EUA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
FALE CONOSCO

Avaliação de Riscos e Desgaste de Revestimentos Industriais

REVESTIMENTO INDUSTRIAL

AVALIAÇÃO DE ARRANHÕES E DESGASTE USANDO UM TRIBÔMETRO

Preparado por

DUANJIE LI, PhD & ANDREA HERRMANN

INTRODUÇÃO

A tinta acrílica uretânica é um tipo de revestimento de proteção de secagem rápida amplamente utilizado em uma variedade de aplicações industriais, como pintura de piso, pintura automotiva e outras. Quando usada como tinta de piso, pode servir áreas com tráfego intenso de pés e rodas de borracha, tais como passarelas, calçadas e estacionamentos.

IMPORTÂNCIA DOS TESTES DE ARRANHÕES E DESGASTE PARA O CONTROLE DE QUALIDADE

Tradicionalmente, eram realizados testes de abrasão Taber para avaliar a resistência ao desgaste da tinta acrílica uretânica para piso de acordo com a norma ASTM D4060. Entretanto, como mencionado na norma, "Para alguns materiais, os testes de abrasão utilizando o Abraser Taber podem estar sujeitos a variações devido a mudanças nas características abrasivas do rebolo durante os testes "1. Isto pode resultar em má reprodutibilidade dos resultados dos testes e criar dificuldade na comparação dos valores relatados por diferentes laboratórios. Além disso, nos testes de abrasão Taber, a resistência à abrasão é calculada como perda de peso em um número especificado de ciclos de abrasão. Entretanto, as tintas acrílicas de uretano para piso têm uma espessura de película seca recomendada de 37,5-50 μm2.

O processo de abrasão agressivo da Taber Abraser pode desgastar rapidamente o revestimento de uretano acrílico e gerar perda de massa para o substrato, levando a erros substanciais no cálculo da perda de peso da tinta. O implante de partículas abrasivas na tinta durante o teste de abrasão também contribui para os erros. Portanto, uma medição bem controlada, quantificável e confiável é fundamental para garantir uma avaliação reprodutível do desgaste da tinta. Além disso, a teste de raspagem permite que os usuários detectem falhas prematuras de adesivos/coesivos em aplicações reais.

OBJETIVO DA MEDIÇÃO

Neste estudo, mostramos que NANOVEA Tribômetros e Testadores Mecânicos são ideais para avaliação e controle de qualidade de revestimentos industriais.

O processo de desgaste das tintas acrílicas de uretano para pisos com diferentes camadas de acabamento é simulado de forma controlada e monitorada usando o Tribômetro NANOVEA. O teste de micro-risco é usado para medir a carga necessária para causar falha coesiva ou adesiva na tinta.

NANOVEA T100

O Tribômetro Pneumático Compacto

NANOVEA PB1000

O Testador Mecânico de Grandes Plataformas

PROCEDIMENTO DE TESTE

Este estudo avalia quatro revestimentos de piso acrílico à base de água disponíveis comercialmente que têm o mesmo primário (camada de base) e diferentes camadas de acabamento da mesma fórmula com uma pequena alternância nas misturas de aditivos com o objetivo de aumentar a durabilidade. Estes quatro revestimentos são identificados como amostras A, B, C e D.

TESTE DE GUERRA

O Tribômetro NANOVEA foi aplicado para avaliar o comportamento tribológico, por exemplo, coeficiente de atrito, COF e resistência ao desgaste. Uma ponta esférica SS440 (6 mm de diâmetro, Grau 100) foi aplicada contra as tintas testadas. O COF foi registrado in situ. A taxa de desgaste, K, foi avaliada usando a fórmula K=V/(F×s)=A/(F×n), onde V é o volume desgastado, F é a carga normal, s é a distância de deslizamento, A é a área da seção transversal da trilha de desgaste e n é o número de revoluções. A rugosidade superficial e os perfis de desgaste foram avaliados pelo NANOVEA Perfilômetro Óptico, e a morfologia da trilha de desgaste foi examinada usando microscópio óptico.

PARÂMETROS DE TESTE DE DESGASTE

FORÇA NORMAL

20 N

SPEED

15 m/min

DURAÇÃO DO TESTE

100, 150, 300 e 800 ciclos

TESTE DE SCRATCH

O Testador Mecânico NANOVEA equipado com uma ponta de diamante Rockwell C (raio de 200 μm) foi usado para realizar testes progressivos de risco de carga nas amostras de tinta usando o Modo Testador de Micro-Risco. Duas cargas finais foram usadas: 5 N de carga final para investigar a delaminação da tinta a partir do primer, e 35 N para investigar a delaminação do primer a partir dos substratos metálicos. Três testes foram repetidos nas mesmas condições de teste em cada amostra para garantir a reprodutibilidade dos resultados.

Imagens panorâmicas de todo o comprimento dos arranhões foram geradas automaticamente e suas localizações críticas de falha foram correlacionadas com as cargas aplicadas pelo software do sistema. Esta característica do software facilita aos usuários realizar análises nos rastros de risco a qualquer momento, em vez de ter que determinar a carga crítica sob o microscópio imediatamente após os testes de risco.

PARÂMETROS DE TESTE DE ARRANHÕES

TIPO CARREGADOProgressivo
CARGA INICIAL0,01 mN
CARGA FINAL5 N / 35 N
TAXA DE CARREGAMENTO10 / 70 N/min
COMPRIMENTO DE SCRATCH3 mm
VELOCIDADE DE REPRESENTAÇÃO, dx/dt6,0 mm/min
GEOMETRIA INDENTER120º cone
MATERIAL INDENTERIAL (dica)Diamante
RAIO DA PONTA INDENTADA200 μm

RESULTADOS DO TESTE DE DESGASTE

Quatro testes de desgaste pino-a-disco em diferentes números de rotações (100, 150, 300 e 800 ciclos) foram realizados em cada amostra, a fim de monitorar a evolução do desgaste. A morfologia da superfície das amostras foi medida com um Profiler NANOVEA 3D sem contato para quantificar a rugosidade da superfície antes da realização dos testes de desgaste. Todas as amostras tinham uma rugosidade de superfície comparável de aproximadamente 1 μm, como mostrado na FIGURA 1. O COF foi registrado in situ durante os testes de desgaste, como mostrado na FIGURA 2. O FIGURA 4 apresenta a evolução das pistas de desgaste após 100, 150, 300 e 800 ciclos, e o FIGURA 3 resumiu a taxa média de desgaste de diferentes amostras em diferentes estágios do processo de desgaste.

 

Em comparação com um valor COF de ~0,07 para as outras três amostras, a Amostra A exibe um COF muito mais alto de ~0,15 no início, que aumenta gradualmente e se estabiliza em ~0,3 após 300 ciclos de desgaste. Um COF tão alto acelera o processo de desgaste e cria uma quantidade substancial de resíduos de tinta como indicado na FIGURA 4 - a camada superior da Amostra A começou a ser removida nas primeiras 100 revoluções. Como mostrado na FIGURA 3, a amostra A apresenta a maior taxa de desgaste de ~5 μm2/N nos primeiros 300 ciclos, que diminui ligeiramente para ~3,5 μm2/N devido à melhor resistência ao desgaste do substrato metálico. A camada superior da Amostra C começa a falhar após 150 ciclos de desgaste, como mostrado na FIGURA 4, o que também é indicado pelo aumento de COF na FIGURA 2.

 

Em comparação, a amostra B e a amostra D mostram propriedades tribológicas aprimoradas. A Amostra B mantém um COF baixo durante todo o teste - o COF aumenta ligeiramente de~0,05 para ~0,1. Tal efeito lubrificante aumenta substancialmente sua resistência ao desgaste - a camada superior ainda proporciona proteção superior ao primer por baixo, após 800 ciclos de desgaste. A menor taxa média de desgaste de apenas ~0,77 μm2/N é medida para a Amostra B a 800 ciclos. A camada superior da Amostra D começa a delaminar após 375 ciclos, como refletido pelo aumento abrupto do COF na FIGURA 2. A taxa média de desgaste da Amostra D é de ~1,1 μm2/N a 800 ciclos.

 

Em comparação com as medidas convencionais de abrasão Taber, o Tribômetro NANOVEA fornece avaliações de desgaste quantificáveis e confiáveis bem controladas que garantem avaliações reprodutíveis e controle de qualidade de tintas comerciais para pisos/auto pinturas. Além disso, a capacidade de medições in situ do COF permite aos usuários correlacionar as diferentes etapas de um processo de desgaste com a evolução do COF, o que é fundamental para melhorar a compreensão fundamental do mecanismo de desgaste e das características tribológicas de vários revestimentos de tintas.

FIGURA 1: Morfologia 3D e rugosidade das amostras de tinta.

FIGURA 2: COF durante os testes pin-on-disk.

FIGURA 3: Evolução da taxa de desgaste de diferentes tintas.

FIGURA 4: Evolução das pistas de desgaste durante os testes pin-on-disk.

RESULTADOS DO TESTE DE DESGASTE

O FIGURA 5 mostra a trama de força normal, força de fricção e profundidade verdadeira em função do comprimento do risco para a Amostra A como exemplo. Um módulo opcional de emissão acústica pode ser instalado para fornecer mais informações. Conforme a carga normal aumenta linearmente, a ponta de recuo afunda gradualmente na amostra testada, conforme refletido pelo aumento progressivo da profundidade verdadeira. A variação nas inclinações da força de atrito e das curvas de profundidade verdadeira pode ser usada como uma das implicações que as falhas no revestimento começam a ocorrer.

FIGURA 5: Força normal, força de fricção e profundidade verdadeira em função do comprimento do arranhão para teste de risco da amostra A com uma carga máxima de 5 N.

FIGURA 6 e FIGURA 7 mostram os riscos completos de todas as quatro amostras de tinta testadas com uma carga máxima de 5 N e 35 N, respectivamente. A amostra D exigiu uma carga maior de 50 N para delaminar o primer. Os testes de arranhões com carga final de 5 N (FIGURA 6) avaliam a falha coesiva/adesiva da tinta superior, enquanto os testes com 35 N (FIGURA 7) avaliam a delaminação do primer. As setas nas micrografias indicam o ponto em que o revestimento superior ou o primer começa a ser completamente removido do primer ou do substrato. A carga neste ponto, denominada Carga Crítica, Lc, é usada para comparar as propriedades coesivas ou adesivas da tinta, conforme resumido na Tabela 1.

 

É evidente que a amostra de tinta D tem a melhor aderência interfacial - apresentando os maiores valores de Lc de 4,04 N na delaminação da tinta e 36,61 N na delaminação de primer. A amostra B mostra a segunda melhor resistência a arranhões. A partir da análise de risco, mostramos que a otimização da fórmula da tinta é crítica para os comportamentos mecânicos, ou mais especificamente, a resistência a riscos e a propriedade de adesão das tintas acrílicas para piso.

Tabela 1: Resumo das cargas críticas.

FIGURA 6: Micrográficos de arranhão total com carga máxima de 5 N.

FIGURA 7: Micrográficos de arranhão total com carga máxima de 35 N.

CONCLUSÃO

Em comparação com as medidas convencionais de abrasão Taber, o NANOVEA Mechanical Tester and Tribometer são ferramentas superiores para avaliação e controle de qualidade de pisos comerciais e revestimentos automotivos. O Testador Mecânico NANOVEA no modo Scratch pode detectar problemas de aderência/coesão em um sistema de revestimento. O Tribômetro NANOVEA fornece análises tribológicas quantificáveis e repetíveis bem controladas sobre a resistência ao desgaste e o coeficiente de atrito das tintas.

 

Com base nas análises tribológicas e mecânicas abrangentes sobre os revestimentos acrílicos à base de água para pisos testados neste estudo, mostramos que a amostra B possui a menor taxa de COF e desgaste e a segunda melhor resistência a riscos, enquanto a amostra D exibe a melhor resistência a riscos e a segunda melhor resistência ao desgaste. Esta avaliação nos permite avaliar e selecionar o melhor candidato, visando as necessidades em diferentes ambientes de aplicação.

 

Os módulos Nano e Micro do Testador Mecânico NANOVEA incluem todos os modos de indentação, teste de arranhões e desgaste em conformidade com a ISO e ASTM, proporcionando a mais ampla gama de testes disponíveis para avaliação de pintura em um único módulo. O Tribômetro NANOVEA oferece testes de desgaste e atrito precisos e repetíveis usando os modos rotativo e linear conforme ISO e ASTM, com módulos opcionais de desgaste em alta temperatura, lubrificação e tribo-corrosão disponíveis em um sistema pré-integrado. A gama inigualável da NANOVEA é uma solução ideal para determinar a gama completa de propriedades mecânicas/tribológicas de revestimentos, filmes e substratos finos ou grossos, macios ou duros, incluindo dureza, módulo Young, resistência à fratura, aderência, resistência ao desgaste e muitos outros. Os Profilers Opcionais NANOVEA Non-Contact Optical Profilers estão disponíveis para imagens 3D de alta resolução de rastros de arranhões e desgaste, além de outras medidas de superfície, como rugosidade.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Medição da Dureza de Arranhões usando o Testador Mecânico

MEDIÇÃO DA DUREZA DOS ARRANHÕES

USANDO UM TESTADOR MECÂNICO

Preparado por

DUANJIE LI, PhD

INTRODUÇÃO

Em geral, os testes de dureza medem a resistência dos materiais à deformação permanente ou plástica. Há três tipos de medidas de dureza: dureza de arranhão, dureza de recuo e dureza de ricochete. Um teste de dureza de arranhão mede a resistência de um material ao arranhão e à abrasão devido ao atrito de um objeto cortante1. Foi originalmente desenvolvido pelo mineralogista alemão Friedrich Mohs em 1820 e ainda é amplamente utilizado para classificar as propriedades físicas dos minerais2. Este método de teste também é aplicável a metais, cerâmicas, polímeros e superfícies revestidas.

Durante uma medição de dureza de arranhões, uma ponta de diamante de geometria especificada risca na superfície de um material ao longo de um caminho linear sob uma força normal constante com uma velocidade constante. A largura média do risco é medida e usada para calcular o número de dureza do risco (HSP). Esta técnica fornece uma solução simples para escalonar a dureza de diferentes materiais.

OBJETIVO DA MEDIÇÃO

Neste estudo, o Testador Mecânico NANOVEA PB1000 é usado para medir a dureza de arranhões de diferentes metais em conformidade com a ASTM G171-03.

Simultaneamente, este estudo mostra a capacidade da NANOVEA Testador Mecânico na realização de medições de dureza com alta precisão e reprodutibilidade.

NANOVEA

PB1000

CONDIÇÕES DE TESTE

O NANOVEA PB1000 Mechanical Tester realizou testes de dureza de arranhões em três metais polidos (Cu110, Al6061 e SS304). Foi usado um estilete cônico de diamante com ângulo de ponta de 120° e raio de ponta de 200 µm. Cada amostra foi riscada três vezes com os mesmos parâmetros de teste para garantir a reprodutibilidade dos resultados. Os parâmetros de teste estão resumidos abaixo. Uma varredura de perfil em uma carga normal baixa de 10 mN foi realizada antes e depois do teste de raspagem para medir a mudança no perfil da superfície do arranhão.

PARÂMETROS DE TESTE

FORÇA NORMAL

10 N

TEMPERATURA

24°C (RT)

VELOCIDADE DE DESLIZAMENTO

20 mm/min

DISTÂNCIA DE DESLIZAMENTO

10 mm

ATMOSPHERE

Ar

RESULTADOS & DISCUSSÃO

As imagens dos rastros de três metais (Cu110, Al6061 e SS304) após os testes são mostradas no FIGURA 1 para comparar a dureza dos rastros de diferentes materiais. A função de mapeamento do software mecânico NANOVEA foi usada para criar três riscos paralelos testados sob a mesma condição em um protocolo automatizado. A largura medida da pista de raspagem e o número calculado de dureza de raspagem (HSP) são resumidos e comparados na TABELA 1. Os metais mostram diferentes larguras de pista de desgaste de 174, 220 e 89 µm para Al6061, Cu110 e SS304, respectivamente, resultando em um HSP calculado de 0,84, 0,52 e 3,2 GPa.

Além da dureza da raspagem computada a partir da largura da raspagem, a evolução do coeficiente de atrito (COF), profundidade verdadeira e emissão acústica foram registradas in situ durante o teste de dureza da raspagem. Aqui, a profundidade verdadeira é a diferença de profundidade entre a profundidade de penetração da ponta durante o teste de raspagem e o perfil de superfície medido na pré-digitalização. O COF, profundidade verdadeira e emissão acústica do Cu110 são mostrados no FIGURA 2 como um exemplo. Tais informações fornecem uma visão das falhas mecânicas que ocorrem durante a raspagem, permitindo aos usuários detectar defeitos mecânicos e investigar melhor o comportamento da raspagem do material testado.

Os testes de dureza de arranhões podem ser terminados em poucos minutos com alta precisão e repetibilidade. Em comparação com os procedimentos convencionais de indentação, o teste de dureza de arranhões neste estudo fornece uma solução alternativa para medições de dureza, que é útil para o controle de qualidade e o desenvolvimento de novos materiais.

Al6061

Cu110

SS304

FIGURA 1: Imagem microscópica dos rastros de risco pós-teste (ampliação de 100x).

 Largura da pista de raspagem (μm)HSp (GPa)
Al6061174±110.84
Cu110220±10.52
SS30489±53.20

TABELA 1: Resumo da largura da pista de raspagem e do número de dureza da raspagem.

FIGURA 2: A evolução do coeficiente de atrito, profundidade verdadeira e emissões acústicas durante o teste de dureza de arranhões no Cu110.

CONCLUSÃO

Neste estudo, demonstramos a capacidade do Testador Mecânico NANOVEA em realizar testes de dureza de arranhões em conformidade com a ASTM G171-03. Além da adesão do revestimento e da resistência aos riscos, o teste de raspagem com carga constante fornece uma solução alternativa simples para comparar a dureza dos materiais. Em contraste com os ensaios de dureza de arranhões convencionais, os ensaios mecânicos NANOVEA oferecem módulos opcionais para monitorar a evolução do coeficiente de atrito, emissão acústica e profundidade real in situ.

Os módulos Nano e Micro de um Testador Mecânico NANOVEA incluem indentação compatível com ISO e ASTM, modos de teste de arranhões e desgaste, proporcionando a mais ampla e mais fácil de usar gama de testes disponíveis em um único sistema. A gama inigualável do NANOVEA é uma solução ideal para determinar a gama completa de propriedades mecânicas de revestimentos finos ou grossos, macios ou duros, filmes e substratos, incluindo dureza, módulo Young, resistência à fratura, aderência, resistência ao desgaste e muitos outros.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO