scar from room temperature motor oil wear test

ABBILDUNG 3: Optisches Bild der Verschleißnarbe aus dem RT-Motorölverschleißtest.

piston surface showing localized wear scar highlighted for tribological analysis
volume and depth analysis of piston wear scar from tribometer test

ABBILDUNG 4: Volumen einer Lochanalyse der Verschleißnarbe aus dem RT-Motorölverschleißtest.

3d surface profilometry scan of piston wear scar showing wear depth and roughness

ABBILDUNG 5: Profilometrischer Scan der Verschleißnarbe aus dem RT-Motorölverschleißtest.

optical microscope image of piston wear scar from 90 degree motor oil wear test

ABBILDUNG 6: Optisches Bild einer Verschleißnarbe aus einem 90°C-Motorölverschleißtest

piston skirt showing wear zone analyzed during tribometer piston wear testing
volume and depth measurement of piston wear scar from 90 degree motor oil tribometer test

ABBILDUNG 7: Volumen einer Lochanalyse der Verschleißnarbe aus dem 90°C-Motorölverschleißtest.

3d surface profilometry scan of piston wear scar from 90 degree motor oil wear test showing wear depth and texture

ABBILDUNG 8: Profilometrischer Scan der Verschleißnarbe aus dem 90°C-Motorölverschleißtest.

Conclusion: Engine Wear Evaluation with NANOVEA Tribometers

Lubricated linear reciprocating wear testing was conducted on a piston to simulate events occurring in a real-life operational engine. The piston skirt-lubricant-cylinder liner interfaces is crucial to the operations of an engine. The lubricant thickness at the interface is responsible for energy loss due to friction or wear between the piston skirt and cylinder liner. To optimize the engine, the film thickness must be as thin as possible without allowing the piston skirt and cylinder liner to touch. The challenge, however, is how changes in temperature, speed, and force will affect the P-L-C interfaces.

With its wide range of loading (up to 2000 N) and speed (up to 15000 rpm), the NANOVEA T2000 tribometer is able to simulate different conditions possible in an engine. Possible future studies on this topic include how the P-L-C interfaces will behave under different constant load, oscillated load, lubricant temperature, speed, and lubricant application method. These parameters can be easily adjusted with the NANOVEA T2000 tribometer to give a complete understanding on the mechanisms of the piston skirt-lubricant-cylinder liner interfaces

ℹ️ Interested in brake pad testing? Learn more about our dedicated brake friction tester for pads, linings, and automotive R&D.

Organische Oberflächentopographie mit tragbarem 3D-Profilometer

ORGANISCHE OBERFLÄCHENTOPOGRAPHIE

MIT TRAGBAREM 3D-PROFILOMETER

Vorbereitet von

CRAIG LEISING

EINFÜHRUNG

Die Natur ist zu einer wichtigen Inspirationsquelle für die Entwicklung verbesserter Oberflächenstrukturen geworden. Das Verständnis der in der Natur vorkommenden Oberflächenstrukturen hat u. a. zu Studien über die Adhäsion von Geckofüßen, über die Widerstandsfähigkeit von Seegurken und über die Abstoßung von Blättern geführt. Diese Oberflächen haben eine Reihe potenzieller Anwendungen, von der Biomedizin bis hin zu Kleidung und Automobilen. Damit diese bahnbrechenden Oberflächen erfolgreich sein können, müssen Herstellungstechniken entwickelt werden, mit denen die Oberflächeneigenschaften nachgeahmt und reproduziert werden können. Dieser Prozess muss identifiziert und kontrolliert werden.

BEDEUTUNG EINES TRAGBAREN BERÜHRUNGSLOSEN OPTISCHEN 3D-PROFILERS FÜR ORGANISCHE OBERFLÄCHEN

Der NANOVEA Jr25 Portable nutzt die Chromatic Light-Technologie Optischer Profiler verfügt über eine hervorragende Fähigkeit, nahezu jedes Material zu messen. Dazu gehören die einzigartigen und steilen Winkel sowie die reflektierenden und absorbierenden Oberflächen, die in der breiten Palette an Oberflächeneigenschaften der Natur zu finden sind. Berührungslose 3D-Messungen liefern ein vollständiges 3D-Bild, um ein umfassenderes Verständnis der Oberflächenmerkmale zu ermöglichen. Ohne 3D-Fähigkeiten würde die Identifizierung natürlicher Oberflächen ausschließlich auf 2D-Informationen oder Mikroskopaufnahmen beruhen, die nicht genügend Informationen liefern, um die untersuchte Oberfläche richtig nachzubilden. Das Verständnis des gesamten Spektrums der Oberflächeneigenschaften, einschließlich Textur, Form, Abmessung und vielem mehr, ist für eine erfolgreiche Fertigung von entscheidender Bedeutung.

Die Möglichkeit, vor Ort auf einfache Weise Ergebnisse in Laborqualität zu erhalten, öffnet die Tür für neue Forschungsmöglichkeiten.

MESSZIEL

Bei dieser Anwendung ist die NANOVEA Jr25 wird verwendet, um die Oberfläche eines Blattes zu messen. Es gibt eine endlose Liste von Oberflächenparametern, die nach dem 3D-Oberflächenscan automatisch berechnet werden können.

Hier werden wir die 3D-Oberfläche überprüfen und wählen
Bereiche von Interesse, die weiter analysiert werden sollen, darunter
Quantifizierung und Untersuchung der Oberflächenrauhigkeit, der Kanäle und der Topografie

NANOVEA

JR25

TESTBEDINGUNGEN

PFEILTIEFE

Mittlere Dichte der Furchen: 16,471 cm/cm2
Mittlere Tiefe der Furchen: 97,428 μm
Maximale Tiefe: 359,769 μm

SCHLUSSFOLGERUNG

In dieser Anwendung haben wir gezeigt, wie die NANOVEA Der tragbare, berührungslose optische 3D-Profiler Jr25 kann sowohl die Topografie als auch die Details im Nanometerbereich einer Blattoberfläche im Feld präzise charakterisieren. Anhand dieser 3D-Oberflächenmessungen können Bereiche von Interesse schnell identifiziert und dann mit einer Liste von endlosen Studien analysiert werden (Abmessung, Rauheit, Textur, Form, Topographie, Ebenheit, Verzug, Ebenheit, Volumen, Stufenhöhe und andere). Ein 2D-Querschnitt kann leicht ausgewählt werden, um weitere Details zu analysieren. Mit diesen Informationen können organische Oberflächen mit einem kompletten Satz von Oberflächenmessmitteln umfassend untersucht werden. Spezielle Bereiche von Interesse können mit dem integrierten AFM-Modul auf Tischmodellen weiter analysiert werden.

NANOVEA bietet auch tragbare Hochgeschwindigkeitsprofilometer für die Feldforschung und eine breite Palette von Laborsystemen an und erbringt Labordienstleistungen.

Haftungseigenschaften einer Goldbeschichtung auf einem Quarzkristallsubstrat

Adhäsionseigenschaften der Goldbeschichtung

auf Quarzkristall-Substrat

Vorbereitet von

DUANJIE LIPhD

EINFÜHRUNG

Die Quarzkristall-Mikrowaage (QCM) ist ein äußerst empfindlicher Massensensor, der präzise Messungen von kleinen Massen im Nanogrammbereich vornehmen kann. Die QCM misst die Massenänderung auf der Oberfläche, indem sie Veränderungen der Resonanzfrequenz des Quarzkristalls mit zwei Elektroden auf jeder Seite der Platte feststellt. Die Fähigkeit, extrem kleine Gewichte zu messen, macht es zu einer Schlüsselkomponente in einer Vielzahl von Forschungs- und Industrieinstrumenten, um die Veränderung von Masse, Adsorption, Dichte und Korrosion usw. zu erkennen und zu überwachen.

