EUA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
FALE CONOSCO

Teste de Arranhão do revestimento de Nitreto de Titânio

TESTE DE ARRANHÃO DO REVESTIMENTO DE NITRETO DE TITÂNIO

INSPEÇÃO DE CONTROLE DE QUALIDADE

Preparado por

DUANJIE LI, PhD

INTRODUÇÃO

A combinação de alta dureza, excelente resistência ao desgaste, resistência à corrosão e inércia faz do nitreto de titânio (TiN) um revestimento de proteção ideal para componentes metálicos em várias indústrias. Por exemplo, a retenção das bordas e a resistência à corrosão de um revestimento de TiN pode aumentar substancialmente a eficiência do trabalho e prolongar a vida útil de máquinas-ferramentas como lâminas de barbear, cortadores de metal, moldes de injeção e serras. Sua alta dureza, inércia e não-toxicidade fazem do TiN um grande candidato para aplicações em dispositivos médicos, incluindo implantes e instrumentos cirúrgicos.

IMPORTÂNCIA DO TESTE DE ARRANHÃO EM REVESTIMENTO TiN

A tensão residual nos revestimentos de proteção PVD/CVD desempenha um papel crítico no desempenho e na integridade mecânica do componente revestido. A tensão residual deriva de várias fontes principais, incluindo tensão de crescimento, gradientes térmicos, restrições geométricas e tensão de serviço¹. O descasamento da expansão térmica entre o revestimento e o substrato criado durante a deposição do revestimento a temperaturas elevadas leva a altas tensões térmicas residuais. Além disso, ferramentas revestidas de TiN são freqüentemente utilizadas sob tensões muito elevadas de concentração, por exemplo, brocas e mancais de perfuração. É fundamental para desenvolver um processo de controle de qualidade confiável para inspecionar quantitativamente a resistência coesiva e adesiva dos revestimentos funcionais de proteção.

[1] V. Teixeira, Vácuo 64 (2002) 393-399.

OBJETIVO DA MEDIÇÃO

Neste estudo, mostramos que o NANOVEA Testadores Mecânicos no modo Scratch são ideais para avaliar a resistência coesiva/adesiva de revestimentos protetores de TiN de maneira controlada e quantitativa.

NANOVEA

PB1000

CONDIÇÕES DE TESTE

O testador mecânico NANOVEA PB1000 foi usado para realizar o revestimento testes de raspagem em três revestimentos de TiN usando os mesmos parâmetros de teste, conforme resumido abaixo:

MODELO DE CARREGAMENTO: Progressivo Linear

CARGA INICIAL

0.02 N

CARGA FINAL

10 N

TAXA DE CARREGAMENTO

20 N/min

COMPRIMENTO DE SCRATCH

5 mm

TIPO INDENTER

Sphero-Conical

Diamante, 20 μm raio

RESULTADOS & DISCUSSÃO

O FIGURA 1 mostra a evolução registrada da profundidade de penetração, coeficiente de atrito (COF) e emissão acústica durante o teste. As faixas completas de microarranhoes nas amostras de TiN são mostradas na FIGURA 2. O comportamento de falha em diferentes cargas críticas são mostrados no FIGURA 3, onde a carga crítica Lc1 é definida como a carga na qual o primeiro sinal de rachadura coesiva ocorre na pista do arranhão, Lc2 é a carga após a qual ocorrem repetidas falhas de espalação, e Lc3 é a carga na qual o revestimento é completamente removido do substrato. Os valores de carga crítica (Lc) para os revestimentos de TiN estão resumidos na FIGURA 4.

A evolução da profundidade de penetração, do COF e da emissão acústica proporciona uma visão do mecanismo de falha do revestimento em diferentes estágios, que são representados pelas cargas críticas neste estudo. Pode-se observar que a amostra A e a amostra B exibem comportamento comparável durante o teste de arranhão. A ponta penetra progressivamente na amostra até uma profundidade de ~0,06 mm e o COF aumenta gradualmente até ~0,3 à medida que a carga normal aumenta linearmente no início do teste de arranhão do revestimento. Quando a Lc1 de ~3,3 N é atingida, ocorre o primeiro sinal de falha de arranhão. Isto também se reflete nos primeiros grandes picos no gráfico de profundidade de penetração, COF e emissão acústica. Como a carga continua a aumentar para Lc2 de ~3,8 N, ocorre uma maior flutuação da profundidade de penetração, COF e emissão acústica. Podemos observar falhas contínuas de espalação presentes em ambos os lados da pista do arranhão. Na Lc3, o revestimento delamina completamente do substrato metálico sob a alta pressão aplicada pelo estilete, deixando o substrato exposto e desprotegido.

