USA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT US

Nano Scratch & Mar Testing von Farbe auf Metallsubstrat

Nano Scratch & Mar Testing

von Farbe auf Metallsubstrat

Vorbereitet von

SUSANA CABELLO

EINFÜHRUNG

Farbe mit oder ohne Hartauftrag ist eine der am häufigsten verwendeten Beschichtungen. Wir sehen sie auf Autos, Wänden, Geräten und praktisch überall, wo eine Schutzschicht benötigt wird oder wo sie einfach nur der Ästhetik dient. Die Farben, die den Untergrund schützen sollen, enthalten oft Chemikalien, die verhindern, dass die Farbe Feuer fängt, oder die einfach verhindern, dass sie ihre Farbe verliert oder Risse bekommt. Die für ästhetische Zwecke verwendeten Farben sind oft in verschiedenen Farben erhältlich, aber nicht unbedingt für den Schutz des Untergrunds oder für eine lange Lebensdauer gedacht.

Dennoch unterliegt jede Farbe im Laufe der Zeit einer gewissen Verwitterung. Durch die Verwitterung von Farbe können sich die vom Hersteller beabsichtigten Eigenschaften oft ändern. Sie kann schneller abplatzen, bei Hitze abblättern, ihre Farbe verlieren oder Risse bekommen. Die unterschiedlichen Eigenschaften von Farben, die sich im Laufe der Zeit verändern, sind der Grund, warum die Hersteller eine so große Auswahl anbieten. Die Farben sind auf die unterschiedlichen Anforderungen der einzelnen Kunden zugeschnitten.

BEDEUTUNG DER NANORITZPRÜFUNG FÜR DIE QUALITÄTSKONTROLLE

Ein wichtiges Anliegen der Farbenhersteller ist die Widerstandsfähigkeit ihrer Produkte gegen Rissbildung. Sobald der Lack Risse bekommt, kann er den Untergrund, auf den er aufgetragen wurde, nicht mehr schützen und stellt somit den Kunden nicht mehr zufrieden. Wenn z. B. ein Ast die Seite eines Autos streift und sofort danach der Lack abplatzt, verliert der Lackhersteller aufgrund der schlechten Qualität des Lacks sein Geschäft. Die Qualität der Farbe ist sehr wichtig, denn wenn das Metall unter der Farbe freiliegt, kann es aufgrund der neuen Exposition zu rosten oder zu korrodieren beginnen.

 

Diese Gründe gelten auch für andere Bereiche wie Haushalts- und Büroartikel, Elektronik, Spielzeug, Forschungswerkzeuge und vieles mehr. Auch wenn die Farbe beim ersten Auftragen auf Metallbeschichtungen rissbeständig ist, können sich die Eigenschaften im Laufe der Zeit ändern, wenn die Probe etwas verwittert ist. Aus diesem Grund ist es sehr wichtig, die Lackproben im bewitterten Zustand zu prüfen. Auch wenn die Rissbildung unter hoher Belastung unvermeidlich ist, muss der Hersteller vorhersagen, wie stark die Veränderungen im Laufe der Zeit ausfallen und wie tief der Riss sein muss, damit er seinen Kunden die bestmöglichen Produkte anbieten kann.

MESSZIEL

Wir müssen den Prozess des Kratzens in einer kontrollierten und überwachten Weise simulieren, um das Verhalten der Probe zu beobachten. In dieser Anwendung wird der NANOVEA PB1000 Mechanik-Tester im Nano-Scratch-Testing-Modus verwendet, um die Last zu messen, die erforderlich ist, um ein Versagen einer etwa 7 Jahre alten, 30-50 μm dicken Lackprobe auf einem Metallsubstrat zu verursachen.

Ein 2 μm großer, diamantbestückter Stift wird mit einer progressiven Kraft von 0,015 mN bis 20,00 mN verwendet, um die Beschichtung zu zerkratzen. Wir haben einen Vor- und Nachscan des Lacks mit einer Belastung von 0,2 mN durchgeführt, um den Wert für die tatsächliche Tiefe des Kratzers zu ermitteln. Die wahre Tiefe analysiert die plastische und elastische Verformung der Probe während der Prüfung, während der Post-Scan nur die plastische Verformung des Kratzers analysiert. Der Punkt, an dem die Beschichtung durch Rissbildung versagt, wird als Versagenspunkt angesehen. Wir haben die ASTMD7187 als Leitfaden für die Festlegung unserer Prüfparameter verwendet.

 

Daraus können wir schließen, dass wir eine verwitterte Probe verwendet haben und daher bei der Prüfung einer Farbprobe in ihrem schwächeren Stadium weniger Fehlerpunkte auftraten.

 

An dieser Probe wurden fünf Tests durchgeführt, um

die genauen versagenskritischen Lasten zu bestimmen.

NANOVEA

PB1000

PRÜFPARAMETER

unter ASTM D7027

Die Oberfläche eines Rauheitsnormals wurde mit einem NANOVEA ST400 abgetastet, der mit einem Hochgeschwindigkeitssensor ausgestattet ist, der eine helle Linie mit 192 Punkten erzeugt, wie in ABBILDUNG 1 dargestellt. Diese 192 Punkte tasten die Probenoberfläche gleichzeitig ab, was zu einer deutlich höheren Abtastgeschwindigkeit führt.

LADUNGSTYP Progressiv
ANFANGSLADUNG 0,015 mN
ENDLADUNG 20 mN
LADUNGSVERFAHREN 20 mN/min
SCRATCH LENGTH 1,6 mm
KREUZGESCHWINDIGKEIT, dx/dt 1.601 mm/min
PRE-SCAN LADEN 0,2 mN
POST-SCAN LADEN 0,2 mN
Konischer Eindringkörper 90° Konus 2 µm Spitzenradius

Eindringkörpertyp

Konisch

Diamant 90° Kegel

2 µm Spitzenradius

Konischer Eindringkörper Diamant 90° Kegel 2 µm Spitzenradius

ERGEBNISSE

In diesem Abschnitt werden die während des Scratch-Tests gesammelten Daten zu den Ausfällen vorgestellt. Der erste Abschnitt beschreibt die im Kratzversuch beobachteten Ausfälle und definiert die gemeldeten kritischen Belastungen. Der nächste Teil enthält eine zusammenfassende Tabelle mit den kritischen Belastungen für alle Proben und eine grafische Darstellung. Der letzte Teil enthält die detaillierten Ergebnisse für jede Probe: die kritischen Lasten für jeden Kratzer, die Mikrofotografien jedes Versagens und die Grafik des Tests.

BEOBACHTETE AUSFÄLLE UND DEFINITION DER KRITISCHEN LASTEN

KRITISCHES VERSAGEN:

ANFANGSSCHADEN

Dies ist der erste Punkt, an dem der Schaden entlang der Kratzspur beobachtet wird.

Nanokratzer kritisches Versagen Anfangsschaden

KRITISCHES VERSAGEN:

VOLLSTÄNDIGER SCHADEN

An diesem Punkt ist der Schaden größer, da der Lack entlang der Kratzspur abplatzt und Risse aufweist.

Nanokratzer kritisches Versagen vollständige Beschädigung

DETAILLIERTE ERGEBNISSE

* Versagenswerte an der Stelle, an der das Substrat reißt.

KRITISCHE LASTEN
SCRATCH ANFANGSSCHADEN [mN] VOLLSTÄNDIGE SCHÄDIGUNG [µm]
1 14.513 4.932
2 3.895 4.838
3 3.917 4.930
DURCHSCHNITT 3.988 4.900
STD DEV 0.143 0.054
Mikroskopische Aufnahme eines vollständigen Kratzers aus einem Nanokratztest (1000-fache Vergrößerung).

ABBILDUNG 2: Mikroskopische Aufnahme eines vollständigen Kratzers (1000-fache Vergrößerung).

Mikroskopische Aufnahme der anfänglichen Beschädigung durch den Nanokratztest (1000-fache Vergrößerung)

ABBILDUNG 3: Mikroskopische Aufnahme der ursprünglichen Beschädigung (1000-fache Vergrößerung).

Mikroskopische Aufnahme der vollständigen Beschädigung durch den Nanokratztest (1000-fache Vergrößerung).

ABBILDUNG 4: Mikroskopische Aufnahme der vollständigen Beschädigung (1000-fache Vergrößerung).

Linearer Nano-Kratztest Reibungskraft und Reibungskoeffizient

ABBILDUNG 5: Reibungskraft und Reibungskoeffizient.

Linearer Nanokratzer Oberflächenprofil

ABBILDUNG 6: Oberflächenprofil.

Linearer Nano-Kratztest Echte Tiefe und Resttiefe

ABBILDUNG 7: Wahre Tiefe und Resttiefe.

SCHLUSSFOLGERUNG

Die NANOVEA Mechanischer Tester im Nano-Kratzer-Tester Modus ermöglicht die Simulation vieler realer Fehlfunktionen von Farb- und Hartbeschichtungen. Durch die kontrollierte und genau überwachte Aufbringung zunehmender Lasten lässt sich mit dem Gerät feststellen, bei welcher Belastung Ausfälle auftreten. Dies kann dann zur Bestimmung quantitativer Werte für die Kratzfestigkeit genutzt werden. Bei der getesteten Beschichtung ohne Bewitterung ist bekannt, dass der erste Riss bei etwa 22 mN auftritt. Bei Werten, die näher bei 5 mN liegen, ist es klar, dass die 7-jährige Überlappung den Lack verschlechtert hat.

Die Kompensation des ursprünglichen Profils ermöglicht die Ermittlung der korrigierten Tiefe während des Ritzens und die Messung der Resttiefe nach dem Ritzen. Dies gibt zusätzliche Informationen über das plastische bzw. elastische Verhalten der Beschichtung bei zunehmender Belastung. Sowohl die Rissbildung als auch die Informationen über die Verformung können von großem Nutzen für die Verbesserung der Hartstoffschicht sein. Die sehr geringen Standardabweichungen zeigen auch die Reproduzierbarkeit der Gerätetechnik, die den Herstellern helfen kann, die Qualität ihrer Hartstoffbeschichtung/Lackierung zu verbessern und Bewitterungseffekte zu untersuchen.

UND NUN ZU IHRER BEWERBUNG

Kommentar