BEDEUTUNG DES SCRATCH-TESTS FÜR QCM

Als extrem genaues Gerät misst das QCM die Massenänderung bis auf 0,1 Nanogramm genau. Jeder Massenverlust oder jede Delamination der Elektroden auf der Quarzplatte wird vom Quarzkristall erkannt und führt zu erheblichen Messfehlern. Daher spielen die Qualität der Elektrodenbeschichtung und die Unversehrtheit der Grenzflächen des Beschichtungs-/Substratsystems eine wesentliche Rolle bei der Durchführung genauer und wiederholbarer Massenmessungen. Der Mikrokratztest ist eine weit verbreitete Vergleichsmessung zur Bewertung der relativen Kohäsions- oder Adhäsionseigenschaften von Beschichtungen auf der Grundlage eines Vergleichs der kritischen Belastungen, bei denen es zu Ausfällen kommt. Er ist ein hervorragendes Instrument für die zuverlässige Qualitätskontrolle von QCMs.

MESSZIEL

Bei dieser Anwendung ist die NANOVEA Mechanischer Tester, im Mikrokratzmodus, wird verwendet, um die Kohäsions- und Haftfestigkeit der Goldbeschichtung auf dem Quarzsubstrat einer QCM-Probe zu bewerten. Wir möchten die Leistungsfähigkeit des zeigen NANOVEA Mechanisches Prüfgerät zur Durchführung von Mikrokratztests an einer empfindlichen Probe mit hoher Präzision und Wiederholbarkeit.

NANOVEA

PB1000

TESTBEDINGUNGEN

Die NANOVEA Der PB1000 Mechanical Tester wurde zur Durchführung der Mikrokratztests an einer QCM-Probe mit den unten zusammengefassten Testparametern verwendet. Es wurden drei Kratzer durchgeführt, um die Reproduzierbarkeit der Ergebnisse zu gewährleisten.

LADUNGSTYP: Progressiv

ANFANGSLADUNG

0.01 N

ENDLADUNG

30 N

ATMOSPHÄRE: Luft 24°C

GLEITGESCHWINDIGKEIT

2 mm/min

GLEITSTRECKE

2 mm

ERGEBNISSE & DISKUSSION

Die vollständige Mikrokratzspur auf der QCM-Probe ist in ABBILDUNG 1. Das Versagensverhalten bei verschiedenen kritischen Lasten ist in ABBILDUNG 2 dargestelltwobei die kritische Last, LC1 ist definiert als die Belastung, bei der das erste Anzeichen eines Klebstoffversagens in der Kratzspur auftritt, LC2 ist die Belastung, nach der es zu wiederholten Klebstoffausfällen kommt, und LC3 ist die Last, bei der die Beschichtung vollständig vom Substrat entfernt wird. Es ist zu beobachten, dass bei L+ wenig Abplatzungen stattfinden.C1 von 11,15 N, dem ersten Anzeichen für ein Versagen der Beschichtung. 

Da die normale Belastung während des Mikrokratztests weiter ansteigt, kommt es zu wiederholten Klebstoffausfällen nach LC2 von 16,29 N. Wenn LC3 von 19,09 N erreicht wird, löst sich die Beschichtung vollständig vom Quarzsubstrat ab. Solche kritischen Belastungen können für einen quantitativen Vergleich der Kohäsions- und Adhäsionskraft der Beschichtung verwendet werden, um den besten Kandidaten für bestimmte Anwendungen auszuwählen.

ABBILDUNG 1: Vollständige Mikrokratzspur auf der QCM-Probe.

ABBILDUNG 2: Mikrokratzspur bei verschiedenen kritischen Belastungen.

ABBILDUNG 3 stellt die Entwicklung des Reibungskoeffizienten und der Tiefe dar, die mehr Aufschluss über das Fortschreiten von Beschichtungsfehlern während des Mikrokratztests geben können.

ABBILDUNG 3: Entwicklung von COF und Tiefe während des Mikrokratztests.

SCHLUSSFOLGERUNG

In dieser Studie haben wir gezeigt, dass die NANOVEA Mechanical Tester führt zuverlässige und genaue Mikrokratztests an einer QCM-Probe durch. Durch die kontrollierte und genau überwachte Anwendung linear ansteigender Lasten ermöglicht die Kratzmessung die Ermittlung der kritischen Last, bei der ein typisches Versagen der kohäsiven und adhäsiven Beschichtung auftritt. Er ist ein hervorragendes Instrument zur quantitativen Bewertung und zum Vergleich der intrinsischen Qualität der Beschichtung und der Grenzflächenintegrität des Beschichtungs-/Substratsystems für QCM.

Die Nano-, Mikro- oder Makromodule des NANOVEA Die mechanischen Prüfgeräte verfügen alle über ISO- und ASTM-konforme Prüfmodi für Eindrücke, Kratzer und Abnutzung und bieten damit das breiteste und benutzerfreundlichste Prüfspektrum, das in einem einzigen System verfügbar ist. NANOVEAist die ideale Lösung für die Bestimmung der gesamten Bandbreite mechanischer Eigenschaften von dünnen oder dicken, weichen oder harten Beschichtungen, Filmen und Substraten, einschließlich Härte, E-Modul, Bruchzähigkeit, Haftung, Verschleißfestigkeit und vielen anderen.

Darüber hinaus sind ein optionaler berührungsloser 3D-Profiler und ein AFM-Modul für die hochauflösende 3D-Darstellung von Vertiefungen, Kratzern und Verschleißspuren sowie für andere Oberflächenmessungen wie Rauheit und Verzug erhältlich.

Der weltweit führende mikromechanische Tester

JETZT WELTWEIT FÜHREND

MIKROMECHANISCHE PRÜFUNG

Vorbereitet von

PIERRE LEROUX & DUANJIE LI, PhD

EINFÜHRUNG

Standard-Vickers-Mikro-Härteprüfgeräte haben nutzbare Belastungsbereiche von 10 bis 2000 Gramm Kraft (gf). Standard-Vickers-Makro-Härteprüfgeräte belasten von 1 bis 50 kgf. Diese Instrumente sind nicht nur im Bereich der Lasten sehr begrenzt, sondern sie sind auch ungenau, wenn es um rauere Oberflächen oder niedrige Lasten geht, wenn Eindrücke zu klein werden, um visuell gemessen zu werden. Diese Einschränkungen sind der älteren Technologie eigen, und infolgedessen wird die instrumentierte Eindringung aufgrund der höheren Genauigkeit und Leistung zur Standardwahl.

Mit NANOVEAs weltweit führendes mikromechanisches Prüfsystem berechnet die Vickershärte automatisch aus den Daten der Tiefe im Verhältnis zur Last mit dem größten jemals verfügbaren Lastbereich auf einem einzigen Modul (0,3 Gramm bis 2 kg oder 6 Gramm bis 40 kg). Da das NANOVEA Mikro-Modul die Härte anhand von Tiefen-Last-Kurven misst, kann es alle Arten von Materialien messen, auch sehr elastische. Es kann nicht nur die Vickers-Härte, sondern auch genaue Elastizitätsmodul- und Kriechdaten liefern, zusätzlich zu anderen Prüfarten wie Ritzhaftungsprüfung, Verschleiß, Ermüdungsprüfung, Streckgrenze und Bruchzähigkeit für eine vollständige Palette von Qualitätskontrolldaten.

JETZT DAS WELTWEIT FÜHRENDE MIKROMECHANISCHE PRÜFSYSTEM

In diesem Anwendungsbericht wird erläutert, wie das Mikromodul entwickelt wurde, um die weltweit führende instrumentierte Eindring- und Kratzprüfung zu bieten. Der große Prüfbereich des Mikro-Moduls ist ideal für viele Anwendungen. Der Lastbereich ermöglicht beispielsweise genaue Messungen der Härte und des Elastizitätsmoduls von dünnen harten Beschichtungen und kann dann viel höhere Lasten aufbringen, um die Haftung derselben Beschichtungen zu messen.

MESSZIEL

Die Kapazität des Mikromoduls wird mit dem dargestellt NANOVEA CB500 Mechanischer Tester von
Durchführen von sowohl Eindring- als auch Kratztests mit überragender Präzision und Zuverlässigkeit unter Verwendung eines breiten Lastbereichs von 0,03 bis 200 N.

NANOVEA

CB500

TESTBEDINGUNGEN

Eine Serie (3×4, insgesamt 12 Eindrücke) von Mikroeindrücken wurde mit einem Vickers-Eindringkörper an einer Standardstahlprobe durchgeführt. Die Belastung und die Tiefe wurden gemessen und für den gesamten Eindruckprüfzyklus aufgezeichnet. Die Eindrücke wurden mit verschiedenen Höchstlasten von 0,03 N bis 200 N (0,0031 bis 20,4 kgf) durchgeführt, um die Fähigkeit des Mikromoduls zur Durchführung präziser Eindringtests bei verschiedenen Lasten zu zeigen. Es ist erwähnenswert, dass eine optionale Kraftmesszelle von 20 N ebenfalls erhältlich ist, die eine 10-fach höhere Auflösung für Tests im unteren Kraftbereich von 0,3 gf bis 2 kgf bietet.

Mit dem Mikromodul wurden zwei Kratztests mit linear ansteigender Belastung von 0,01 N bis 200 N bzw. von 0,01 N bis 0,5 N unter Verwendung eines konisch-kugelförmigen Diamantstifts mit einem Spitzenradius von 500 μm und 20 μm durchgeführt.

Zwanzig Mikroindentation Prüfungen wurden an der Stahl-Standardprobe bei 4 N durchgeführt, was die überragende Wiederholbarkeit der Ergebnisse des Mikromoduls im Vergleich zu den Leistungen herkömmlicher Vickers-Härteprüfgeräte zeigt.

*Mikroindenter auf der Stahlprobe

PRÜFPARAMETER

des Indentation-Mappings

KARTIERUNG: 3 VON 4 EINZÜGE

ERGEBNISSE UND DISKUSSION

Das neue Mikromodul verfügt über eine einzigartige Kombination aus Z-Motor, Hochleistungs-Wägezelle und einem hochpräzisen kapazitiven Tiefensensor. Die einzigartige Verwendung unabhängiger Tiefen- und Lastsensoren gewährleistet eine hohe Genauigkeit unter allen Bedingungen.

Herkömmliche Vickers-Härtetests verwenden Pyramiden-Eindringspitzen mit quadratischer Basis aus Diamant, die quadratisch geformte Eindrücke erzeugen. Durch Messen der durchschnittlichen Länge der Diagonale, d, kann die Vickers-Härte berechnet werden.

Im Vergleich dazu verwendet die instrumentierte Eindringtechnik von NANOVEADas Mikromodul misst die mechanischen Eigenschaften direkt aus der Messung der Eindringkraft und der Verschiebung. Es ist keine visuelle Beobachtung des Eindrucks erforderlich. Dadurch werden Fehler des Benutzers oder der Computerbildverarbeitung bei der Bestimmung der d-Werte des Eindrucks vermieden. Der hochpräzise Kondensator-Tiefensensor mit einem sehr niedrigen Rauschpegel von 0,3 nm kann die Tiefe von Eindrücken genau messen, die mit herkömmlichen Vickers-Härteprüfern nur schwer oder gar nicht visuell unter dem Mikroskop gemessen werden können.

Außerdem wird bei der von den Wettbewerbern verwendeten Auslegertechnik die Normallast über eine Feder auf einen Auslegerbalken aufgebracht, und diese Last wird wiederum auf den Eindringkörper übertragen. Eine solche Konstruktion hat einen Fehler, wenn eine hohe Last aufgebracht wird - der freitragende Träger kann keine ausreichende strukturelle Steifigkeit bieten, was zu einer Verformung des freitragenden Trägers und damit zu einer Fehlausrichtung des Eindringkörpers führt. Im Vergleich dazu übt das Mikromodul die normale Last über den Z-Motor auf die Kraftmesszelle und anschließend auf den Eindringkörper zur direkten Lastaufbringung aus. Alle Elemente sind vertikal ausgerichtet, um eine maximale Steifigkeit zu erreichen und wiederholbare und genaue Messungen von Eindrücken und Kratzern über den gesamten Lastbereich zu gewährleisten.

Nahaufnahme des neuen Mikromoduls

EINDRUCK VON 0,03 BIS 200 N

Das Bild der Eindruckkarte ist in BILD 1 dargestellt. Der Abstand zwischen den beiden benachbarten Eindrücken über 10 N beträgt 0,5 mm, während der Abstand bei niedrigeren Lasten 0,25 mm beträgt. Die hochpräzise Positionssteuerung des Probentisches ermöglicht es Benutzern, den Zielort für die Kartierung der mechanischen Eigenschaften auszuwählen. Dank der hervorragenden Steifigkeit des Mikromoduls aufgrund der vertikalen Ausrichtung seiner Komponenten behält der Vickers-Eindringkörper eine perfekte vertikale Ausrichtung, wenn er unter einer Last von bis zu 200 N (400 N optional) in die Stahlprobe eindringt. Dadurch entstehen bei unterschiedlichen Belastungen Abdrücke einer symmetrischen quadratischen Form auf der Probenoberfläche.

Die einzelnen Eindrücke bei unterschiedlichen Belastungen unter dem Mikroskop werden neben den beiden Kratzern angezeigt, wie in BILD 2 gezeigt, um die Fähigkeit des neuen Mikromoduls zu demonstrieren, sowohl Eindruck- als auch Kratztests in einem breiten Belastungsbereich mit hoher Präzision durchzuführen. Wie in den Diagrammen Normallast vs. Kratzlänge gezeigt, nimmt die Normallast linear zu, wenn der konisch-sphärische Diamantstift auf der Stahlprobenoberfläche gleitet. Es erzeugt eine glatte, gerade Kratzspur mit zunehmender Breite und Tiefe.

ABBILDUNG 1: Einrückungskarte

Mit dem Mikromodul wurden zwei Kratztests mit linear ansteigender Belastung von 0,01 N bis 200 N bzw. von 0,01 N bis 0,5 N unter Verwendung eines konisch-kugelförmigen Diamantstifts mit einem Spitzenradius von 500 μm und 20 μm durchgeführt.

Zwanzig Mikroindentationsprüfungen wurden an der Stahl-Standardprobe bei 4 N durchgeführt und zeigten die hervorragende Wiederholbarkeit der Ergebnisse des Mikromoduls, die im Gegensatz zu den Ergebnissen herkömmlicher Vickers-Härteprüfgeräte stehen.

A: EINDRUCK UND KRATZER UNTER DEM MIKROSKOP (360X)

B: EINDRUCK UND KRATZER UNTER DEM MIKROSKOP (3000X)

ABBILDUNG 2: Belastungs-Verschiebungs-Plots bei verschiedenen Maximallasten.

Die Kraft-Weg-Kurven während des Eindrucks bei unterschiedlichen Maximallasten sind in dargestellt FIGUR 3. Die Härte und der Elastizitätsmodul sind in ABBILDUNG 4 zusammengefasst und verglichen. Die Stahlprobe weist während der gesamten Testbelastung einen konstanten Elastizitätsmodul im Bereich von 0,03 bis 200 N (möglicher Bereich 0,003 bis 400 N) auf, was zu einem Durchschnittswert von ~211 GPa führt. Die Härte weist einen relativ konstanten Wert von ~6,5 GPa auf, gemessen unter einer maximalen Belastung von über 100 N. Wenn die Belastung auf einen Bereich von 2 bis 10 N abnimmt, wird eine durchschnittliche Härte von ~9 GPa gemessen.

ABBILDUNG 3: Belastungs-Verschiebungs-Plots bei verschiedenen Maximallasten.

ABBILDUNG 4: Härte und Elastizitätsmodul der Stahlprobe, gemessen mit verschiedenen Höchstlasten.

EINDRUCK VON 0,03 BIS 200 N

Zwanzig Mikroindentationstests wurden bei einer maximalen Belastung von 4 N durchgeführt. Die Last-Verschiebungs-Kurven werden in angezeigt ABBILDUNG 5 und die sich daraus ergebende Vickershärte und der Elastizitätsmodul sind dargestellt in ABBILDUNG 6.

ABBILDUNG 5: Last-Weg-Kurven für Mikroindentationstests bei 4 N.

ABBILDUNG 6: Vickershärte und Elastizitätsmodul für 20 Mikroeindrücke bei 4 N.

Die Kraft-Verschiebungs-Kurven demonstrieren die überlegene Wiederholbarkeit des neuen Mikromoduls. Der Stahlstandard besitzt eine Vickers-Härte von 842 ± 11 HV, gemessen mit dem neuen Mikromodul, verglichen mit 817 ± 18 HV, gemessen mit dem herkömmlichen Vickers-Härteprüfgerät. Die geringe Standardabweichung der Härtemessung gewährleistet eine zuverlässige und reproduzierbare Charakterisierung mechanischer Eigenschaften in der F&E und Qualitätskontrolle von Materialien sowohl im industriellen Bereich als auch in der akademischen Forschung.

Darüber hinaus wird aus der Kraft-Weg-Kurve ein Elastizitätsmodul von 208±5 GPa errechnet, das bei herkömmlichen Vickers-Härteprüfgeräten aufgrund der fehlenden Tiefenmessung während des Eindrucks nicht verfügbar ist. Mit abnehmender Belastung und abnehmender Größe des Eindrucks wird der NANOVEA Die Vorteile der Mikromodule in Bezug auf die Wiederholbarkeit im Vergleich zu Vickers-Härteprüfgeräten nehmen zu, bis es nicht mehr möglich ist, den Eindruck durch visuelle Inspektion zu messen.

Der Vorteil der Tiefenmessung zur Berechnung der Härte wird auch deutlich, wenn es sich um gröbere Proben handelt oder wenn Proben unter Standardmikroskopen, die auf Vickers-Härteprüfgeräten bereitgestellt werden, schwieriger zu beobachten sind.

SCHLUSSFOLGERUNG

In dieser Studie haben wir gezeigt, wie das neue, weltweit führende NANOVEA-Mikromodul (200 N-Bereich) unübertroffene reproduzierbare und präzise Eindruck- und Kratzmessungen in einem breiten Lastbereich von 0,03 bis 200 N (3 gf bis 20,4 kgf) durchführt. Ein optionales Mikromodul für den unteren Bereich kann Tests von 0,003 bis 20 N (0,3 gf bis 2 kgf) ermöglichen. Die einzigartige vertikale Ausrichtung des Z-Motors, der Hochleistungs-Wägezelle und des Tiefensensors sorgt für maximale strukturelle Steifigkeit während der Messung. Die bei unterschiedlichen Belastungen gemessenen Eindrücke besitzen alle eine symmetrische quadratische Form auf der Probenoberfläche. Beim Kratztest mit 200 N Maximallast entsteht eine gerade Kratzspur mit zunehmender Breite und Tiefe.

Das neue Mikromodul kann auf der mechanischen Basis PB1000 (150 x 200 mm) oder CB500 (100 x 50 mm) mit z-Motorisierung (50 mm Reichweite) konfiguriert werden. In Kombination mit einem leistungsstarken Kamerasystem (Positionsgenauigkeit von 0,2 Mikron) bieten die Systeme die besten Automatisierungs- und Kartierungsfunktionen auf dem Markt. NANOVEA bietet auch eine einzigartige patentierte Funktion (EP Nr. 30761530), die die Überprüfung und Kalibrierung von Vickers-Eindringkörpern ermöglicht, indem ein einziger Eindringvorgang über den gesamten Lastbereich durchgeführt wird. Im Gegensatz dazu können standardmäßige Vickers-Härteprüfgeräte nur eine Kalibrierung bei einer Last bereitstellen.

Darüber hinaus ermöglicht die NANOVEA-Software einem Benutzer, die Vickers-Härte bei Bedarf über die herkömmliche Methode zur Messung der Eindruckdiagonalen zu messen (für ASTM E92 und E384). Wie in diesem Dokument gezeigt, ist die von einem NANOVEA Mikromodul durchgeführte Tiefen-gegen-Last-Härteprüfung (ASTM E2546 und ISO 14577) im Vergleich zu herkömmlichen Härteprüfern präzise und reproduzierbar. Speziell für Proben, die nicht mit einem Mikroskop betrachtet/gemessen werden können.

Zusammenfassend lässt sich sagen, dass die höhere Genauigkeit und Wiederholbarkeit des Mikromodul-Designs mit seinem breiten Spektrum an Belastungen und Prüfungen, dem hohen Automatisierungsgrad und den Mapping-Optionen die traditionellen Vickers-Härteprüfgeräte überflüssig macht. Das Gleiche gilt für Ritz- und Mikro-Ritzprüfgeräte, die derzeit noch angeboten werden, aber in den 1980er Jahren mit Mängeln entwickelt wurden.

Die kontinuierliche Weiterentwicklung und Verbesserung dieser Technologie macht NANOVEA zu einem weltweit führenden Anbieter von mikromechanischen Tests.

Sandpapier-Rauheitsprofilometer

Schleifpapier: Analyse von Rauheit und Partikeldurchmesser

Schleifpapier: Analyse von Rauheit und Partikeldurchmesser

Mehr erfahren

SANDPAPIER

Analyse von Rauhigkeit und Partikeldurchmesser

Vorbereitet von

FRANK LIU

EINFÜHRUNG

Sandpapier ist ein handelsübliches Produkt, das als Schleifmittel verwendet wird. Der häufigste Verwendungszweck von Schleifpapier ist das Entfernen von Beschichtungen oder das Polieren einer Oberfläche mit Hilfe seiner abrasiven Eigenschaften. Diese abrasiven Eigenschaften werden in Körnungen eingeteilt, die jeweils angeben, wie glatt oder
eine raue Oberfläche erzielt wird. Um die gewünschten Schleifeigenschaften zu erzielen, müssen die Hersteller von Schleifpapier sicherstellen, dass die Schleifpartikel eine bestimmte Größe haben und nur geringfügige Abweichungen aufweisen. Um die Qualität des Schleifpapiers zu quantifizieren, hat NANOVEAs 3D Non-Contact Profilometer kann verwendet werden, um den arithmetischen Mittelwert (Sa) des Höhenparameters und den durchschnittlichen Partikeldurchmesser einer Probenfläche zu erhalten.

BEDEUTUNG DES BERÜHRUNGSLOSEN OPTISCHEN 3D PROFILER FÜR SCHLEIFPAPIER

Bei der Verwendung von Schleifpapier muss die Interaktion zwischen den Schleifpartikeln und der zu schleifenden Oberfläche gleichmäßig sein, um eine gleichmäßige Oberflächenbeschaffenheit zu erzielen. Um dies zu quantifizieren, kann die Oberfläche des Schleifpapiers mit dem berührungslosen optischen 3D-Profiler von NANOVEA beobachtet werden, um Abweichungen bei den Partikelgrößen, -höhen und -abständen zu erkennen.

MESSZIEL

In dieser Studie wurden fünf verschiedene Schleifpapierkörnungen (120,
180, 320, 800 und 2000) werden mit dem Scannertool
NANOVEA ST400 3D Berührungsloser optischer Profiler.
Das Sa wird aus dem Scan extrahiert und die Partikel
Größe wird durch eine Motifs-Analyse berechnet, um
ihren äquivalenten Durchmesser zu finden

NANOVEA

ST400

ERGEBNISSE & DISKUSSION

Die Oberflächenrauheit (Sa) und die Partikelgröße des Schleifpapiers nehmen mit zunehmender Körnung erwartungsgemäß ab. Die Sa reichte von 42,37 μm bis 3,639 μm. Die Partikelgröße reicht von 127 ± 48,7 bis 21,27 ± 8,35. Größere Partikel und große Höhenunterschiede erzeugen eine stärkere Abrasionswirkung auf Oberflächen als kleinere Partikel mit geringen Höhenunterschieden.
Bitte beachten Sie, dass alle Definitionen der angegebenen Höhenparameter auf Seite A.1. aufgeführt sind.

TABELLE 1: Vergleich zwischen Schleifpapierkörnungen und Höhenparametern.

TABELLE 2: Vergleich zwischen Schleifpapierkörnungen und Partikeldurchmesser.

2D & 3D ANSICHT VON SCHLEIFPAPIER 

Unten sehen Sie die Falschfarben- und die 3D-Ansicht für die Sandpapierproben.
Ein Gaußfilter von 0,8 mm wurde verwendet, um die Form oder Welligkeit zu entfernen.

MOTIF-ANALYSE

Um die Partikel an der Oberfläche genau zu finden, wurde der Schwellenwert für die Höhenskala neu definiert, so dass nur die obere Schicht des Schleifpapiers angezeigt wird. Anschließend wurde eine Motivanalyse durchgeführt, um die Peaks zu erkennen.

SCHLUSSFOLGERUNG

Der berührungslose optische 3D-Profiler von NANOVEA wurde zur Prüfung der Oberflächeneigenschaften verschiedener Schleifpapierkörnungen eingesetzt, da er Oberflächen mit Mikro- und Nanomerkmalen präzise scannen kann.

Die Parameter für die Oberflächenhöhe und die äquivalenten Partikeldurchmesser wurden mit Hilfe einer fortschrittlichen Software zur Analyse der 3D-Scans von jeder der Sandpapierproben ermittelt. Es wurde festgestellt, dass mit zunehmender Korngröße die Oberflächenrauhigkeit (Sa) und die Partikelgröße erwartungsgemäß abnahmen.

Styropor-Oberflächen-Grenzflächenmessung Profilometrie

Grenzflächenmessung

Grenzflächenmessung mit 3D-Profilometrie

Mehr erfahren

OBERFLÄCHENGRENZFLÄCHENMESSUNG

3D-PROFILOMETRIE VERWENDEN

Vorbereitet von

Craig Leising

EINFÜHRUNG

Bei Studien, in denen die Schnittstelle von Oberflächenmerkmalen, Mustern, Formen usw. zur Orientierung ausgewertet wird, ist es nützlich, schnell Bereiche von Interesse über das gesamte Messprofil zu identifizieren. Durch die Segmentierung einer Oberfläche in signifikante Bereiche kann der Benutzer schnell Grenzen, Spitzen, Vertiefungen, Flächen, Volumina und vieles mehr bewerten, um ihre funktionelle Rolle im gesamten untersuchten Oberflächenprofil zu verstehen. Wie zum Beispiel bei der Korngrenzenabbildung von Metallen ist die Bedeutung der Analyse die Schnittstelle vieler Strukturen und ihre Gesamtausrichtung. Durch das Verständnis jedes einzelnen Bereichs von Interesse können Defekte und Anomalien innerhalb des Gesamtbereichs identifiziert werden. Obwohl die Korngrenzenabbildung in der Regel in einem Bereich untersucht wird, der die Möglichkeiten des Profilometers übersteigt, und es sich nur um eine 2D-Bildanalyse handelt, ist sie eine hilfreiche Referenz, um das Konzept dessen zu veranschaulichen, was hier in größerem Maßstab zusammen mit den Vorteilen der 3D-Oberflächenmessung gezeigt wird.

BEDEUTUNG DES BERÜHRUNGSLOSEN 3D-PROFILOMETERS FÜR DIE UNTERSUCHUNG DER OBERFLÄCHENTRENNUNG

Im Gegensatz zu anderen Techniken wie Touch Probes oder Interferometrie ist die 3D berührungsloses ProfilometerMithilfe des axialen Chromatismus kann nahezu jede Oberfläche gemessen werden, die Probengröße kann aufgrund des offenen Stagings stark variieren und es ist keine Probenvorbereitung erforderlich. Der Nano- bis Makrobereich wird während der Oberflächenprofilmessung ohne Einfluss des Probenreflexionsvermögens oder der Probenabsorption erzielt, verfügt über eine erweiterte Fähigkeit zur Messung großer Oberflächenwinkel und es gibt keine Softwaremanipulation der Ergebnisse. Messen Sie ganz einfach jedes Material: transparent, undurchsichtig, spiegelnd, diffus, poliert, rau usw. Die Technik des berührungslosen Profilometers bietet eine ideale, umfassende und benutzerfreundliche Möglichkeit, Oberflächenstudien zu maximieren, wenn eine Analyse der Oberflächengrenzen erforderlich ist; zusammen mit den Vorteilen der kombinierten 2D- und 3D-Fähigkeit.

MESSZIEL

In dieser Anwendung wird das Nanovea ST400 Profilometer verwendet, um die Oberfläche von Styropor zu messen. Die Grenzen wurden durch die Kombination einer Datei mit der reflektierten Intensität und der Topografie festgelegt, die gleichzeitig mit dem NANOVEA ST400 erfasst wurden. Diese Daten wurden dann zur Berechnung der verschiedenen Form- und Größeninformationen der einzelnen Styropor-"Körner" verwendet.

NANOVEA

ST400

ERGEBNISSE & DISKUSSION: 2D-Oberflächengrenzflächenmessung

Topographiebild (unten links), maskiert mit dem Bild der reflektierten Intensität (unten rechts), um die Korngrenzen klar zu definieren. Alle Körner unter 565 µm Durchmesser wurden durch Anwendung des Filters ignoriert.

Gesamtzahl der Körner: 167
Gesamte projizierte Fläche, die von den Körnern eingenommen wird: 166,917 mm² (64,5962 %)
Projizierte Gesamtfläche der Grenzen: (35.4038 %)
Dichte der Körner: 0,646285 Körner / mm2

Fläche = 0,999500 mm² +/- 0,491846 mm²
Umfang = 9114,15 µm +/- 4570,38 µm
Äquivalenter Durchmesser = 1098,61 µm +/- 256,235 µm
Mittlerer Durchmesser = 945,373 µm +/- 248,344 µm
Mindestdurchmesser = 675,898 µm +/- 246,850 µm
Maximaler Durchmesser = 1312,43 µm +/- 295,258 µm

ERGEBNISSE & DISKUSSION: 3D-Oberflächengrenzflächenmessung

Anhand der gewonnenen 3D-Topographiedaten können das Volumen, die Höhe, die Spitze, das Seitenverhältnis und allgemeine Forminformationen zu jedem Korn analysiert werden. Belegte 3D-Gesamtfläche: 2,525 mm3

SCHLUSSFOLGERUNG

In dieser Anwendung haben wir gezeigt, wie das berührungslose 3D-Profilometer NANOVEA die Oberfläche von Styropor präzise charakterisieren kann. Statistische Informationen können über die gesamte Oberfläche von Interesse oder über einzelne Körner gewonnen werden, unabhängig davon, ob es sich um Spitzen oder Vertiefungen handelt. In diesem Beispiel wurden alle Körner, die größer als eine benutzerdefinierte Größe sind, verwendet, um die Fläche, den Umfang, den Durchmesser und die Höhe anzuzeigen. Die hier gezeigten Merkmale können für die Forschung und die Qualitätskontrolle natürlicher und vorgefertigter Oberflächen von entscheidender Bedeutung sein, von biomedizinischen bis hin zu Mikrobearbeitungsanwendungen und vielen anderen. 

Glasbeschichtung Feuchte Verschleißprüfung mit Tribometer

Glasbeschichtung Feuchte Verschleißprüfung mit Tribometer

Mehr erfahren

FEUCHTIGKEIT DER GLASBESCHICHTUNG

VERSCHLEISSPRÜFUNG MIT TRIBOMETER

Vorbereitet von

DUANJIE LIPhD

EINFÜHRUNG

Die selbstreinigende Glasbeschichtung schafft eine leicht zu reinigende Glasoberfläche, die Ablagerungen, Schmutz und Fleckenbildung verhindert. Die Selbstreinigungsfunktion reduziert die Häufigkeit, den Zeitaufwand, die Energie- und die Reinigungskosten erheblich, was sie zu einer attraktiven Wahl für eine Vielzahl von privaten und gewerblichen Anwendungen macht, z. B. für Glasfassaden, Spiegel, Duschscheiben, Fenster und Windschutzscheiben.

BEDEUTUNG DER VERSCHLEISSFESTIGKEIT DER SELBSTREINIGENDEN GLASBESCHICHTUNG

Eine wichtige Anwendung der selbstreinigenden Beschichtung ist die Außenfläche der Glasfassade von Wolkenkratzern. Die Glasoberfläche wird häufig von schnell fliegenden Partikeln angegriffen, die von starkem Wind getragen werden. Auch die Witterungsbedingungen spielen eine wichtige Rolle für die Lebensdauer der Glasbeschichtung. Es kann sehr schwierig und kostspielig sein, die Oberfläche des Glases zu behandeln und eine neue Beschichtung aufzubringen, wenn die alte Beschichtung versagt. Daher ist die Verschleißfestigkeit der Glasbeschichtung unter
unterschiedliche Wetterbedingungen sind kritisch.


Um die realistischen Umgebungsbedingungen der selbstreinigenden Beschichtung bei unterschiedlichen Witterungsbedingungen zu simulieren, ist eine wiederholbare Verschleißbewertung bei kontrollierter und überwachter Feuchtigkeit erforderlich. Sie ermöglicht es den Anwendern, die Verschleißfestigkeit der selbstreinigenden Beschichtungen, die unterschiedlichen Feuchtigkeitsbedingungen ausgesetzt sind, genau zu vergleichen und den besten Kandidaten für die gewünschte Anwendung auszuwählen.

MESSZIEL

In dieser Studie haben wir gezeigt, dass die NANOVEA Das mit einem Feuchteregler ausgestattete Tribometer T100 ist ein ideales Instrument zur Untersuchung der Verschleißfestigkeit von selbstreinigenden Glasbeschichtungen bei unterschiedlichen Luftfeuchtigkeiten.

NANOVEA

T100

PRÜFVERFAHREN

Die Objektträger aus Natronkalkglas wurden mit selbstreinigenden Glasbeschichtungen mit zwei verschiedenen Behandlungsrezepten beschichtet. Diese beiden Beschichtungen werden als Beschichtung 1 und Beschichtung 2 bezeichnet. Zum Vergleich wurde auch ein unbeschichteter Objektträger aus blankem Glas getestet.


NANOVEA Tribometer Ausgestattet mit einem Feuchtigkeitskontrollmodul wurde das tribologische Verhalten, z. B. Reibungskoeffizient, COF und Verschleißfestigkeit der selbstreinigenden Glasbeschichtungen, bewertet. Eine WC-Kugelspitze (Durchmesser 6 mm) wurde gegen die getesteten Proben angelegt. Der COF wurde vor Ort aufgezeichnet. Der an der Tribokammer angebrachte Feuchtigkeitsregler regelte den Wert der relativen Luftfeuchtigkeit (RH) präzise im Bereich von ±1 %. Nach den Verschleißtests wurde die Morphologie der Verschleißspuren unter dem Lichtmikroskop untersucht.

MAXIMALE BELASTUNG 40 mN
ERGEBNISSE & DISKUSSION

Die Stift-auf-Scheibe-Verschleißtests unter verschiedenen Feuchtigkeitsbedingungen wurden an beschichtetem und unbeschichtetem Glas durchgeführt.
Proben. Die COF wurde während der Verschleißtests in situ aufgezeichnet, wie in
ABBILDUNG 1 und die durchschnittliche COF ist zusammengefasst in ABBILDUNG 2. ABBILDUNG 4 vergleicht die Verschleißspuren nach den Verschleißtests.


Wie in
ABBILDUNG 1Das unbeschichtete Glas weist einen hohen COF von ~0,45 auf, sobald die Gleitbewegung im 30% RH beginnt, und er steigt nach und nach auf ~0,6 am Ende des Verschleißtests mit 300 Umdrehungen. Im Vergleich dazu weist das
Die beschichteten Glasproben Beschichtung 1 und Beschichtung 2 weisen zu Beginn des Tests einen niedrigen COF von unter 0,2 auf. Der COF
von Beschichtung 2 stabilisiert sich während des restlichen Tests bei ~0,25, während Beschichtung 1 einen starken Anstieg des COF bei
~250 Umdrehungen und der COF erreicht einen Wert von ~0,5. Wenn die Verschleißtests im 60% RH durchgeführt werden, ist der
unbeschichtetes Glas zeigt während des gesamten Verschleißtests immer noch einen höheren COF von ~0,45. Die Beschichtungen 1 und 2 weisen COF-Werte von 0,27 bzw. 0,22 auf. Beim 90% RH weist das unbeschichtete Glas am Ende des Verschleißtests einen hohen COF von ~0,5 auf. Die Beschichtungen 1 und 2 weisen einen vergleichbaren COF von ~0,1 zu Beginn des Verschleißtests auf. Beschichtung 1 behält einen relativ stabilen COF von ~0,15. Beschichtung 2 versagt jedoch bei ~ 100 Umdrehungen, gefolgt von einem deutlichen Anstieg des COF auf ~0,5 gegen Ende des Verschleißtests.


Die geringe Reibung der selbstreinigenden Glasbeschichtung ist auf ihre niedrige Oberflächenenergie zurückzuführen. Sie erzeugt eine sehr hohe statische
Wasserkontaktwinkel und niedriger Abrollwinkel. Dies führt zur Bildung von kleinen Wassertröpfchen auf der Beschichtungsoberfläche des 90% RH, wie unter dem Mikroskop in
ABBILDUNG 3. Außerdem sinkt der durchschnittliche COF von ~0,23 auf ~0,15 für Beschichtung 2, wenn der RH-Wert von 30% auf 90% steigt.

ABBILDUNG 1: Reibungskoeffizient während der Stift-auf-Scheibe-Tests bei unterschiedlicher relativer Luftfeuchtigkeit.

ABBILDUNG 2: Durchschnittlicher COF während der Pin-on-Disk-Tests bei unterschiedlicher relativer Luftfeuchtigkeit.

ABBILDUNG 3: Bildung von kleinen Wassertröpfchen auf der beschichteten Glasoberfläche.

ABBILDUNG 4 vergleicht die Abnutzungsspuren auf der Glasoberfläche nach den Abnutzungstests bei unterschiedlicher Luftfeuchtigkeit. Beschichtung 1 weist nach den Verschleißtests bei 30% und 60% leichte Verschleißerscheinungen auf. Sie weist nach dem Test in 90% RH eine große Verschleißspur auf, was mit dem signifikanten Anstieg des COF während des Verschleißtests übereinstimmt. Die Beschichtung 2 zeigt nach den Verschleißtests sowohl in trockener als auch in nasser Umgebung fast keine Anzeichen von Verschleiß, und sie weist auch während der Verschleißtests in verschiedenen Feuchtigkeitsbereichen einen konstant niedrigen COF auf. Die Kombination aus guten tribologischen Eigenschaften und niedriger Oberflächenenergie macht Beschichtung 2 zu einem guten Kandidaten für selbstreinigende Glasbeschichtungen in rauen Umgebungen. Im Vergleich dazu zeigt das unbeschichtete Glas größere Verschleißspuren und einen höheren COF bei unterschiedlicher Luftfeuchtigkeit, was die Notwendigkeit einer selbstreinigenden Beschichtungstechnik verdeutlicht.

ABBILDUNG 4: Abnutzungsspuren nach den Pin-on-Disk-Tests bei unterschiedlicher Luftfeuchtigkeit (200-fache Vergrößerung).

SCHLUSSFOLGERUNG

NANOVEA Das Tribometer T100 ist ein hervorragendes Werkzeug für die Bewertung und Qualitätskontrolle von selbstreinigenden Glasbeschichtungen bei unterschiedlicher Luftfeuchtigkeit. Die Fähigkeit der In-situ-COF-Messung ermöglicht es dem Benutzer, verschiedene Stadien des Verschleißprozesses mit der Entwicklung der COF zu korrelieren, was für die Verbesserung des grundlegenden Verständnisses des Verschleißmechanismus und der tribologischen Eigenschaften der Glasbeschichtungen entscheidend ist. Auf der Grundlage der umfassenden tribologischen Analyse der selbstreinigenden Glasbeschichtungen, die bei unterschiedlichen Luftfeuchtigkeiten getestet wurden, zeigen wir, dass Beschichtung 2 eine konstant niedrige COF und eine überlegene Verschleißfestigkeit sowohl in trockenen als auch in feuchten Umgebungen aufweist.


NANOVEA Tribometer bieten präzise und wiederholbare Verschleiß- und Reibungstests mit ISO- und ASTM-konformen Rotations- und Linearmodi, wobei optionale Module für Hochtemperaturverschleiß, Schmierung und Tribokorrosion in einem vorintegrierten System erhältlich sind. Ein optionaler berührungsloser 3D-Profiler ist für hohe
3D-Bildgebung der Verschleißspur zusätzlich zu anderen Oberflächenmessungen wie der Rauheit. 

Kriechverformung von Polymeren mittels Nanoindentation

Kriechverformung von Polymeren mittels Nanoindentation

Mehr erfahren

KRIECHVERFORMUNG

VON POLYMEREN MITTELS NANOINDENTATION

Vorbereitet von

DUANJIE LIPhD

EINFÜHRUNG

Als viskoelastische Werkstoffe verformen sich Polymere unter einer bestimmten Belastung häufig zeitabhängig, was auch als Kriechen bezeichnet wird. Das Kriechen wird zu einem kritischen Faktor, wenn die Polymerteile für eine Dauerbelastung ausgelegt sind, wie z. B. bei Strukturbauteilen, Verbindungen und Armaturen sowie hydrostatischen Druckbehältern.

BEDEUTUNG DER KRIECHMESSUNG FÜR POLYMERS

Die inhärente Natur der Viskoelastizität spielt eine entscheidende Rolle für die Leistung von Polymeren und beeinflusst direkt deren Betriebszuverlässigkeit. Die Umgebungsbedingungen wie Belastung und Temperatur beeinflussen das Kriechverhalten der Polymere. Kriechausfälle treten häufig auf, weil das zeitabhängige Kriechverhalten der verwendeten Polymermaterialien unter bestimmten Betriebsbedingungen nicht berücksichtigt wird. Daher ist es wichtig, einen zuverlässigen und quantitativen Test des viskoelastischen mechanischen Verhaltens der Polymere zu entwickeln. Das Nano-Modul der NANOVEA Mechanische Prüfgeräte bringt die Last mit einem hochpräzisen Piezo auf und misst die Kraft- und Wegentwicklung direkt vor Ort. Die Kombination aus Genauigkeit und Wiederholbarkeit macht es zu einem idealen Werkzeug für die Kriechmessung.

MESSZIEL

In dieser Anwendung haben wir gezeigt, dass
der mechanische Tester NANOVEA PB1000
In Nanoindentation Der Modus ist ein ideales Werkzeug
zur Untersuchung viskoelastischer mechanischer Eigenschaften
einschließlich Härte, Elastizitätsmodul
und Kriechen von polymeren Werkstoffen.

NANOVEA

PB1000

TESTBEDINGUNGEN

Acht verschiedene Polymerproben wurden mittels Nanoindentationstechnik mit dem NANOVEA PB1000 Mechanikprüfgerät getestet. Da die Belastung linear von 0 bis 40 mN anstieg, nahm die Tiefe während der Belastungsphase progressiv zu. Das Kriechen wurde dann anhand der Veränderung der Eindringtiefe bei der maximalen Belastung von 40 mN für 30 s gemessen.

MAXIMALE BELASTUNG 40 mN
LADUNGSVERFAHREN
80 mN/min
ENTLADUNGSRATE 80 mN/min
KREUZZEIT
30 s

INDENTER-TYP

Berkovich

Diamant

*Aufbau des Nanoindentationstests

ERGEBNISSE & DISKUSSION

ABBILDUNG 1 zeigt das Kraft-Weg-Diagramm der Nanoindentationstests an verschiedenen Polymerproben und ABBILDUNG 2 vergleicht die Kriechkurven. Die Härte und der Elastizitätsmodul sind in ABBILDUNG 3 zusammengefasst, und die Kriechtiefe ist in ABBILDUNG 4 dargestellt. In ABBILDUNG 1 stellen die Abschnitte AB, BC und CD der Last-Verschiebungskurve für die Nanoindentationsmessung die Belastungs-, Kriech- bzw. Entlastungsprozesse dar.

Delrin und PVC weisen mit 0,23 bzw. 0,22 GPa die höchste Härte auf, während LDPE mit 0,026 GPa die geringste Härte unter den getesteten Polymeren besitzt. Im Allgemeinen weisen die härteren Polymere geringere Kriechraten auf. Das weichste LDPE hat die höchste Kriechtiefe von 798 nm, verglichen mit ~120 nm bei Delrin.

Die Kriecheigenschaften der Polymere sind entscheidend, wenn sie in Bauteilen verwendet werden. Durch die genaue Messung der Härte und des Kriechens der Polymere kann ein besseres Verständnis für die zeitabhängige Zuverlässigkeit der Polymere gewonnen werden. Das Kriechen, d.h. die Änderung der Auslenkung bei einer bestimmten Belastung, kann mit dem NANOVEA PB1000-Mechanik-Tester auch bei unterschiedlichen Temperaturen und Luftfeuchtigkeiten gemessen werden, was ein ideales Werkzeug zur quantitativen und zuverlässigen Messung des viskoelastischen mechanischen Verhaltens von Polymeren darstellt.
in der simulierten realistischen Anwendungsumgebung.

ABBILDUNG 1: Die Diagramme von Last und Verschiebung
verschiedener Polymere.

ABBILDUNG 2: Kriechen bei einer maximalen Belastung von 40 mN für 30 s.

ABBILDUNG 3: Härte und Elastizitätsmodul der Polymere.

ABBILDUNG 4: Kriechtiefe der Polymere.

SCHLUSSFOLGERUNG

In dieser Studie haben wir gezeigt, dass der NANOVEA PB1000
Mechanische Prüfgeräte messen die mechanischen Eigenschaften verschiedener Polymere, einschließlich Härte, Elastizitätsmodul und Kriechverhalten. Diese mechanischen Eigenschaften sind entscheidend für die Auswahl des richtigen Polymermaterials für die beabsichtigten Anwendungen. Derlin und PVC weisen mit 0,23 bzw. 0,22 GPa die höchste Härte auf, während LDPE mit 0,026 GPa die niedrigste Härte unter den getesteten Polymeren besitzt. Im Allgemeinen weisen die härteren Polymere geringere Kriechraten auf. Das weichste LDPE weist die höchste Kriechtiefe von 798 nm auf, verglichen mit ~120 nm bei Derlin.

Die mechanischen Prüfgeräte von NANOVEA bieten unübertroffene Multifunktions-Nano- und -Mikro-Module auf einer einzigen Plattform. Sowohl das Nano- als auch das Mikromodul verfügen über die Modi Kratz-, Härte- und Verschleißprüfung und bieten damit die umfangreichste und benutzerfreundlichste Palette an Prüfmöglichkeiten, die auf einem einzigen System verfügbar ist.

Mehrphasiges Material mittels Nanoindentation NANOVEA

Mehrphasige Metall-Nanoindentation

Metallurgiestudie von mehrphasigen Materialien mittels Nanoindentation

Mehr erfahren

METALLURGIE-STUDIE
EINES MEHRPHASIGEN MATERIALS

MIT NANOINDENTATION

Vorbereitet von

DUANJIE LIPhD & ALEXIS CELESTIN

EINFÜHRUNG

Die Metallurgie befasst sich mit dem physikalischen und chemischen Verhalten von Metallelementen sowie deren intermetallischen Verbindungen und Legierungen. Metalle, die Bearbeitungsprozessen wie Gießen, Schmieden, Walzen, Strangpressen und Zerspanen unterzogen werden, verändern ihre Phasen, ihr Mikrogefüge und ihre Textur. Diese Veränderungen führen zu unterschiedlichen physikalischen Eigenschaften wie Härte, Festigkeit, Zähigkeit, Duktilität und Verschleißfestigkeit des Werkstoffs. Die Metallographie wird häufig angewandt, um den Entstehungsmechanismus dieser spezifischen Phasen, des Gefüges und der Textur zu untersuchen.

BEDEUTUNG DER LOKALEN MECHANISCHEN EIGENSCHAFTEN EIGENSCHAFTEN FÜR DAS DESIGN VON MATERIALIEN

Fortschrittliche Materialien verfügen häufig über mehrere Phasen in einer speziellen Mikrostruktur und Textur, um die gewünschten mechanischen Eigenschaften für Zielanwendungen in der industriellen Praxis zu erreichen. Nanoindentation wird häufig zur Messung des mechanischen Verhaltens von Materialien in kleinen Maßstäben eingesetzt i ii. Es ist jedoch schwierig und zeitaufwändig, bestimmte Stellen für die Eindrückung auf einer sehr kleinen Fläche genau auszuwählen. Ein zuverlässiges und benutzerfreundliches Verfahren der Nanoindentationsprüfung ist gefragt, um die mechanischen Eigenschaften verschiedener Phasen eines Werkstoffs mit hoher Präzision und zeitnahen Messungen zu bestimmen.

MESSZIEL

In dieser Anwendung messen wir die mechanischen Eigenschaften einer mehrphasigen metallurgischen Probe mit dem leistungsstärksten mechanischen Prüfgerät: dem NANOVEA PB1000.

Hier zeigen wir die Leistungsfähigkeit des PB1000 bei der Durchführung von Nanoindentationsmessungen an mehreren Phasen (Körnern) einer großen Probenoberfläche mit hoher Präzision und Benutzerfreundlichkeit unter Verwendung unseres Advanced Position Controllers.

NANOVEA

PB1000

TESTBEDINGUNGEN

In dieser Studie verwenden wir eine metallurgische Probe mit mehreren Phasen. Die Probe wurde vor den Eindringtests auf eine spiegelglatte Oberfläche poliert. In der Probe wurden vier Phasen identifiziert, nämlich PHASE 1, PHASE 2, PHASE 3 und PHASE 4 (siehe unten).

Der Advanced Stage Controller ist ein intuitives Werkzeug zur Probennavigation, das die Geschwindigkeit der Probenbewegung unter dem Lichtmikroskop automatisch an die Position der Maus anpasst. Je weiter die Maus von der Mitte des Sichtfelds entfernt ist, desto schneller bewegt sich der Objekttisch in Richtung der Maus. Dies ist eine benutzerfreundliche Methode, um durch die gesamte Probenoberfläche zu navigieren und die gewünschte Stelle für die mechanische Prüfung auszuwählen. Die Koordinaten der Prüfstellen werden gespeichert und nummeriert, zusammen mit ihren individuellen Prüfeinstellungen, wie z. B. Belastungen, Be-/Entlastungsrate, Anzahl der Prüfungen in einer Karte usw. Ein solches Prüfverfahren ermöglicht es dem Benutzer, eine große Probenoberfläche auf bestimmte Bereiche zu untersuchen, die für die Eindringprüfung von Interesse sind, und alle Eindringprüfungen an verschiedenen Stellen in einem Durchgang durchzuführen, was es zu einem idealen Werkzeug für die mechanische Prüfung von metallurgischen Proben mit mehreren Phasen macht.

In dieser Studie haben wir die spezifischen Phasen der Probe unter dem Lichtmikroskop in der NANOVEA Mechanisches Prüfgerät gemäß Nummerierung auf ABBILDUNG 1. Die Koordinaten der ausgewählten Stellen werden gespeichert, und anschließend werden automatische Nanoindentationstests unter den nachstehend zusammengefassten Testbedingungen auf einmal durchgeführt

ABBILDUNG 1: AUSWAHL DER NANOINDENTATIONSSTELLE AUF DER PROBENOBERFLÄCHE.
ERGEBNISSE: NANOINDENTATIONEN AN VERSCHIEDENEN PHASEN

Die Eindrücke in den verschiedenen Phasen der Probe sind unten dargestellt. Wir zeigen, dass die ausgezeichnete Positionskontrolle des Probentischs im NANOVEA Mechanischer Tester ermöglicht es Benutzern, den Zielort für die Prüfung mechanischer Eigenschaften genau zu bestimmen.

Die repräsentativen Kraft-Weg-Kurven der Vertiefungen sind dargestellt in ABBILDUNG 2und die entsprechende Härte und der Elastizitätsmodul berechnet nach der Methode von Oliver und Pharriii sind zusammengefasst und verglichen in ABBILDUNG 3.


Die
PHASEN 1, 2, 3 und 4 weisen eine durchschnittliche Härte von ~5,4, 19,6, 16,2 bzw. 7,2 GPa auf. Die relativ geringe Größe für PHASEN 2 trägt zu seiner höheren Standardabweichung der Werte für Härte und Elastizitätsmodul bei.

ABBILDUNG 2: LAST-VERSCHIEBUNGS-KURVEN
DER NANOINDENTATIONEN

ABBILDUNG 3: HÄRTE UND ELASTIZITÄTSMODUL DER VERSCHIEDENEN PHASEN

SCHLUSSFOLGERUNG

In dieser Studie haben wir den NANOVEA Mechanical Tester vorgestellt, der mit Hilfe des Advanced Stage Controllers Nanoindentationsmessungen an mehreren Phasen einer großen metallurgischen Probe durchführt. Die präzise Positionssteuerung ermöglicht es dem Benutzer, auf einer großen Probenoberfläche einfach zu navigieren und die für die Nanoindentationsmessungen interessanten Bereiche direkt auszuwählen.

Die Ortskoordinaten aller Vertiefungen werden gespeichert und dann nacheinander ausgeführt. Ein solches Prüfverfahren macht die Messung der lokalen mechanischen Eigenschaften in kleinem Maßstab, z. B. der mehrphasigen Metallprobe in dieser Studie, wesentlich weniger zeitaufwändig und benutzerfreundlicher. Die harten PHASEN 2, 3 und 4 verbessern die mechanischen Eigenschaften der Probe und weisen eine durchschnittliche Härte von ~19,6, 16,2 bzw. 7,2 GPa auf, verglichen mit ~5,4 GPa für PHASE 1.

Die Nano-, Mikro- und Makromodule des Geräts umfassen alle ISO- und ASTM-konforme Prüfmodi für Eindring-, Kratz- und Verschleißprüfungen und bieten damit das breiteste und benutzerfreundlichste Prüfspektrum in einem einzigen System. Das unübertroffene Angebot von NANOVEA ist eine ideale Lösung für die Bestimmung des gesamten Spektrums mechanischer Eigenschaften von dünnen oder dicken, weichen oder harten Beschichtungen, Filmen und Substraten, einschließlich Härte, Elastizitätsmodul, Bruchzähigkeit, Haftung, Verschleißfestigkeit und vielen anderen.

i Oliver, W. C.; Pharr, G. M., Journal of Materials Research, Band 19, Ausgabe 1, Januar 2004, S. 3-20
ii Schuh, C.A., Materialien heute, Band 9, Ausgabe 5, Mai 2006, S. 32-40
iii Oliver, W. C.; Pharr, G. M., Journal of Materials Research, Band 7, Ausgabe 6, Juni 1992, S. 1564-1583