Em comparação, a amostra C apresenta cargas críticas mais baixas em diferentes estágios dos testes de risco do revestimento, o que também se reflete na evolução da profundidade de penetração, coeficiente de atrito (COF) e emissão acústica durante o teste de risco do revestimento. A amostra C possui uma camada intermediária de aderência com menor dureza e maior tensão na interface entre o revestimento TiN superior e o substrato metálico em comparação com a amostra A e a amostra B.

Este estudo demonstra a importância do suporte adequado do substrato e da arquitetura de revestimento para a qualidade do sistema de revestimento. Uma camada intermediária mais forte pode resistir melhor à deformação sob uma alta carga externa e tensão de concentração, e assim aumentar a resistência coesiva e adesiva do sistema de revestimento/substrato.

FIGURA 1: Evolução da profundidade de penetração, COF e emissão acústica das amostras de TiN.

FIGURA 2: Arranhão completo dos revestimentos TiN após os testes.

FIGURA 3: Falhas no revestimento TiN sob diferentes cargas críticas, Lc.

FIGURA 4: Resumo dos valores de carga crítica (Lc) para os revestimentos de TiN.

CONCLUSÃO

Neste estudo, mostramos que o Testador Mecânico NANOVEA PB1000 realiza testes de risco confiáveis e precisos em amostras revestidas de TiN de forma controlada e monitorada de perto. As medições de arranhões permitem aos usuários identificar rapidamente a carga crítica na qual ocorrem as típicas falhas no revestimento coesivo e adesivo. Nossos instrumentos são ferramentas de controle de qualidade superior que podem inspecionar e comparar quantitativamente a qualidade intrínseca de um revestimento e a integridade interfacial de um sistema de revestimento/substrato. Um revestimento com uma camada intermediária adequada pode resistir a grandes deformações sob uma elevada carga externa e tensão de concentração, e aumentar a resistência coesiva e adesiva de um sistema de revestimento/substrato.

Os módulos Nano e Micro de um Testador Mecânico NANOVEA incluem todos os modos de indentação, teste de arranhões e desgaste em conformidade com a ISO e ASTM, fornecendo a gama de testes mais ampla e mais fácil de usar disponível em um único sistema. A gama inigualável do NANOVEA é uma solução ideal para determinar a gama completa de propriedades mecânicas de revestimentos finos ou grossos, macios ou duros, filmes e substratos, incluindo dureza, módulo Young, resistência à fratura, aderência, resistência ao desgaste e muitos outros.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Análise de Fractografia usando a Perfilometria 3D

ANÁLISE DA FRACTOGRAFIA

USANDO A PROFILOMETRIA 3D

Preparado por

CRAIG LEISING

INTRODUÇÃO

A fractografia é o estudo de características em superfícies fraturadas e tem sido historicamente investigada via microscópio ou SEM. Dependendo do tamanho do recurso, um microscópio (recursos macro) ou SEM (recursos nano e micro) são selecionados para a análise de superfície. Em última análise, ambos permitem a identificação do tipo de mecanismo de fratura. Embora eficaz, o microscópio tem limitações claras e o SEM na maioria dos casos, além da análise em nível atômico, é impraticável para medição de superfície de fratura e carece de capacidade de uso mais ampla. Com os avanços na tecnologia de medição óptica, o NANOVEA Perfilômetro 3D sem contato é agora considerado o instrumento de escolha, com sua capacidade de fornecer nanometria por meio de medições de superfície 2D e 3D em macroescala

IMPORTÂNCIA DO PROFILÔMETRO 3D SEM CONTATO PARA A INSPEÇÃO DE FRATURAS

Ao contrário de um SEM, um Perfilômetro 3D sem contato pode medir quase qualquer superfície, tamanho de amostra, com o mínimo de preparação de amostra, tudo isso enquanto oferece dimensões verticais/horizontais superiores às de um SEM. Com um perfilador, as características de nano através de macro range são capturadas em uma única medição com influência zero da refletividade da amostra. Mede facilmente qualquer material: transparente, opaco, especular, difusivo, polido, rugoso, etc. O Profilômetro 3D sem contato oferece uma ampla e amigável capacidade para maximizar os estudos de fratura superficial a uma fração do custo de um SEM.

OBJETIVO DA MEDIÇÃO

Nesta aplicação, o NANOVEA ST400 é utilizado para medir a superfície fraturada de uma amostra de aço. Neste estudo, mostraremos uma área 3D, extração do perfil 2D e mapa direcional da superfície.

