USA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT US

Verschleißtest der PTFE-Beschichtung

VERSCHLEISSTEST DER PTFE-BESCHICHTUNG

MIT TRIBOMETER UND MECHANISCHEM TESTER

Vorbereitet von

DUANJIE LI, PhD

EINFÜHRUNG

Polytetrafluorethylen (PTFE), allgemein bekannt als Teflon, ist ein Polymer mit einem außergewöhnlich niedrigen Reibungskoeffizienten (COF) und einer hervorragenden Verschleißfestigkeit, abhängig von den angewendeten Belastungen. PTFE weist eine hervorragende chemische Inertheit, einen hohen Schmelzpunkt von 327 °C (620 °F) auf und behält eine hohe Festigkeit, Zähigkeit und Selbstschmierung bei niedrigen Temperaturen bei. Die außergewöhnliche Verschleißfestigkeit von PTFE-Beschichtungen macht sie in einer Vielzahl industrieller Anwendungen sehr gefragt, beispielsweise in der Automobilindustrie, in der Luft- und Raumfahrt, in der Medizintechnik und insbesondere bei Kochgeschirr.

WICHTIGKEIT DER QUANTITATIVEN BEWERTUNG VON PTFE-BESCHICHTUNGEN

Die Kombination aus einem extrem niedrigen Reibungskoeffizienten (COF), ausgezeichneter Verschleißfestigkeit und außergewöhnlicher chemischer Inertheit bei hohen Temperaturen macht PTFE zur idealen Wahl für Antihaft-Pfannenbeschichtungen. Um seine mechanischen Prozesse während der Forschung und Entwicklung weiter zu verbessern und eine optimale Kontrolle über Fehlfunktionsvermeidungs- und Sicherheitsmaßnahmen im Qualitätskontrollprozess sicherzustellen, ist es von entscheidender Bedeutung, über eine zuverlässige Technik zur Mengenbewertung der tribomechanischen Prozesse von PTFE-Beschichtungen zu verfügen. Um die beabsichtigte Leistung sicherzustellen, ist eine genaue Kontrolle der Oberflächenreibung, des Verschleißes und der Haftung der Beschichtungen unerlässlich.

MESSZIEL

In dieser Anwendung wird der Verschleißprozess einer PTFE-Beschichtung für eine Antihaftpfanne mit dem NANOVEA Tribometer im linearen Hin- und Herbewegungsmodus simuliert.

NANOVEA T50

Kompaktes Tribometer mit freiem Gewicht

Darüber hinaus wurde mit dem NANOVEA Mechanical Tester ein Mikrokratzhaftungstest durchgeführt, um die kritische Belastung des Haftungsfehlers der PTFE-Beschichtung zu bestimmen.

NANOVEA PB1000

Mechanischer Tester mit großer Plattform

TESTVORGANG

ABNUTZUNGSTEST

LINEARER HIN- UND HERGESTELLTER VERSCHLEIß MIT EINEM TRIBOMETER

Das tribologische Verhalten der PTFE-Beschichtungsprobe, einschließlich des Reibungskoeffizienten (COF) und der Verschleißfestigkeit, wurde mit dem NANOVEA bewertet Tribometer im linearen Hin- und Herbewegungsmodus. Für die Beschichtung wurde eine Kugelspitze aus Edelstahl 440 mit einem Durchmesser von 3 mm (Klasse 100) verwendet. Der COF wurde während des PTFE-Beschichtungsverschleißtests kontinuierlich überwacht.

 

Die Verschleißrate K wurde mit der Formel K=V/(F×s)=A/(F×n) berechnet, wobei V das verschlissene Volumen, F die Normallast, s die Gleitstrecke und A ist die Querschnittsfläche der Verschleißspur und n ist die Anzahl der Hübe. Die Verschleißspurprofile wurden mit dem NANOVEA bewertet Optisches Profilometerund die Morphologie der Verschleißspuren wurde mit einem optischen Mikroskop untersucht.

PARAMETER DER VERSCHLEISSPRÜFUNG

LOAD 30 N
TESTDAUER 5 Minuten
GLEITGESCHWINDIGKEIT 80 U/min
AMPLITUDE DER SPUR 8 mm
REVOLUTIONEN 300
KUGEL-DIAMETER 3 mm
KUGELMATERIAL Edelstahl 440
SCHMIERMITTEL Keiner
ATMOSPHÄRE Luft
TEMPERATUR 230 °C (RT)
FEUCHTIGKEIT 43%

TESTVORGANG

SCRATCH TEST

Mikrokratz-Haftungstest mit mechanischem Tester

Die Messung der PTFE-Kratzhaftung wurde mit dem NANOVEA durchgeführt Mechanischer Tester mit einem 1200 Rockwell C Diamantstift (200 μm Radius) im Micro Scratch Tester-Modus.

 

Um die Reproduzierbarkeit der Ergebnisse sicherzustellen, wurden drei Tests unter identischen Testbedingungen durchgeführt.

SCRATCH-TEST-PARAMETER

LADUNGSTYP Progressiv
ANFANGSLADUNG 0,01 mN
ENDLADUNG 20 mN
LADUNGSVERFAHREN 40 mN/min
SCRATCH LENGTH 3 mm
KREUZGESCHWINDIGKEIT, dx/dt 6,0 mm/min
EINDRINGKÖRPERGEOMETRIE 120o Rockwell C
INDENTER MATERIAL (Spitze) Diamant
RADIUS DER EINDRINGKÖRPERSPITZE 200 μm

ERGEBNISSE & DISKUSSION

LINEARER HIN- UND HERGESTELLTER VERSCHLEIß MIT EINEM TRIBOMETER

Der in situ aufgezeichnete COF ist in ABBILDUNG 1 dargestellt. Die Testprobe wies während der ersten 130 Umdrehungen einen COF von ~0,18 auf, was auf die geringe Klebrigkeit von PTFE zurückzuführen ist. Allerdings kam es zu einem plötzlichen Anstieg des COF auf ~1, sobald die Beschichtung durchbrach und das darunter liegende Substrat freilegte. Im Anschluss an die linearen Hin- und Herbewegungstests wurde das Verschleißspurprofil mit dem NANOVEA gemessen Berührungsloses optisches Profilometer, wie in ABBILDUNG 2 dargestellt. Aus den erhaltenen Daten wurde die entsprechende Verschleißrate mit ~2,78 × 10-3 mm3/Nm berechnet, während die Tiefe der Verschleißspur mit 44,94 µm ermittelt wurde.

Testaufbau für den PTFE-Beschichtungsverschleiß auf dem NANOVEA T50 Tribometer.

ABBILDUNG 1: COF-Entwicklung während des PTFE-Beschichtungsverschleißtests.

ABBILDUNG 2: Profilextraktion der Verschleißspur PTFE.

PTFE Vor dem Durchbruch

Max COF 0.217
Min COF 0.125
Durchschnittlicher COF 0.177

PTFE Nach Durchbruch

Max COF 0.217
Min COF 0.125
Durchschnittlicher COF 0.177

TABELLE 1: COF vor und nach Durchbruch beim Verschleißtest.

ERGEBNISSE & DISKUSSION

Mikrokratz-Haftungstest mit mechanischem Tester

Die Haftung der PTFE-Beschichtung auf dem Untergrund wird mittels Kratztests mit einem 200 µm Diamantstift gemessen. Die mikroskopische Aufnahme ist in ABBILDUNG 3 und ABBILDUNG 4 dargestellt. Die Entwicklung des COF und der Eindringtiefe ist in ABBILDUNG 5 dargestellt. Die Ergebnisse des Kratztests für die PTFE-Beschichtung sind in TABELLE 4 zusammengefasst. Mit zunehmender Belastung des Diamantstifts drang dieser zunehmend in die Beschichtung ein. was zu einer Erhöhung des COF führt. Bei Erreichen einer Belastung von ~8,5 N erfolgte der Durchbruch der Beschichtung und die Freilegung des Substrats unter hohem Druck, was zu einem hohen COF von ~0,3 führte. Der in TABELLE 2 gezeigte niedrige St Dev zeigt die Wiederholbarkeit des mit dem NANOVEA Mechanical Tester durchgeführten Kratztests für die PTFE-Beschichtung.

ABBILDUNG 3: Mikroaufnahme des vollständigen Kratzers auf PTFE (10X).

ABBILDUNG 4: Mikroaufnahme des vollständigen Kratzers auf PTFE (10X).

ABBILDUNG 5: Reibungsdiagramm, das die Linie des kritischen Versagenspunkts für PTFE zeigt.

SCRATCH Fehlerpunkt [N] Reibungskraft [N] COF
1 0.335 0.124 0.285
2 0.337 0.207 0.310
3 0.380 0.229 0.295
Durchschnitt 8.52 2.47 0.297
St. Dev 0.17 0.16 0.012

TABELLE 2: Zusammenfassung der kritischen Belastung, der Reibungskraft und des COF während des Kratztests.

SCHLUSSFOLGERUNG

In dieser Studie haben wir eine Simulation des Verschleißprozesses einer PTFE-Beschichtung für Antihaftpfannen mit dem NANOVEA T50 Tribometer im linearen Hin- und Herbewegungsmodus durchgeführt. Die PTFE-Beschichtung wies einen niedrigen COF von ~0,18 auf, der Durchbruch der Beschichtung erfolgte bei etwa 130 Umdrehungen. Die quantitative Bewertung der Haftung der PTFE-Beschichtung auf dem Metallsubstrat wurde mit dem NANOVEA Mechanical Tester durchgeführt, der die kritische Belastung für das Versagen der Beschichtungshaftung in diesem Test auf ~8,5 N feststellte.

 

Die NANOVEA-Tribometer bieten präzise und wiederholbare Verschleiß- und Reibungstestfunktionen im ISO- und ASTM-konformen Rotations- und Linearmodus. Sie bieten optionale Module für Hochtemperaturverschleiß, Schmierung und Tribokorrosion, alle integriert in einem einzigen System. Diese Vielseitigkeit ermöglicht es Benutzern, reale Anwendungsumgebungen genauer zu simulieren und ein besseres Verständnis für die Verschleißmechanismen und tribologischen Eigenschaften verschiedener Materialien zu erlangen.

 

Die mechanischen Tester von NANOVEA bieten Nano-, Mikro- und Makromodule, die jeweils ISO- und ASTM-konforme Eindring-, Kratz- und Verschleißtestmodi umfassen und so die umfassendste und benutzerfreundlichste Palette an Testfunktionen bieten, die in einem einzigen System verfügbar sind.

UND NUN ZU IHRER BEWERBUNG

Kommentar