USA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT US

Tribologie der Polymere

Einführung

Polymere werden in einer Vielzahl von Anwendungen eingesetzt und sind aus dem täglichen Leben nicht mehr wegzudenken. Natürliche Polymere wie Bernstein, Seide und Naturkautschuk haben in der Geschichte der Menschheit eine wesentliche Rolle gespielt. Der Herstellungsprozess von synthetischen Polymeren kann optimiert werden, um einzigartige physikalische Eigenschaften wie Zähigkeit, Viskoelastizität, Selbstschmierung und viele andere zu erzielen.

Bedeutung des Verschleißes und der Reibung von Polymeren

Polymere werden in der Regel für tribologische Anwendungen wie Reifen, Lager und Förderbänder verwendet.
Je nach den mechanischen Eigenschaften des Polymers, den Kontaktbedingungen und den Eigenschaften des während des Verschleißvorgangs gebildeten Abriebs oder Transferfilms treten unterschiedliche Verschleißmechanismen auf. Um sicherzustellen, dass die Polymere unter den Einsatzbedingungen eine ausreichende Verschleißfestigkeit aufweisen, ist eine zuverlässige und quantifizierbare tribologische Bewertung erforderlich. Die tribologische Bewertung ermöglicht einen kontrollierten und überwachten quantitativen Vergleich des Verschleißverhaltens verschiedener Polymere, um das geeignete Material für die gewünschte Anwendung auszuwählen.

Das Nanovea Tribometer bietet wiederholbare Verschleiß- und Reibungstests mit ISO- und ASTM-konformen Rotations- und Linearmodi, mit optionalen Hochtemperatur-Verschleiß- und Schmiermodulen, die in einem vorintegrierten System erhältlich sind. Mit diesem unübertroffenen Angebot können Benutzer die verschiedenen Arbeitsumgebungen der Polymere simulieren, einschließlich konzentrierter Belastung, Verschleiß und hoher Temperatur usw.

MESSZIEL

In dieser Studie haben wir gezeigt, dass Nanovea Tribometer ist ein ideales Werkzeug, um die Reibungs- und Verschleißfestigkeit verschiedener Polymere kontrolliert und quantitativ zu vergleichen.

TESTVORGANG

Der Reibungskoeffizient (COF) und die Verschleißfestigkeit verschiedener gängiger Polymere wurden mit dem Nanovea Tribometer bewertet. Als Gegenmaterial (Stift, statische Probe) wurde eine Al2O3-Kugel verwendet. Die Verschleißspuren auf den Polymeren (dynamisch rotierende Proben) wurden mit a gemessen berührungsloses 3D-Profilometer und optisches Mikroskop nach Abschluss der Tests. Es ist zu beachten, dass optional ein berührungsloser endoskopischer Sensor zur Messung der Eindringtiefe des Stifts in die dynamische Probe während eines Verschleißtests verwendet werden kann. Die Testparameter sind in Tabelle 1 zusammengefasst. Die Verschleißrate K wurde mithilfe der Formel K=Vl(Fxs) bewertet, wobei V das abgenutzte Volumen, F die normale Belastung und s die Gleitstrecke ist.

Bitte beachten Sie, dass in dieser Studie Al2O3-Kugeln als Gegenmaterial verwendet wurden. Jedes feste Material kann ersetzt werden, um die Leistung von zwei Proben unter realen Anwendungsbedingungen besser zu simulieren.

ERGEBNISSE UND DISKUSSION

Die Verschleißrate ist ein wichtiger Faktor für die Bestimmung der Lebensdauer der Materialien, während die Reibung bei tribologischen Anwendungen eine entscheidende Rolle spielt. Abbildung 2 vergleicht die Entwicklung der COF für verschiedene Polymere gegen die Al2O3-Kugel während der Verschleißtests. Die COF dient als Indikator dafür, wann es zu Ausfällen kommt und der Verschleißprozess in eine neue Phase eintritt. Von den getesteten Polymeren weist HDPE die niedrigste konstante COF von ~0,15 während des gesamten Verschleißtests auf. Die gleichmäßige COF bedeutet, dass sich ein stabiler Tribokontakt bildet.

In Abbildung 3 und Abbildung 4 werden die Verschleißspuren der Polymerproben nach dem Test mit dem Lichtmikroskop gemessen. Das berührungslose In-situ-3D-Profilometer bestimmt präzise das Abnutzungsvolumen der Polymerproben und ermöglicht die genaue Berechnung von Abnutzungsraten von 0,0029, 0,0020 bzw. 0,0032m3/N m. Im Vergleich dazu zeigt die CPVC-Probe die höchste Verschleißrate von 0,1121 m3/N m. In der Verschleißspur von CPVC sind tiefe parallele Verschleißnarben vorhanden.

SCHLUSSFOLGERUNG

Die Verschleißfestigkeit der Polymere spielt eine entscheidende Rolle für ihre Einsatzfähigkeit. In dieser Studie haben wir gezeigt, dass das Nanovea Tribometer den Reibungskoeffizienten und die Verschleißrate verschiedener Polymere in einem
gut kontrollierten und quantitativen Weise. HDPE weist unter den getesteten Polymeren den niedrigsten COF von ~0,15 auf. HDPE-, Nylon 66- und Polypropylen-Proben weisen niedrige Verschleißraten von 0,0029, 0,0020 bzw. 0,0032 m3/N m auf. Die Kombination aus geringer Reibung und hoher Verschleißfestigkeit macht HDPE zu einem guten Kandidaten für tribologische Anwendungen von Polymeren.

Das berührungslose In-situ-3D-Profilometer ermöglicht eine präzise Messung des Verschleißvolumens und bietet ein Werkzeug zur Analyse der detaillierten Morphologie der Verschleißspuren, was einen besseren Einblick in das grundlegende Verständnis der Verschleißmechanismen ermöglicht.

UND NUN ZU IHRER BEWERBUNG

Oberflächenbeschaffenheit von Wabenplatten mit 3D-Profilometrie

EINFÜHRUNG


Rauheit, Porosität und Textur der Oberfläche von Wabenplatten sind für das endgültige Plattendesign von entscheidender Bedeutung. Diese Oberflächenqualitäten können direkt mit der Ästhetik und den funktionalen Eigenschaften der Plattenoberfläche korrelieren. Ein besseres Verständnis der Oberflächentextur und -porosität kann dazu beitragen, die Verarbeitung und Herstellbarkeit der Plattenoberfläche zu optimieren. Eine quantitative, präzise und zuverlässige Oberflächenmessung der Wabenplatte ist erforderlich, um die Oberflächenparameter für die Anwendung und die Lackieranforderungen zu kontrollieren. Die berührungslosen Nanovea 3D-Sensoren nutzen eine einzigartige chromatische Konfokaltechnologie, die eine präzise Messung dieser Plattenoberflächen ermöglicht.



MESSZIEL


In dieser Studie wurde die Nanovea HS2000-Plattform, die mit einem Hochgeschwindigkeits-Liniensensor ausgestattet ist, verwendet, um zwei Wabenplatten mit unterschiedlichen Oberflächenbeschaffenheiten zu messen und zu vergleichen. Wir präsentieren den Nanovea berührungsloses ProfilometerDie Fähigkeit des Unternehmens, schnelle und präzise 3D-Profilmessungen und eine umfassende, tiefgehende Analyse der Oberflächenbeschaffenheit durchzuführen.



ERGEBNISSE UND DISKUSSION

Die Oberfläche von zwei Wabenplattenmustern mit unterschiedlicher Oberflächenbeschaffenheit, nämlich Probe 1 und Probe 2, wurde gemessen. Die Falschfarben- und 3D-Ansicht der Oberflächen der Proben 1 und 2 sind in Abbildung 3 bzw. Abbildung 4 dargestellt. Die Rauheits- und Ebenheitswerte wurden mit einer fortschrittlichen Analysesoftware berechnet und werden in Tabelle 1 verglichen. Probe 2 weist im Vergleich zu Probe 1 eine porösere Oberfläche auf. Infolgedessen weist Probe 2 einen höheren Rauheitswert Sa von 14,7 µm auf, verglichen mit einem Sa-Wert von 4,27 µm für Probe 1.