NANOVEA

ST400

RESULTADOS

SUPERFÍCIE TOP SUPERFÍCIE

Direção da textura da superfície 3D

Isotropia51.26%
Primeira Direção123.2º
Segunda Direção116.3º
Terceira direção0.1725º

Área de superfície, volume, rugosidade e muitos outros podem ser calculados automaticamente a partir desta extração.

Extração de perfil 2D

RESULTADOS

SUPERFÍCIE LATERAL

Direção da textura da superfície 3D

Isotropia15.55%
Primeira Direção0.1617º
Segunda Direção110.5º
Terceira direção171.5º

Área de superfície, volume, rugosidade e muitos outros podem ser calculados automaticamente a partir desta extração.

Extração de perfil 2D

CONCLUSÃO

Nesta aplicação, mostramos como o NANOVEA ST400 3D Non-Contact Profilometer pode caracterizar com precisão a topografia completa (nano, micro e macro características) de uma superfície fraturada. Da área 3D, a superfície pode ser claramente identificada e sub-áreas ou perfis/seções transversais podem ser rapidamente extraídas e analisadas com uma lista interminável de cálculos de superfície. As características da superfície sub nanométrica podem ser analisadas com um módulo AFM integrado.

Além disso, a NANOVEA incluiu uma versão portátil em sua linha de Perfisômetros, especialmente crítica para estudos de campo onde uma superfície de fratura é imóvel. Com esta ampla lista de capacidades de medição de superfície, a análise da superfície de fratura nunca foi tão fácil e mais conveniente com um único instrumento.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Topografia de superfície de fibra de vidro usando perfilometria 3D

TOPOGRAFIA DE SUPERFÍCIE EM FIBRA DE VIDRO

USANDO A PROFILOMETRIA 3D

Preparado por

CRAIG LEISING

INTRODUÇÃO

A fibra de vidro é um material feito de fibras de vidro extremamente finas. É usado como um agente de reforço para muitos produtos de polímero; o material composto resultante, propriamente conhecido como polímero reforçado com fibra de vidro (PRFV) ou plástico reforçado com fibra de vidro (PRG), é chamado de "fibra de vidro" no uso popular.

IMPORTÂNCIA DA INSPEÇÃO METROLÓGICA DE SUPERFÍCIE PARA O CONTROLE DE QUALIDADE

Embora existam muitos usos para o reforço de fibra de vidro, na maioria das aplicações é crucial que eles sejam tão fortes quanto possível. Os compósitos de fibra de vidro têm uma das maiores relações de resistência a peso disponíveis e em alguns casos, libra por libra é mais forte do que o aço. Além da alta resistência, também é importante ter a menor área de superfície exposta possível. Grandes superfícies de fibra de vidro podem tornar a estrutura mais vulnerável ao ataque químico e possivelmente à expansão do material. Portanto, a inspeção de superfície é fundamental para o controle de qualidade da produção.

OBJETIVO DA MEDIÇÃO

Nesta aplicação, o NANOVEA ST400 é usado para medir uma superfície composta de fibra de vidro para rugosidade e planicidade. Ao quantificar estas características de superfície é possível criar ou otimizar um material composto de fibra de vidro mais forte e mais duradouro.

NANOVEA

ST400

PARÂMETROS DE MEDIÇÃO

PROBE 1 mm
TAXA DE AQUISIÇÃO300 Hz
AVALIAÇÃO1
SUPERFÍCIE MEDIDA5 mm x 2 mm
TAMANHO DE PASSO5 µm x 5 µm
MODELO DE SCANNINGVelocidade constante

ESPECIFICAÇÕES DA SONDA

MEDIÇÃO RANGE1 mm
RESOLUÇÃO Z 25 nm
Z ACCURACIA200 nm
RESOLUÇÃO LATERAL 2 μm

RESULTADOS

FALSA VISÃO COLORIDA

Superfície plana em 3D

Rugosidade da superfície 3D

Sa15.716 μmAltura média aritmética
Sq19.905 μmAltura Média Quadrada da Raiz
Sp116,74 μmAltura máxima de pico
Sv136,09 μmAltura máxima do poço
Sz252,83 μmAltura máxima
Ssk0.556Skewness
Ssu3.654Curtose

CONCLUSÃO

Conforme mostrado nos resultados, o NANOVEA ST400 Optical analisador foi capaz de medir com precisão a rugosidade e planicidade da superfície do compósito de fibra de vidro. Os dados podem ser medidos em vários lotes de compósitos de fibra e/ou em um determinado período de tempo para fornecer informações cruciais sobre diferentes processos de fabricação de fibra de vidro e como eles reagem ao longo do tempo. Assim, o ST400 é uma opção viável para fortalecer o processo de controle de qualidade de materiais compósitos de fibra de vidro.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO