USA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT US
Sandpapier-Rauheitsprofilometer

Schleifpapier: Analyse von Rauheit und Partikeldurchmesser

Schleifpapier: Analyse von Rauheit und Partikeldurchmesser

Mehr erfahren

SANDPAPIER

Analyse von Rauhigkeit und Partikeldurchmesser

Vorbereitet von

FRANK LIU

EINFÜHRUNG

Sandpapier ist ein handelsübliches Produkt, das als Schleifmittel verwendet wird. Der häufigste Verwendungszweck von Schleifpapier ist das Entfernen von Beschichtungen oder das Polieren einer Oberfläche mit Hilfe seiner abrasiven Eigenschaften. Diese abrasiven Eigenschaften werden in Körnungen eingeteilt, die jeweils angeben, wie glatt oder
eine raue Oberfläche erzielt wird. Um die gewünschten Schleifeigenschaften zu erzielen, müssen die Hersteller von Schleifpapier sicherstellen, dass die Schleifpartikel eine bestimmte Größe haben und nur geringfügige Abweichungen aufweisen. Um die Qualität des Schleifpapiers zu quantifizieren, hat NANOVEAs 3D Non-Contact Profilometer kann verwendet werden, um den arithmetischen Mittelwert (Sa) des Höhenparameters und den durchschnittlichen Partikeldurchmesser einer Probenfläche zu erhalten.

BEDEUTUNG DES BERÜHRUNGSLOSEN OPTISCHEN 3D PROFILER FÜR SCHLEIFPAPIER

Bei der Verwendung von Schleifpapier muss die Interaktion zwischen den Schleifpartikeln und der zu schleifenden Oberfläche gleichmäßig sein, um eine gleichmäßige Oberflächenbeschaffenheit zu erzielen. Um dies zu quantifizieren, kann die Oberfläche des Schleifpapiers mit dem berührungslosen optischen 3D-Profiler von NANOVEA beobachtet werden, um Abweichungen bei den Partikelgrößen, -höhen und -abständen zu erkennen.

MESSZIEL

In dieser Studie wurden fünf verschiedene Schleifpapierkörnungen (120,
180, 320, 800 und 2000) werden mit dem Scannertool
NANOVEA ST400 3D Berührungsloser optischer Profiler.
Das Sa wird aus dem Scan extrahiert und die Partikel
Größe wird durch eine Motifs-Analyse berechnet, um
ihren äquivalenten Durchmesser zu finden

NANOVEA

ST400

ERGEBNISSE & DISKUSSION

Die Oberflächenrauheit (Sa) und die Partikelgröße des Schleifpapiers nehmen mit zunehmender Körnung erwartungsgemäß ab. Die Sa reichte von 42,37 μm bis 3,639 μm. Die Partikelgröße reicht von 127 ± 48,7 bis 21,27 ± 8,35. Größere Partikel und große Höhenunterschiede erzeugen eine stärkere Abrasionswirkung auf Oberflächen als kleinere Partikel mit geringen Höhenunterschieden.
Bitte beachten Sie, dass alle Definitionen der angegebenen Höhenparameter auf Seite A.1. aufgeführt sind.

TABELLE 1: Vergleich zwischen Schleifpapierkörnungen und Höhenparametern.

TABELLE 2: Vergleich zwischen Schleifpapierkörnungen und Partikeldurchmesser.

2D & 3D ANSICHT VON SCHLEIFPAPIER 

Unten sehen Sie die Falschfarben- und die 3D-Ansicht für die Sandpapierproben.
Ein Gaußfilter von 0,8 mm wurde verwendet, um die Form oder Welligkeit zu entfernen.

MOTIF-ANALYSE

Um die Partikel an der Oberfläche genau zu finden, wurde der Schwellenwert für die Höhenskala neu definiert, so dass nur die obere Schicht des Schleifpapiers angezeigt wird. Anschließend wurde eine Motivanalyse durchgeführt, um die Peaks zu erkennen.

SCHLUSSFOLGERUNG

Der berührungslose optische 3D-Profiler von NANOVEA wurde zur Prüfung der Oberflächeneigenschaften verschiedener Schleifpapierkörnungen eingesetzt, da er Oberflächen mit Mikro- und Nanomerkmalen präzise scannen kann.

Die Parameter für die Oberflächenhöhe und die äquivalenten Partikeldurchmesser wurden mit Hilfe einer fortschrittlichen Software zur Analyse der 3D-Scans von jeder der Sandpapierproben ermittelt. Es wurde festgestellt, dass mit zunehmender Korngröße die Oberflächenrauhigkeit (Sa) und die Partikelgröße erwartungsgemäß abnahmen.

UND NUN ZU IHRER BEWERBUNG

Styropor-Oberflächen-Grenzflächenmessung Profilometrie

Grenzflächenmessung

Grenzflächenmessung mit 3D-Profilometrie

Mehr erfahren

OBERFLÄCHENGRENZFLÄCHENMESSUNG

3D-PROFILOMETRIE VERWENDEN

Vorbereitet von

Craig Leising

EINFÜHRUNG

Bei Studien, in denen die Schnittstelle von Oberflächenmerkmalen, Mustern, Formen usw. zur Orientierung ausgewertet wird, ist es nützlich, schnell Bereiche von Interesse über das gesamte Messprofil zu identifizieren. Durch die Segmentierung einer Oberfläche in signifikante Bereiche kann der Benutzer schnell Grenzen, Spitzen, Vertiefungen, Flächen, Volumina und vieles mehr bewerten, um ihre funktionelle Rolle im gesamten untersuchten Oberflächenprofil zu verstehen. Wie zum Beispiel bei der Korngrenzenabbildung von Metallen ist die Bedeutung der Analyse die Schnittstelle vieler Strukturen und ihre Gesamtausrichtung. Durch das Verständnis jedes einzelnen Bereichs von Interesse können Defekte und Anomalien innerhalb des Gesamtbereichs identifiziert werden. Obwohl die Korngrenzenabbildung in der Regel in einem Bereich untersucht wird, der die Möglichkeiten des Profilometers übersteigt, und es sich nur um eine 2D-Bildanalyse handelt, ist sie eine hilfreiche Referenz, um das Konzept dessen zu veranschaulichen, was hier in größerem Maßstab zusammen mit den Vorteilen der 3D-Oberflächenmessung gezeigt wird.

BEDEUTUNG DES BERÜHRUNGSLOSEN 3D-PROFILOMETERS FÜR DIE UNTERSUCHUNG DER OBERFLÄCHENTRENNUNG

Im Gegensatz zu anderen Techniken wie Touch Probes oder Interferometrie ist die 3D berührungsloses ProfilometerMithilfe des axialen Chromatismus kann nahezu jede Oberfläche gemessen werden, die Probengröße kann aufgrund des offenen Stagings stark variieren und es ist keine Probenvorbereitung erforderlich. Der Nano- bis Makrobereich wird während der Oberflächenprofilmessung ohne Einfluss des Probenreflexionsvermögens oder der Probenabsorption erzielt, verfügt über eine erweiterte Fähigkeit zur Messung großer Oberflächenwinkel und es gibt keine Softwaremanipulation der Ergebnisse. Messen Sie ganz einfach jedes Material: transparent, undurchsichtig, spiegelnd, diffus, poliert, rau usw. Die Technik des berührungslosen Profilometers bietet eine ideale, umfassende und benutzerfreundliche Möglichkeit, Oberflächenstudien zu maximieren, wenn eine Analyse der Oberflächengrenzen erforderlich ist; zusammen mit den Vorteilen der kombinierten 2D- und 3D-Fähigkeit.

MESSZIEL

In dieser Anwendung wird das Nanovea ST400 Profilometer verwendet, um die Oberfläche von Styropor zu messen. Die Grenzen wurden durch die Kombination einer Datei mit der reflektierten Intensität und der Topografie festgelegt, die gleichzeitig mit dem NANOVEA ST400 erfasst wurden. Diese Daten wurden dann zur Berechnung der verschiedenen Form- und Größeninformationen der einzelnen Styropor-"Körner" verwendet.

NANOVEA

ST400

ERGEBNISSE & DISKUSSION: 2D-Oberflächengrenzflächenmessung

Topographiebild (unten links), maskiert mit dem Bild der reflektierten Intensität (unten rechts), um die Korngrenzen klar zu definieren. Alle Körner unter 565 µm Durchmesser wurden durch Anwendung des Filters ignoriert.

Gesamtzahl der Körner: 167
Gesamte projizierte Fläche, die von den Körnern eingenommen wird: 166,917 mm² (64,5962 %)
Projizierte Gesamtfläche der Grenzen: (35.4038 %)
Dichte der Körner: 0,646285 Körner / mm2

Fläche = 0,999500 mm² +/- 0,491846 mm²
Umfang = 9114,15 µm +/- 4570,38 µm
Äquivalenter Durchmesser = 1098,61 µm +/- 256,235 µm
Mittlerer Durchmesser = 945,373 µm +/- 248,344 µm
Mindestdurchmesser = 675,898 µm +/- 246,850 µm
Maximaler Durchmesser = 1312,43 µm +/- 295,258 µm

ERGEBNISSE & DISKUSSION: 3D-Oberflächengrenzflächenmessung

Anhand der gewonnenen 3D-Topographiedaten können das Volumen, die Höhe, die Spitze, das Seitenverhältnis und allgemeine Forminformationen zu jedem Korn analysiert werden. Belegte 3D-Gesamtfläche: 2,525 mm3

SCHLUSSFOLGERUNG

In dieser Anwendung haben wir gezeigt, wie das berührungslose 3D-Profilometer NANOVEA die Oberfläche von Styropor präzise charakterisieren kann. Statistische Informationen können über die gesamte Oberfläche von Interesse oder über einzelne Körner gewonnen werden, unabhängig davon, ob es sich um Spitzen oder Vertiefungen handelt. In diesem Beispiel wurden alle Körner, die größer als eine benutzerdefinierte Größe sind, verwendet, um die Fläche, den Umfang, den Durchmesser und die Höhe anzuzeigen. Die hier gezeigten Merkmale können für die Forschung und die Qualitätskontrolle natürlicher und vorgefertigter Oberflächen von entscheidender Bedeutung sein, von biomedizinischen bis hin zu Mikrobearbeitungsanwendungen und vielen anderen. 

UND NUN ZU IHRER BEWERBUNG