Die 2D-Profile der Wabenplattenoberflächen wurden in Abbildung 5 verglichen, um dem Benutzer einen visuellen Vergleich der Höhenänderung an verschiedenen Stellen der Probenoberfläche zu ermöglichen. Wir können feststellen, dass Probe 1 eine Höhenvariation von ~25 µm zwischen der höchsten Spitze und der niedrigsten Talstelle aufweist. Andererseits weist Probe 2 mehrere tiefe Poren im gesamten 2D-Profil auf. Die fortschrittliche Analysesoftware ist in der Lage, die Tiefe von sechs relativ tiefen Poren automatisch zu lokalisieren und zu messen, wie in der Tabelle in Abbildung 4.b Probe 2 dargestellt. Die tiefste der sechs Poren weist eine maximale Tiefe von fast 90 µm auf (Schritt 4).

Um die Porengröße und -verteilung von Probe 2 weiter zu untersuchen, wurde eine Porositätsbewertung durchgeführt, die im folgenden Abschnitt erläutert wird. Die Schnittansicht ist in Abbildung 5 dargestellt und die Ergebnisse sind in Tabelle 2 zusammengefasst. Wir können feststellen, dass die Poren, die in Abbildung 5 blau markiert sind, eine relativ homogene Verteilung auf der Probenoberfläche aufweisen. Die projizierte Fläche der Poren macht 18,9% der gesamten Probenoberfläche aus. Das Volumen pro mm² der gesamten Poren beträgt ~0,06 mm³. Die Poren haben eine durchschnittliche Tiefe von 42,2 µm, und die maximale Tiefe beträgt 108,1 µm.

SCHLUSSFOLGERUNG



In dieser Anwendung haben wir gezeigt, dass die Nanovea HS2000 Plattform, die mit einem Hochgeschwindigkeits-Zeilensensor ausgestattet ist, ein ideales Werkzeug für die schnelle und genaue Analyse und den Vergleich der Oberflächenbeschaffenheit von Wabenplattenproben ist. Die hochauflösenden profilometrischen Scans in Verbindung mit einer fortschrittlichen Analysesoftware ermöglichen eine umfassende und quantitative Bewertung der Oberflächenbeschaffenheit von Wabenplattenproben.

Die hier gezeigten Daten stellen nur einen kleinen Teil der in der Analysesoftware verfügbaren Berechnungen dar. Nanovea Profilometer messen praktisch jede Oberfläche für eine Vielzahl von Anwendungen in der Halbleiter-, Mikroelektronik-, Solar-, Faseroptik-, Automobil-, Luft- und Raumfahrt-, Metallurgie-, Bearbeitungs-, Beschichtungs-, Pharma-, Biomedizin-, Umwelt- und vielen anderen Branchen.

UND NUN ZU IHRER BEWERBUNG

Messung der Spannungsrelaxation mittels Nanoindentation

EINFÜHRUNG

Viskoelastische Materialien sind dadurch gekennzeichnet, dass sie sowohl viskose als auch elastische Materialeigenschaften aufweisen. Diese Materialien unterliegen einem zeitabhängigen Spannungsabbau (Spannungsrelaxation") unter konstanter Belastung, was zu einem erheblichen Verlust der anfänglichen Kontaktkraft führt. Die Spannungsrelaxation ist abhängig von der Art des Materials, der Textur, der Temperatur, der Anfangsspannung und der Zeit. Das Verständnis der Spannungsrelaxation ist entscheidend für die Auswahl optimaler Materialien, die die für bestimmte Anwendungen erforderliche Festigkeit und Flexibilität (Relaxation) aufweisen.

Bedeutung der Entspannungsmessung

Gemäß ASTM E328i, „Standard Test Methods for Stress Relaxation for Materials and Structures“, wird zunächst mit einem Eindringkörper eine äußere Kraft auf ein Material oder eine Struktur ausgeübt, bis eine vorgegebene Maximalkraft erreicht ist. Sobald die maximale Kraft erreicht ist, wird die Position des Eindringkörpers in dieser Tiefe konstant gehalten. Dann wird die Änderung der äußeren Kraft, die erforderlich ist, um die Position des Eindringkörpers beizubehalten, als Funktion der Zeit gemessen. Die Schwierigkeit bei Spannungsrelaxationstests besteht darin, die Tiefe konstant zu halten. Der mechanische Tester von Nanovea Nanoindentation Das Modul misst die Spannungsrelaxation genau, indem es eine geschlossene (Feedback-)Regelung der Tiefe mit einem piezoelektrischen Aktuator anwendet. Der Aktuator reagiert in Echtzeit, um die Tiefe konstant zu halten, während die Laständerung von einem hochempfindlichen Lastsensor gemessen und aufgezeichnet wird. Dieser Test kann an praktisch allen Arten von Materialien durchgeführt werden, ohne dass strenge Anforderungen an die Probenabmessungen erforderlich sind. Darüber hinaus können mehrere Tests an einer einzelnen flachen Probe durchgeführt werden, um die Wiederholbarkeit der Tests sicherzustellen

MESSZIEL

In dieser Anwendung misst das Nanoindentationsmodul des Nanovea Mechanical Tester das Spannungsrelaxationsverhalten einer Acryl- und Kupferprobe. Wir zeigen, dass der Nanovea Mechanischer Tester ist ein ideales Werkzeug zur Bewertung des zeitabhängigen viskoelastischen Verhaltens von Polymer- und Metallmaterialien.

TESTBEDINGUNGEN

Die Spannungsrelaxation einer Acryl- und einer Kupferprobe wurde mit dem Nanoindentationsmodul des Nanovea Mechanical Testers gemessen. Es wurden verschiedene Belastungsraten zwischen 1 und 10 µm/min angewandt. Die Relaxation wurde bei einer festen Tiefe gemessen, sobald die angestrebte maximale Belastung erreicht war. Bei einer festen Tiefe wurde eine Haltezeit von 100 Sekunden eingeführt, und die Veränderung der Belastung wurde nach Ablauf der Haltezeit aufgezeichnet. Alle Tests wurden bei Umgebungsbedingungen (Raumtemperatur von 23 °C) durchgeführt, und die Parameter der Eindringtests sind in Tabelle 1 zusammengefasst.

ERGEBNISSE UND DISKUSSION

Abbildung 2 zeigt die Entwicklung von Verschiebung und Belastung als Funktion der Zeit während der Spannungsrelaxationsmessung einer Acrylprobe und einer Belastungsrate von 3 µm/min als Beispiel. Die Gesamtheit dieses Tests kann in drei Phasen unterteilt werden: Belastung, Relaxation und Entlastung. Während der Belastungsphase nahm die Tiefe linear zu, während die Last schrittweise erhöht wurde. Die Entspannungsphase wurde eingeleitet, sobald die maximale Belastung erreicht war. Während dieser Phase wurde eine konstante Tiefe für 100 Sekunden beibehalten, indem die geschlossene Rückkopplungsschleife der Tiefenkontrolle des Geräts verwendet wurde. Der gesamte Test wurde mit einer Entlastungsphase abgeschlossen, um den Eindringkörper von der Acrylprobe zu entfernen.

Zusätzliche Eindringtests wurden mit denselben Belastungsraten durchgeführt, jedoch ohne eine Relaxationsphase (Kriechen). Bei diesen Tests wurden Kraft-Weg-Diagramme erstellt und in den Diagrammen in Abbildung 3 für die Acryl- und Kupferproben kombiniert. Als die Belastungsrate des Eindringkörpers von 10 auf 1 µm/min sank, verschob sich die Belastungs-Verschiebungskurve sowohl für Acryl als auch für Kupfer zunehmend in Richtung größerer Eindringtiefen. Eine solche zeitabhängige Zunahme der Dehnung ist auf den viskoelastischen Kriecheffekt der Materialien zurückzuführen. Eine geringere Belastungsrate gibt einem viskoelastischen Material mehr Zeit, auf die äußere Belastung zu reagieren und sich entsprechend zu verformen...

Die Entwicklung der Belastung bei einer konstanten Dehnung unter Verwendung verschiedener Belastungsgeschwindigkeiten wurde in Abbildung 4 für beide getesteten Materialien aufgezeichnet. Die Belastung nahm in den frühen Stadien der Entspannungsphase (100 Sekunden Haltezeit) der Tests mit einer höheren Rate ab und verlangsamte sich, sobald die Haltezeit ~50 Sekunden erreichte. Viskoelastische Materialien, wie Polymere und Metalle, weisen eine höhere Lastverlustrate auf, wenn sie einer höheren Eindringbelastung ausgesetzt sind. Die Lastverlustrate während der Relaxation stieg von 51,5 auf 103,2 mN für Acryl bzw. von 15,0 auf 27,4 mN für Kupfer, wenn die Eindringgeschwindigkeit von 1 auf 10 µm/min anstieg, wie in Abbildung 5.

Wie in der ASTM-Norm E328ii erwähnt, besteht das Hauptproblem bei Spannungsrelaxationstests darin, dass ein Gerät nicht in der Lage ist, eine konstante Dehnung/Tiefe aufrechtzuerhalten. Der Nanovea Mechanical Tester liefert exzellente, genaue Messungen der Spannungsrelaxation, da er eine geschlossene Rückkopplungsschleife zwischen dem schnell wirkenden piezoelektrischen Aktuator und dem unabhängigen Kondensator-Tiefensensor anwendet. Während der Entspannungsphase stellt der piezoelektrische Aktuator den Eindringkörper so ein, dass er seine konstante Tiefenbegrenzung in Echtzeit beibehält, während die Änderung der Belastung von einem unabhängigen hochpräzisen Belastungssensor gemessen und aufgezeichnet wird.

SCHLUSSFOLGERUNG

Die Spannungsrelaxation einer Acryl- und einer Kupferprobe wurde mit dem Nanoindentationsmodul des Nanovea-Mechanik-Testers bei unterschiedlichen Belastungsraten gemessen. Aufgrund des Kriecheffekts des Materials während der Belastung wird eine größere maximale Tiefe erreicht, wenn die Eindrücke bei niedrigeren Belastungsraten durchgeführt werden. Sowohl die Acryl- als auch die Kupferprobe weisen ein Spannungsrelaxationsverhalten auf, wenn die Position des Eindringkörpers bei einer angestrebten maximalen Belastung konstant gehalten wird. Größere Veränderungen des Lastverlusts während der Entspannungsphase wurden bei den Versuchen mit höheren Belastungsraten des Eindrucks beobachtet.

Der Spannungsrelaxationstest des Nanovea Mechanical Tester zeigt, dass das Gerät in der Lage ist, das zeitabhängige viskoelastische Verhalten von Polymer- und Metallmaterialien zu quantifizieren und zuverlässig zu messen. Es verfügt über ein unübertroffenes Multifunktions-Nano- und -Mikro-Modul auf einer einzigen Plattform. Module zur Feuchte- und Temperaturkontrolle können mit diesen Instrumenten kombiniert werden, um Umwelttests in einer Vielzahl von Branchen durchzuführen. Sowohl das Nano- als auch das Mikromodul verfügen über Modi für Kratz-, Härte- und Verschleißprüfungen und bieten damit das breiteste und benutzerfreundlichste Spektrum an mechanischen Prüfmöglichkeiten in einem einzigen System.

UND NUN ZU IHRER BEWERBUNG