USA/GLOBAL : +1-949-461-9292
EUROPE : +39-011-3052-794
CONTACTEZ-NOUS

Catégorie : Essais de tribologie

 

Tribologie des roches

TRIBOLOGIE ROCHE

UTILISATION DU TRIBOMÈTRE NANOVEA

Préparé par

DUANJIE LI, PhD

INTRODUCTION

Les roches sont composées de grains de minéraux. Le type et l'abondance de ces minéraux, ainsi que la force de liaison chimique entre les grains minéraux, déterminent les propriétés mécaniques et tribologiques des roches. En fonction des cycles géologiques des roches, les roches peuvent subir des transformations et sont généralement classées en trois grands types : ignées, sédimentaires et métamorphiques. Ces roches présentent différentes compositions minérales et chimiques, perméabilités et tailles de particules, et ces caractéristiques contribuent à leur résistance à l'usure variée. La tribologie des roches explore les comportements d'usure et de friction des roches dans diverses conditions géologiques et environnementales.

IMPORTANCE DE LA TRIBOLOGIE ROCK

Divers types d'usure des roches, notamment l'abrasion et la friction, se produisent pendant le processus de forage des puits, entraînant d'importantes pertes directes et consécutives attribuées à la réparation et au remplacement des trépans et des outils de coupe. Par conséquent, l’étude de la forabilité, de la forabilité, de la découpabilité et de l’abrasivité des roches est essentielle dans les industries pétrolière, gazière et minière. La recherche en tribologie des roches joue un rôle central dans la sélection des stratégies de forage les plus efficaces et les plus rentables, améliorant ainsi l'efficacité globale et contribuant à la conservation des matériaux, de l'énergie et de l'environnement. De plus, minimiser le frottement de surface est très avantageux pour réduire l'interaction entre le trépan de forage et la roche, ce qui entraîne une diminution de l'usure de l'outil et une efficacité de forage/coupe améliorée.

OBJECTIF DE MESURE

Dans cette étude, nous avons simulé et comparé les propriétés tribologiques de deux types de roches pour mettre en valeur la capacité du NANOVEA T50 Tribomètre en mesurant le coefficient de frottement et le taux d'usure des roches de manière contrôlée et surveillée.

NANOVEA

T50

LES ÉCHANTILLONS

PROCÉDURE DE TEST

Le coefficient de frottement, COF et la résistance à l'usure de deux échantillons de roche ont été évalués par le tribomètre NANOVEA T50 à l'aide du module d'usure Pin-on-Disc. Une bille d'Al2O3 (diamètre 6 mm) a été utilisée comme contre-matériau. La trace d'usure a été examinée à l'aide du profilomètre sans contact NANOVEA après les tests. Les paramètres de test sont résumés ci-dessous. 

Le taux d'usure, K, a été évalué à l'aide de la formule K=V/(F×s)=A/(F×n), où V est le volume usé, F est la charge normale, s est la distance de glissement, A est la surface de la section transversale de la piste d'usure, et n est le nombre de tours. La rugosité de la surface et les profils des traces d'usure ont été évalués avec le profilomètre optique NANOVEA, et la morphologie des traces d'usure a été examinée à l'aide d'un microscope optique. 

Veuillez noter que la bille Al2O3 comme matériau de comptoir a été utilisée comme exemple dans cette étude. N'importe quel matériau solide de formes différentes peut être appliqué à l'aide d'un dispositif personnalisé pour simuler la situation réelle de l'application.

PARAMÈTRES D'ESSAI

SURFACE EN ACIER

Calcaire, Marbre

RAYON DE L'ANNEAU D'USURE 5 mm
FORCE NORMALE 10 N
DURÉE DU TEST 10 minutes
VITESSE 100 tr/min

RÉSULTATS ET DISCUSSION

La dureté (H) et le module élastique (E) des échantillons de calcaire et de marbre sont comparés dans la FIGURE 1, en utilisant le module Micro Indentation du testeur mécanique NANOVEA. L'échantillon de calcaire présentait des valeurs H et E inférieures, mesurant respectivement 0,53 et 25,9 GPa, contrairement au marbre, qui enregistrait des valeurs de 1,07 pour H et 49,6 GPa pour E. La variabilité relativement plus élevée des valeurs H et E observée dans le L'échantillon de calcaire peut être attribué à sa plus grande inhomogénéité de surface, provenant de ses caractéristiques granulées et poreuses.

L'évolution du COF lors des essais d'usure des deux échantillons de roche est représentée dans la FIGURE 2. Le calcaire connaît initialement une augmentation rapide du COF jusqu'à environ 0,8 au début de l'essai d'usure, maintenant cette valeur pendant toute la durée de l'essai. Ce changement brusque du COF peut être attribué à la pénétration de la bille d'Al2O3 dans l'échantillon de roche, résultant d'un processus rapide d'usure et de rugosité se produisant au niveau de la face de contact à l'intérieur de la piste d'usure. En revanche, l’échantillon de marbre présente une augmentation notable du COF jusqu’à des valeurs plus élevées après environ 5 mètres de distance de glissement, ce qui signifie sa résistance à l’usure supérieure à celle du calcaire.

FIGURE 1: Comparaison de la dureté et du module d'Young entre des échantillons de calcaire et de marbre.

FIGURE 2 : Evolution du Coefficient de Friction (COF) dans des échantillons de calcaire et de marbre lors d'essais d'usure.

La FIGURE 3 compare les profils en coupe transversale des échantillons de calcaire et de marbre après les tests d'usure, et le tableau 1 résume les résultats de l'analyse des traces d'usure. La FIGURE 4 montre les traces d'usure des échantillons au microscope optique. L'évaluation de la trace d'usure s'aligne sur l'observation de l'évolution du COF : l'échantillon de marbre, qui maintient un faible COF pendant une période plus longue, présente un taux d'usure inférieur de 0,0046 mm³/N·m, contre 0,0353 mm³/N·m pour le calcaire. Les propriétés mécaniques supérieures du marbre contribuent à sa meilleure résistance à l’usure que le calcaire.

FIGURE 3 : Profils en coupe des traces d'usure.

ZONE DE LA VALLÉE PROFONDEUR DE LA VALLÉE TAUX D'USURE
CALCAIRE 35,3 ± 5,9 × 104 µm2 229 ± 24 μm 0,0353 mm3/Nm
MARBRE 4,6 ± 1,2 × 104 µm2 61 ± 15 μm 0,0046 mm3/Nm

TABLEAU 1 : Résumé des résultats de l’analyse des traces d’usure.

FIGURE 4 : Traces d'usure au microscope optique.

CONCLUSION

Dans cette étude, nous avons présenté la capacité du tribomètre NANOVEA à évaluer le coefficient de frottement et la résistance à l'usure de deux échantillons de roche, à savoir le marbre et le calcaire, de manière contrôlée et surveillée. Les propriétés mécaniques supérieures du marbre contribuent à sa résistance exceptionnelle à l’usure. Cette propriété rend difficile le forage ou la coupe dans l’industrie pétrolière et gazière. À l’inverse, il prolonge considérablement sa durée de vie lorsqu’il est utilisé comme matériau de construction de haute qualité, comme les carreaux de sol.

Les tribomètres NANOVEA offrent des capacités de test d'usure et de friction précises et reproductibles, conformes aux normes ISO et ASTM en modes rotatif et linéaire. De plus, il fournit des modules optionnels pour l'usure à haute température, la lubrification et la tribocorrosion, le tout parfaitement intégré dans un seul système. La gamme inégalée de NANOVEA est une solution idéale pour déterminer la gamme complète des propriétés tribologiques des revêtements, films, substrats fins ou épais, souples ou durs, et de la tribologie des roches.

Test d'usure du revêtement PTFE

TEST D'USURE DU REVÊTEMENT PTFE

UTILISATION DU TRIBOMETRE ET DU TESTEUR MECANIQUE

Préparé par

DUANJIE LI, PhD

INTRODUCTION

Le polytétrafluoroéthylène (PTFE), communément appelé Téflon, est un polymère doté d'un coefficient de frottement (COF) exceptionnellement bas et d'une excellente résistance à l'usure, en fonction des charges appliquées. Le PTFE présente une inertie chimique supérieure, un point de fusion élevé de 327 °C (620 °F) et maintient une résistance, une ténacité et une autolubrification élevées à basses températures. La résistance exceptionnelle à l'usure des revêtements PTFE les rend très recherchés dans un large éventail d'applications industrielles, telles que l'automobile, l'aérospatiale, le médical et, notamment, les ustensiles de cuisine.

IMPORTANCE DE L'ÉVALUATION QUANTITATIVE DES REVÊTEMENTS PTFE

La combinaison d'un très faible coefficient de frottement (COF), d'une excellente résistance à l'usure et d'une inertie chimique exceptionnelle à des températures élevées fait du PTFE un choix idéal pour les revêtements de casseroles antiadhésifs. Pour améliorer encore ses processus mécaniques pendant la R&D, ainsi que pour assurer un contrôle optimal de la prévention des dysfonctionnements et des mesures de sécurité dans le processus de contrôle qualité, il est crucial de disposer d'une technique fiable d'évaluation quantitative des processus tribomécaniques des revêtements PTFE. Un contrôle précis du frottement de surface, de l'usure et de l'adhérence des revêtements est essentiel pour garantir les performances prévues.

OBJECTIF DE MESURE

Dans cette application, le processus d'usure d'un revêtement PTFE pour une poêle antiadhésive est simulé à l'aide du tribomètre NANOVEA en mode linéaire alternatif.

NANOVEA T50

Tribomètre à poids libre compact

De plus, le testeur mécanique NANOVEA a été utilisé pour effectuer un test d'adhérence aux micro-rayures afin de déterminer la charge critique de la défaillance de l'adhérence du revêtement PTFE.

NANOVEA PB1000

Testeur mécanique à grande plate-forme

PROCÉDURE DE TEST

TEST D'USURE

USURE LINÉAIRE ALTERNATIVE À L'AIDE D'UN TRIBOMÈTRE

Le comportement tribologique de l'échantillon de revêtement PTFE, y compris le coefficient de frottement (COF) et la résistance à l'usure, a été évalué à l'aide du test NANOVEA. Tribomètre en mode alternatif linéaire. Une pointe sphérique en acier inoxydable 440 d'un diamètre de 3 mm (grade 100) a été utilisée contre le revêtement. Le COF a été surveillé en permanence pendant le test d'usure du revêtement PTFE.

 

Le taux d'usure, K, a été calculé à l'aide de la formule K=V/(F×s)=A/(F×n), où V représente le volume usé, F est la charge normale, s est la distance de glissement, A est la surface de la section transversale de la piste d'usure, et n est le nombre de courses. Les profils de traces d'usure ont été évalués à l'aide du NANOVEA Profilomètre optique, et la morphologie des traces d'usure a été examinée à l'aide d'un microscope optique.

PARAMÈTRES DES ESSAIS D'USURE

CHARGE 30 N
DURÉE DU TEST 5 minutes
TAUX GLISSANT 80 tr/min
AMPLITUDE DE PISTE 8 millimètres
RÉVOLUTIONS 300
DIAMÈTRE DE LA BOULE 3 mm
MATÉRIAU DE LA BOULE Acier inoxydable 440
LUBRIFIANT Aucun
ATMOSPHÈRE Air
TEMPÉRATURE 230C (TA)
HUMIDITÉ 43%

PROCÉDURE DE TEST

TEST D'ÉRAFLURE

TEST D'ADHÉRENCE MICRO SCRATCH À L'AIDE D'UN TESTEUR MÉCANIQUE

La mesure de l'adhérence des rayures du PTFE a été réalisée à l'aide du NANOVEA Testeur Méchanique avec un stylet diamant 1200 Rockwell C (rayon de 200 μm) en mode Micro Scratch Tester.

 

Afin d'assurer la reproductibilité des résultats, trois tests ont été réalisés dans des conditions de test identiques.

PARAMÈTRES DE L'ESSAI DE GRATTAGE

TYPE DE CHARGE Progressif
CHARGE INITIALE 0,01 mN
CHARGE FINALE 20 mN
TAUX DE CHARGEMENT 40 mN/min
LONGUEUR DU GRATTAGE 3 mm
VITESSE DE SCRATCHAGE, dx/dt 6.0 mm/min
GÉOMÉTRIE DU PÉNÉTRATEUR 120o Rockwell C
MATÉRIAU DE L'INDENTATEUR (pointe) Diamant
RAYON DE LA POINTE DU PÉNÉTRATEUR 200 μm

RÉSULTATS ET DISCUSSION

USURE LINÉAIRE ALTERNATIVE À L'AIDE D'UN TRIBOMÈTRE

Le COF enregistré in situ est présenté dans la FIGURE 1. L'échantillon de test présentait un COF d'environ 0,18 au cours des 130 premiers tours, en raison de la faible adhérence du PTFE. Cependant, il y a eu une augmentation soudaine du COF jusqu’à environ 1 une fois que le revêtement a percé, révélant le substrat situé en dessous. Suite aux essais linéaires alternatifs, le profil de la trace d'usure a été mesuré à l'aide du NANOVEA Profilomètre optique sans contact, comme le montre la FIGURE 2. À partir des données obtenues, le taux d'usure correspondant a été calculé comme étant d'environ 2,78 × 10-3 mm3/Nm, tandis que la profondeur de la trace d'usure a été déterminée comme étant de 44,94 µm.

Configuration du test d'usure du revêtement PTFE sur le tribomètre NANOVEA T50.

FIGURE 1: Évolution du COF lors du test d'usure du revêtement PTFE.

FIGURE 2 : Extraction de profil de piste d'usure PTFE.

PTFE Avant percée

Max COF 0.217
Min COF 0.125
CAF moyen 0.177

PTFE Après percée

Max COF 0.217
Min COF 0.125
CAF moyen 0.177

TABLEAU 1 : COF avant et après percée lors du test d'usure.

RÉSULTATS ET DISCUSSION

TEST D'ADHÉRENCE MICRO SCRATCH À L'AIDE D'UN TESTEUR MÉCANIQUE

L'adhérence du revêtement PTFE au substrat est mesurée à l'aide de tests de rayure avec un stylet en diamant de 200 µm. La micrographie est illustrée à la FIGURE 3 et à la FIGURE 4, Évolution du COF et de la profondeur de pénétration à la FIGURE 5. Les résultats du test de rayure du revêtement PTFE sont résumés dans le TABLEAU 4. Au fur et à mesure que la charge sur le stylet en diamant augmentait, il pénétrait progressivement dans le revêtement, entraînant une augmentation du COF. Lorsqu'une charge d'environ 8,5 N a été atteinte, la percée du revêtement et l'exposition du substrat se sont produites sous haute pression, conduisant à un COF élevé d'environ 0,3. Le faible St Dev indiqué dans le TABLEAU 2 démontre la répétabilité du test de rayure du revêtement PTFE effectué à l'aide du testeur mécanique NANOVEA.

FIGURE 3 : Micrographie de la rayure complète sur PTFE (10X).

FIGURE 4 : Micrographie de la rayure complète sur PTFE (10X).

FIGURE 5 : Graphique de frottement montrant la ligne du point de rupture critique pour le PTFE.

Test de rayure. Point de défaillance [N] Force de frottement [N] COF
1 0.335 0.124 0.285
2 0.337 0.207 0.310
3 0.380 0.229 0.295
Moyenne 8.52 2.47 0.297
St dev 0.17 0.16 0.012

TABLEAU 2 : Résumé de la charge critique, de la force de friction et du COF lors du test de rayure.

CONCLUSION

Dans cette étude, nous avons réalisé une simulation du processus d'usure d'un revêtement PTFE pour casseroles antiadhésives à l'aide du tribomètre NANOVEA T50 en mode linéaire alternatif. Le revêtement PTFE présentait un faible COF d'environ 0,18, le revêtement a connu une percée à environ 130 tours. L'évaluation quantitative de l'adhérence du revêtement PTFE au substrat métallique a été réalisée à l'aide du testeur mécanique NANOVEA qui a déterminé que la charge critique de l'échec de l'adhérence du revêtement était d'environ 8,5 N dans ce test.

 

Les tribomètres NANOVEA offrent des capacités de test d'usure et de frottement précises et reproductibles en utilisant les modes rotatifs et linéaires conformes aux normes ISO et ASTM. Ils fournissent des modules optionnels pour l'usure à haute température, la lubrification et la tribocorrosion, tous intégrés dans un système unique. Cette polyvalence permet aux utilisateurs de simuler avec plus de précision des environnements d'application réels et de mieux comprendre les mécanismes d'usure et les propriétés tribologiques de différents matériaux.

 

Les testeurs mécaniques NANOVEA proposent des modules Nano, Micro et Macro, chacun comprenant des modes de test d'indentation, de rayure et d'usure conformes aux normes ISO et ASTM, offrant la gamme de capacités de test la plus large et la plus conviviale disponible dans un seul système.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Cartographie de l'usure progressive des revêtements de sol à l'aide d'un tribomètre

Cartographie de l'usure progressive des revêtements de sol

Utilisation d'un tribomètre avec profilomètre intégré

Préparé par

FRANK LIU

INTRODUCTION

Les matériaux de revêtement de sol sont conçus pour être durables, mais ils subissent souvent l'usure due aux activités quotidiennes telles que les déplacements et l'utilisation des meubles. Pour garantir leur longévité, la plupart des types de revêtements de sol sont dotés d'une couche d'usure protectrice qui résiste aux dommages. Cependant, l'épaisseur et la durabilité de la couche d'usure varient en fonction du type de revêtement de sol et du niveau de circulation piétonnière. De plus, les différentes couches de la structure du revêtement de sol, telles que les revêtements UV, les couches décoratives et les vernis, ont des taux d'usure variables. C'est là qu'intervient la cartographie de l'usure progressive. En utilisant le tribomètre NANOVEA T2000 avec un Profilomètre 3D sans contact, une surveillance et une analyse précises des performances et de la longévité des matériaux de revêtement de sol peuvent être effectuées. En fournissant des informations détaillées sur le comportement à l'usure de divers matériaux de revêtement de sol, les scientifiques et les professionnels techniques peuvent prendre des décisions plus éclairées lors de la sélection et de la conception de nouveaux systèmes de revêtement de sol.

IMPORTANCE DE LA CARTOGRAPHIE DE L'USURE PROGRESSIVE POUR LES PANNEAUX DE SOL

Les essais de revêtements de sol sont traditionnellement axés sur le taux d'usure d'un échantillon pour déterminer sa résistance à l'usure. Cependant, la cartographie de l'usure progressive permet d'analyser le taux d'usure de l'échantillon tout au long du test, ce qui fournit des informations précieuses sur le comportement de l'échantillon face à l'usure. Cette analyse approfondie permet d'établir des corrélations entre les données de frottement et le taux d'usure, ce qui permet d'identifier les causes profondes de l'usure. Il convient de noter que les taux d'usure ne sont pas constants tout au long des essais d'usure. Ainsi, l'observation de la progression de l'usure donne une évaluation plus précise de l'usure de l'échantillon. Dépassant les méthodes d'essai traditionnelles, l'adoption de la cartographie de l'usure progressive a contribué à des avancées significatives dans le domaine des essais de revêtements de sol.

Le tribomètre NANOVEA T2000 avec profilomètre 3D sans contact intégré est une solution révolutionnaire pour les tests d'usure et les mesures de perte de volume. Sa capacité à se déplacer avec précision entre la goupille et le profilomètre garantit la fiabilité des résultats en éliminant tout écart de rayon ou d'emplacement des traces d'usure. Mais ce n'est pas tout : les capacités avancées du profilomètre 3D sans contact permettent des mesures de surface à grande vitesse, réduisant le temps de numérisation à quelques secondes seulement. Avec la capacité d'appliquer des charges allant jusqu'à 2 000 N et d'atteindre des vitesses d'essorage allant jusqu'à 5 000 tr/min, le NANOVEA T2000 Tribomètre offre polyvalence et précision dans le processus d’évaluation. Il est clair que cet équipement joue un rôle essentiel dans la cartographie de l'usure progressive.

 

FIGURE 1: Montage de l'échantillon avant l'essai d'usure (à gauche) et profilométrie de la piste d'usure après l'essai d'usure (à droite).

OBJECTIF DE MESURE

Des tests de cartographie d'usure progressive ont été réalisés sur deux types de revêtements de sol : la pierre et le bois. Chaque échantillon a subi un total de 7 cycles de test, avec des durées de test croissantes de 2, 4, 8, 20, 40, 60 et 120 s, permettant une comparaison de l'usure dans le temps. Après chaque cycle d'essai, la piste d'usure a été profilée à l'aide du profilomètre sans contact NANOVEA 3D. À partir des données recueillies par le profileur, le volume du trou et le taux d'usure peuvent être analysés à l'aide des fonctions intégrées dans le logiciel NANOVEA Tribometer ou dans notre logiciel d'analyse de surface, Mountains.

NANOVEA

T2000

échantillons de test de cartographie d'usure pour le bois et la pierre

 LES ÉCHANTILLONS 

PARAMÈTRES DE L'ESSAI DE CARTOGRAPHIE DE L'USURE

CHARGE40 N
DURÉE DU TESTvarie
VITESSE200 tr/min
RADIUS10 mm
DISTANCEvarie
MATÉRIAU DE LA BOULECarbure de tungstène
DIAMÈTRE DE LA BOULE10 mm

Les durées d'essai utilisées au cours des 7 cycles étaient les suivantes 2, 4, 8, 20, 40, 60 et 120 secondesrespectivement. Les distances parcourues étaient les suivantes 0,40, 0,81, 1,66, 4,16, 8,36, 12,55 et 25,11 mètres.

RÉSULTATS DE LA CARTOGRAPHIE DE L'USURE

PARQUET EN BOIS

Cycle d'essaiMax COFMin COFAvg. COF
10.3350.1240.275
20.3370.2070.295
30.3800.2290.329
40.3930.2650.354
50.3520.2050.314
60.3450.1990.312
70.3150.2110.293

 

ORIENTATION RADIALE

Cycle d'essaiPerte totale de volume (µm3)Distance totale
Parcouru (m)
Taux d'usure
(mm/Nm) x10-5
Taux d'usure instantané
(mm/Nm) x10-5
12962476870.401833.7461833.746
23552452271.221093.260181.5637
35963713262.88898.242363.1791
48837477677.04530.629172.5496
5120717995115.40360.88996.69074
6147274531827.95293.32952.89311
7185131921053.06184.34337.69599
taux d'usure progressive du bois par rapport à la distance totale

FIGURE 2 : Taux d'usure en fonction de la distance totale parcourue (gauche)
et taux d'usure instantanée en fonction du cycle d'essai (à droite) pour les revêtements de sol en bois.

cartographie de l'usure progressive des sols en bois

FIGURE 3 : Graphique COF et vue 3D de la trace d'usure de l'essai #7 sur un revêtement de sol en bois.

cartographie de l'usure profil extrait

FIGURE 4 : Analyse transversale de la piste d'usure en bois de l'essai #7

cartographie de l'usure progressive analyse du volume et de la surface

FIGURE 5 : Analyse du volume et de la surface de la trace d'usure sur l'échantillon de bois Test #7.

RÉSULTATS DE LA CARTOGRAPHIE DE L'USURE

SOLS EN PIERRE

Cycle d'essaiMax COFMin COFAvg. COF
10.2490.0350.186
20.3490.1970.275
30.2940.1540.221
40.5030.1240.273
50.5480.1060.390
60.5100.1290.434
70.5270.1810.472

 

ORIENTATION RADIALE

Cycle d'essaiPerte totale de volume (µm3)Distance totale
Parcouru (m)
Taux d'usure
(mm/Nm) x10-5
Taux d'usure instantané
(mm/Nm) x10-5
1962788460.40595.957595.9573
28042897311.222475.1852178.889
313161478552.881982.355770.9501
431365302157.041883.2691093.013
51082173218015.403235.1802297.508
62017496034327.954018.2821862.899
74251206342053.064233.0812224.187
taux d'usure des revêtements de sol en pierre par rapport à la distance
tableau du taux d'usure instantanée des revêtements de sol en pierre

FIGURE 6 : Taux d'usure en fonction de la distance totale parcourue (gauche)
et taux d'usure instantané en fonction du cycle d'essai (à droite) pour un revêtement de sol en pierre.

sol en pierre profil 3d de la piste d'usure

FIGURE 7 : Graphique COF et vue 3D de la piste d'usure de l'essai #7 sur un revêtement de sol en pierre.

profil extrait de la cartographie de l'usure progressive du sol en pierre
revêtement de sol en pierre profil extrait profondeur et hauteur maximales surface du trou et du sommet

FIGURE 8 : Analyse transversale de la piste d'usure en pierre de l'essai #7.

analyse du volume de la cartographie de l'usure progressive des sols en bois

FIGURE 9 : Analyse du volume et de la surface des traces d'usure sur l'échantillon de pierre #7.

DISCUSSION

Le taux d'usure instantané est calculé à l'aide de l'équation suivante :
cartographie de l'usure progressive de la formule de revêtement de sol

Où V est le volume d'un trou, N est la charge et X est la distance totale, cette équation décrit le taux d'usure entre les cycles d'essai. Le taux d'usure instantané peut être utilisé pour mieux identifier les changements du taux d'usure tout au long de l'essai.

Les deux échantillons ont des comportements d'usure très différents. Au fil du temps, le revêtement de sol en bois commence par présenter un taux d'usure élevé, mais diminue rapidement pour atteindre une valeur plus faible et stable. Pour le revêtement de sol en pierre, le taux d'usure semble commencer par une valeur faible et tendre vers une valeur plus élevée au fil des cycles. Le taux d'usure instantané est également peu cohérent. La raison spécifique de cette différence n'est pas certaine, mais elle peut être due à la structure des échantillons. Le revêtement de sol en pierre semble être constitué de particules lâches ressemblant à des grains, qui s'useraient différemment par rapport à la structure compacte du bois. Des tests et des recherches supplémentaires seraient nécessaires pour déterminer la cause de ce comportement d'usure.

Les données relatives au coefficient de frottement (COF) semblent correspondre au comportement d'usure observé. Le graphique du COF pour le revêtement de sol en bois semble cohérent tout au long des cycles, complétant son taux d'usure régulier. Pour le revêtement de sol en pierre, le COF moyen augmente tout au long des cycles, de la même manière que le taux d'usure augmente également avec les cycles. On observe également des changements apparents dans la forme des graphiques de frottement, ce qui suggère des changements dans la manière dont la bille interagit avec l'échantillon de pierre. Ces changements sont particulièrement visibles dans les cycles 2 et 4.

CONCLUSION

Le tribomètre NANOVEA T2000 démontre sa capacité à réaliser une cartographie de l'usure progressive en analysant le taux d'usure entre deux échantillons de revêtements de sol différents. La pause du test d'usure continue et le balayage de la surface avec le profilomètre sans contact NANOVEA 3D fournissent des informations précieuses sur le comportement d'usure du matériau au fil du temps.

Le tribomètre NANOVEA T2000 avec le profilomètre 3D sans contact intégré fournit une grande variété de données, y compris les données COF (coefficient de frottement), les mesures de surface, les relevés de profondeur, la visualisation de la surface, la perte de volume, le taux d'usure, et bien plus encore. Cet ensemble complet d'informations permet aux utilisateurs de mieux comprendre les interactions entre le système et l'échantillon. Avec son chargement contrôlé, sa haute précision, sa facilité d'utilisation, son chargement élevé, sa large plage de vitesse et ses modules environnementaux supplémentaires, le tribomètre NANOVEA T2000 fait passer la tribologie au niveau supérieur.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Dureté à la rayure à haute température à l'aide d'un tribomètre

DURETÉ À LA RAYURE À HAUTE TEMPÉRATURE

EN UTILISANT UN TRIBOMÈTRE

Préparé par

DUANJIE, PhD

INTRODUCTION

La dureté mesure la résistance des matériaux à une déformation permanente ou plastique. Développé à l'origine par un minéralogiste allemand, Friedrich Mohs, en 1820, le test de dureté par rayure détermine la dureté d'un matériau aux rayures et à l'abrasion dues au frottement d'un objet pointu.1. L'échelle de Mohs étant un indice comparatif plutôt qu'une échelle linéaire, une mesure plus précise et qualitative de la dureté par rayure a été mise au point, comme le décrit la norme ASTM G171-03.2. Il mesure la largeur moyenne de la rayure créée par un stylet diamanté et calcule l'indice de dureté de la rayure (HSP).

IMPORTANCE DE LA MESURE DE LA DURETÉ PAR RAYURE À HAUTE TEMPÉRATURE

Les matériaux sont choisis en fonction des exigences de service. Pour les applications impliquant des changements de température importants et des gradients thermiques, il est essentiel d'étudier les propriétés mécaniques des matériaux à haute température afin de connaître parfaitement les limites mécaniques. Les matériaux, en particulier les polymères, se ramollissent généralement à haute température. De nombreuses défaillances mécaniques sont dues à la déformation par fluage et à la fatigue thermique qui ne se produisent qu'à des températures élevées. Il est donc nécessaire de disposer d'une technique fiable pour mesurer la dureté à haute température afin de garantir une sélection adéquate des matériaux pour les applications à haute température.

OBJECTIF DE MESURE

Dans cette étude, le tribomètre NANOVEA T50 mesure la dureté aux rayures d'un échantillon de téflon à différentes températures allant de la température ambiante à 300 °C. La capacité d'effectuer des mesures de dureté aux rayures à haute température rend le NANOVEA Tribomètre un système polyvalent pour les évaluations tribologiques et mécaniques des matériaux pour les applications à haute température.

NANOVEA

T50

CONDITIONS DE TEST

Le tribomètre standard à poids libre NANOVEA T50 a été utilisé pour effectuer les tests de dureté par rayure sur un échantillon de téflon à des températures allant de la température ambiante (RT) à 300°C. Le téflon a un point de fusion de 326,8°C. Un stylet conique en diamant d'un angle d'apex de 120° avec un rayon de pointe de 200 µm a été utilisé. L'échantillon de téflon a été fixé sur la platine d'échantillonnage rotative à une distance de 10 mm du centre de la platine. L'échantillon a été chauffé par un four et testé aux températures suivantes : RT, 50°C, 100°C, 150°C, 200°C, 250°C et 300°C.

PARAMÈTRES D'ESSAI

de la mesure de la dureté par rayure à haute température

FORCE NORMALE 2 N
VITESSE DE GLISSEMENT 1 mm/s
DISTANCE DE GLISSEMENT 8mm par temp
ATMOSPHÈRE Air
TEMPÉRATURE RT, 50°C, 100°C, 150°C, 200°C, 250°C, 300°C.

RÉSULTATS ET DISCUSSION

Les profils des traces de rayure de l'échantillon de téflon à différentes températures sont illustrés à la FIGURE 1 afin de comparer la dureté de la rayure à différentes températures élevées. L'amas de matériau sur les bords de la piste de rayure se forme lorsque le stylet se déplace à une charge constante de 2 N et pénètre dans l'échantillon de téflon, poussant et déformant le matériau dans la piste de rayure sur le côté.

Les traces de rayures ont été examinées au microscope optique, comme indiqué sur la FIGURE 2. La largeur des traces de rayure mesurée et les indices de dureté de la rayure (HSP) calculés sont résumés et comparés dans la FIGURE 3. La largeur des traces de rayure mesurée par le microscope est en accord avec celle mesurée à l'aide du profileur NANOVEA - l'échantillon de téflon présente une largeur de rayure plus importante à des températures plus élevées. La largeur de la trace de rayure passe de 281 à 539 µm lorsque la température passe de RT à 300oC, ce qui entraîne une diminution de la HSP de 65 à 18 MPa.

La dureté par rayure à des températures élevées peut être mesurée avec une précision et une répétabilité élevées en utilisant le tribomètre NANOVEA T50. Il offre une solution alternative aux autres mesures de dureté et fait des tribomètres NANOVEA un système plus complet pour des évaluations tribo-mécaniques complètes à haute température.

FIGURE 1: Profils des traces de rayures après les tests de dureté à la rayure à différentes températures.

FIGURE 2 : Traces de rayures sous le microscope après les mesures à différentes températures.

FIGURE 3 : Évolution de la largeur de la trace de rayure et de la dureté de la rayure en fonction de la température.

CONCLUSION

Dans cette étude, nous montrons comment le tribomètre NANOVEA mesure la dureté par rayure à des températures élevées, conformément à la norme ASTM G171-03. L'essai de dureté par rayure à charge constante constitue une solution alternative simple pour comparer la dureté des matériaux à l'aide du tribomètre. La capacité à effectuer des mesures de dureté par rayure à des températures élevées fait du tribomètre NANOVEA un outil idéal pour évaluer les propriétés tribo-mécaniques des matériaux à haute température.

Le tribomètre NANOVEA offre également des tests d'usure et de friction précis et reproductibles en utilisant des modes rotatifs et linéaires conformes aux normes ISO et ASTM, avec des modules optionnels d'usure à haute température, de lubrification et de tribo-corrosion disponibles dans un système pré-intégré. Un profileur 3D sans contact est disponible en option pour l'imagerie 3D haute résolution des traces d'usure en plus d'autres mesures de surface telles que la rugosité.

1 Wredenberg, Fredrik ; PL Larsson (2009). "Essai de rayure des métaux et des polymères : Experiments and numerics". Wear 266 (1-2) : 76
2 ASTM G171-03 (2009), "Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus" (méthode d'essai standard pour la dureté des matériaux par rayure à l'aide d'un stylet en diamant).

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Évaluation des rayures et de l'usure des revêtements industriels

REVÊTEMENT INDUSTRIEL

ÉVALUATION DES RAYURES ET DE L'USURE À L'AIDE D'UN TRIBOMÈTRE

Préparé par

DUANJIE LI, PhD & ANDREA HERRMANN

INTRODUCTION

La peinture acrylique uréthane est un type de revêtement de protection à séchage rapide largement utilisé dans une variété d'applications industrielles, telles que la peinture de sol, la peinture automobile, et autres. Lorsqu'elle est utilisée comme peinture de sol, elle peut être utilisée dans des zones à fort trafic piétonnier et de roues en caoutchouc, comme les allées, les bordures et les parkings.

IMPORTANCE DES ESSAIS DE RAYURE ET D'USURE POUR LE CONTRÔLE DE LA QUALITÉ

Traditionnellement, des tests d'abrasion Taber étaient réalisés pour évaluer la résistance à l'usure des peintures pour sols en uréthane acrylique, conformément à la norme ASTM D4060. Cependant, comme le mentionne la norme, "pour certains matériaux, les essais d'abrasion utilisant l'abrasif de Taber peuvent être sujets à des variations dues à des changements dans les caractéristiques abrasives de la roue pendant l'essai".1 Cela peut entraîner une mauvaise reproductibilité des résultats d'essai et créer des difficultés pour comparer les valeurs rapportées par différents laboratoires. De plus, dans les tests d'abrasion Taber, la résistance à l'abrasion est calculée en tant que perte de poids à un nombre spécifié de cycles d'abrasion. Cependant, les peintures pour sols à base d'uréthane acrylique ont une épaisseur de film sec recommandée de 37,5 à 50 μm2.

Le processus d'abrasion agressif de Taber Abraser peut rapidement user le revêtement acrylique-uréthane et créer une perte de masse vers le substrat, ce qui entraîne des erreurs substantielles dans le calcul de la perte de poids de la peinture. L'implantation de particules abrasives dans la peinture pendant l'essai d'abrasion contribue également aux erreurs. Par conséquent, une mesure quantifiable et fiable bien contrôlée est cruciale pour garantir une évaluation reproductible de l'usure de la peinture. En outre, l'essai d'abrasion test de dépistage permet aux utilisateurs de détecter les défaillances prématurées des adhésifs dans des applications réelles.

OBJECTIF DE MESURE

Dans cette étude, nous montrons que NANOVEA Tribomètres et Testeurs mécaniques sont idéaux pour l’évaluation et le contrôle qualité des revêtements industriels.

Le processus d'usure des peintures de sol en uréthane acrylique avec différentes couches de finition est simulé de manière contrôlée et surveillée à l'aide du tribomètre NANOVEA. Le test de micro-rayures est utilisé pour mesurer la charge nécessaire pour provoquer une rupture cohésive ou adhésive de la peinture.

NANOVEA T100

Le Tribomètre Pneumatique Compact

NANOVEA PB1000

L'appareil d'essai mécanique à grande plate-forme

PROCÉDURE DE TEST

Cette étude évalue quatre revêtements de sol acryliques à base d'eau disponibles dans le commerce qui ont le même apprêt (couche de base) et différentes couches de finition de la même formule avec une légère alternance dans les mélanges d'additifs dans le but d'améliorer la durabilité. Ces quatre revêtements sont identifiés comme les échantillons A, B, C et D.

TEST D'USURE

Le tribomètre NANOVEA a été appliqué pour évaluer le comportement tribologique, par exemple le coefficient de frottement, le COF et la résistance à l'usure. Une pointe sphérique SS440 (diamètre 6 mm, grade 100) a été appliquée contre les peintures testées. Le COF a été enregistré in situ. Le taux d'usure, K, a été évalué à l'aide de la formule K=V/(F×s)=A/(F×n), où V est le volume usé, F est la charge normale, s est la distance de glissement, A est la surface de la section transversale de la piste d'usure, et n est le nombre de tours. Les profils de rugosité de surface et de traces d'usure ont été évalués par le NANOVEA Profilomètre optique, et la morphologie des traces d'usure a été examinée au microscope optique.

PARAMÈTRES DES ESSAIS D'USURE

FORCE NORMALE

20 N

VITESSE

15 m/min

DURÉE DE L'ESSAI

100, 150, 300 et 800 cycles

TEST D'ÉRAFLURE

Le testeur mécanique NANOVEA équipé d'un stylet en diamant Rockwell C (rayon de 200 μm) a été utilisé pour effectuer des tests de rayures à charge progressive sur les échantillons de peinture en utilisant le mode Micro Scratch Tester. Deux charges finales ont été utilisées : Une charge finale de 5 N pour étudier le décollement de la peinture de l'apprêt, et une charge finale de 35 N pour étudier le décollement de l'apprêt des substrats métalliques. Trois tests ont été répétés dans les mêmes conditions sur chaque échantillon afin de garantir la reproductibilité des résultats.

Des images panoramiques de toutes les longueurs de rayures ont été automatiquement générées et leurs emplacements de défaillance critique ont été corrélés avec les charges appliquées par le logiciel du système. Cette fonctionnalité du logiciel permet aux utilisateurs d'effectuer des analyses sur les traces de rayures à tout moment, plutôt que de devoir déterminer la charge critique au microscope immédiatement après les essais de rayures.

PARAMÈTRES DE L'ESSAI DE GRATTAGE

TYPE DE CHARGEProgressif
CHARGE INITIALE0,01 mN
CHARGE FINALE5 N / 35 N
TAUX DE CHARGEMENT10 / 70 N/min
LONGUEUR DU GRATTAGE3 mm
VITESSE DE SCRATCHAGE, dx/dt6.0 mm/min
GÉOMÉTRIE DU PÉNÉTRATEURCône de 120º.
MATÉRIAU DE L'INDENTATEUR (pointe)Diamant
RAYON DE LA POINTE DU PÉNÉTRATEUR200 μm

RÉSULTATS DES TESTS D'USURE

Quatre tests d'usure de type " pin-on-disk " à différents nombres de tours (100, 150, 300 et 800 cycles) ont été réalisés sur chaque échantillon afin de suivre l'évolution de l'usure. La morphologie de la surface des échantillons a été mesurée à l'aide d'un profileur sans contact NANOVEA 3D afin de quantifier la rugosité de surface avant de réaliser les essais d'usure. Tous les échantillons présentaient une rugosité de surface comparable d'environ 1 μm, comme le montre la FIGURE 1. Le COF a été enregistré in situ pendant les essais d'usure, comme le montre la FIGURE 2. La FIGURE 4 présente l'évolution des traces d'usure après 100, 150, 300 et 800 cycles, et la FIGURE 3 résume le taux d'usure moyen des différents échantillons à différentes étapes du processus d'usure.

 

Comparé à une valeur de COF de ~0,07 pour les trois autres échantillons, l'échantillon A présente un COF beaucoup plus élevé de ~0,15 au début, qui augmente progressivement et se stabilise à ~0,3 après 300 cycles d'usure. Un COF aussi élevé accélère le processus d'usure et crée une quantité substantielle de débris de peinture comme l'indique la FIGURE 4 - la couche supérieure de l'échantillon A a commencé à être enlevée dans les 100 premiers tours. Comme l'indique la FIGURE 3, l'échantillon A présente le taux d'usure le plus élevé de ~5 μm2/N au cours des 300 premiers cycles, qui diminue légèrement à ~3,5 μm2/N en raison de la meilleure résistance à l'usure du substrat métallique. La couche supérieure de l'échantillon C commence à se rompre après 150 cycles d'usure, comme le montre la FIGURE 4, ce qui est également indiqué par l'augmentation du COF dans la FIGURE 2.

 

En comparaison, l'échantillon B et l'échantillon D présentent des propriétés tribologiques améliorées. L'échantillon B maintient un faible COF tout au long de l'essai - le COF augmente légèrement de ~0,05 à ~0,1. Un tel effet lubrifiant améliore considérablement sa résistance à l'usure - la couche de finition offre toujours une protection supérieure à l'apprêt sous-jacent après 800 cycles d'usure. Le taux d'usure moyen le plus faible de seulement ~0,77 μm2/N est mesuré pour l'échantillon B à 800 cycles. La couche supérieure de l'échantillon D commence à se délaminer après 375 cycles, comme le reflète l'augmentation abrupte du COF dans la FIGURE 2. Le taux d'usure moyen de l'échantillon D est de ~1,1 μm2/N à 800 cycles.

 

Par rapport aux mesures d'abrasion Taber conventionnelles, le tribomètre NANOVEA fournit des évaluations d'usure bien contrôlées, quantifiables et fiables qui garantissent des évaluations reproductibles et un contrôle de qualité des peintures commerciales pour sols/auto. En outre, la capacité des mesures in situ du COF permet aux utilisateurs de corréler les différentes étapes d'un processus d'usure avec l'évolution du COF, ce qui est essentiel pour améliorer la compréhension fondamentale du mécanisme d'usure et des caractéristiques tribologiques de divers revêtements de peinture.

FIGURE 1: Morphologie 3D et rugosité des échantillons de peinture.

FIGURE 2 : COF pendant les tests pin-on-disk.

FIGURE 3 : Évolution du taux d'usure de différentes peintures.

FIGURE 4 : Évolution des traces d'usure pendant les essais "pin-on-disk".

RÉSULTATS DU TEST DE GRATTAGE

La FIGURE 5 montre le tracé de la force normale, de la force de frottement et de la profondeur réelle en fonction de la longueur de la rayure pour l'échantillon A à titre d'exemple. Un module d'émission acoustique optionnel peut être installé pour fournir plus d'informations. Lorsque la charge normale augmente linéairement, la pointe de l'indentation s'enfonce progressivement dans l'échantillon testé, comme le reflète l'augmentation progressive de la profondeur réelle. La variation des pentes des courbes de la force de frottement et de la profondeur réelle peut être utilisée comme l'une des implications du début des défaillances du revêtement.

FIGURE 5 : Force normale, force de frottement et profondeur réelle en fonction de la longueur de la rayure pour l'essai de rayure de l'échantillon A avec une charge maximale de 5 N.

La FIGURE 6 et la FIGURE 7 montrent les rayures complètes des quatre échantillons de peinture testés avec une charge maximale de 5 N et 35 N, respectivement. L'échantillon D a nécessité une charge plus élevée de 50 N pour délaminer l'apprêt. Les tests de rayures à une charge finale de 5 N (FIGURE 6) évaluent la défaillance cohésive/adhésive de la peinture supérieure, tandis que ceux à 35 N (FIGURE 7) évaluent la délamination du primaire. Les flèches dans les micrographies indiquent le point auquel la peinture supérieure ou le primaire commence à se détacher complètement du primaire ou du substrat. La charge à ce point, appelée charge critique, Lc, est utilisée pour comparer les propriétés cohésives ou adhésives de la peinture, comme résumé dans le tableau 1.

 

Il est évident que l'échantillon de peinture D présente la meilleure adhérence interfaciale - affichant les valeurs Lc les plus élevées de 4,04 N à la délamination de la peinture et de 36,61 N à la délamination du primaire. L'échantillon B présente la deuxième meilleure résistance aux rayures. À partir de l'analyse des rayures, nous montrons que l'optimisation de la formule de la peinture est essentielle pour les comportements mécaniques, ou plus précisément, la résistance aux rayures et les propriétés d'adhésion des peintures acryliques pour sols.

Tableau 1 : Résumé des charges critiques.

FIGURE 6 : Micrographies d'une rayure complète avec une charge maximale de 5 N.

FIGURE 7 : Micrographies d'une rayure complète avec une charge maximale de 35 N.

CONCLUSION

Par rapport aux mesures d'abrasion Taber conventionnelles, le testeur mécanique et le tribomètre NANOVEA sont des outils supérieurs pour l'évaluation et le contrôle de la qualité des revêtements de sol commerciaux et automobiles. Le testeur mécanique NANOVEA en mode rayure peut détecter les problèmes d'adhésion/cohésion dans un système de revêtement. Le tribomètre NANOVEA fournit une analyse tribologique quantifiable et répétable bien contrôlée sur la résistance à l'usure et le coefficient de frottement des peintures.

 

Sur la base des analyses tribologiques et mécaniques complètes des revêtements de sol acryliques à base d'eau testés dans cette étude, nous montrons que l'échantillon B possède le COF et le taux d'usure les plus faibles et la deuxième meilleure résistance aux rayures, tandis que l'échantillon D présente la meilleure résistance aux rayures et la deuxième meilleure résistance à l'usure. Cette évaluation nous permet d'évaluer et de sélectionner le meilleur candidat ciblant les besoins dans différents environnements d'application.

 

Les modules Nano et Micro du testeur mécanique NANOVEA comprennent tous des modes d'indentation, de rayure et d'usure conformes aux normes ISO et ASTM, offrant ainsi la plus large gamme de tests disponibles pour l'évaluation des peintures sur un seul module. Le tribomètre NANOVEA offre des tests d'usure et de friction précis et répétables en utilisant des modes rotatifs et linéaires conformes aux normes ISO et ASTM, avec des modules optionnels d'usure à haute température, de lubrification et de tribocorrosion disponibles dans un système pré-intégré. La gamme inégalée de NANOVEA constitue une solution idéale pour déterminer l'ensemble des propriétés mécaniques/tribologiques des revêtements, films et substrats minces ou épais, souples ou durs, notamment la dureté, le module de Young, la résistance à la rupture, l'adhérence, la résistance à l'usure et bien d'autres encore. Des profileurs optiques sans contact NANOVEA sont disponibles en option pour l'imagerie 3D haute résolution des rayures et des traces d'usure, en plus d'autres mesures de surface telles que la rugosité.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Usure et frottement des courroies polymères à l'aide d'un tribomètre

COURROIES EN POLYMÈRE

USURE ET FRICTION à l'aide d'un TRIBOMETRE

Préparé par

DUANJIE LI, PhD

INTRODUCTION

La transmission par courroie transmet la puissance et suit le mouvement relatif entre deux ou plusieurs arbres rotatifs. En tant que solution simple et peu coûteuse avec un entretien minimal, les transmissions par courroie sont largement utilisées dans une variété d'applications, telles que les scies à ruban, les scieries, les batteuses, les souffleurs de silo et les convoyeurs. Les transmissions par courroie peuvent protéger les machines contre les surcharges, ainsi qu'amortir et isoler les vibrations.

IMPORTANCE DE L'ÉVALUATION DE L'USURE POUR LES TRANSMISSIONS PAR COURROIE

Le frottement et l'usure sont inévitables pour les courroies d'une machine entraînée par courroie. Un frottement suffisant assure une transmission efficace de la puissance sans glissement, mais un frottement excessif peut entraîner une usure rapide de la courroie. Différents types d'usure tels que la fatigue, l'abrasion et le frottement se produisent pendant le fonctionnement de la transmission par courroie. Afin de prolonger la durée de vie de la courroie et de réduire le coût et le temps de réparation et de remplacement de la courroie, une évaluation fiable des performances d'usure des courroies est souhaitable pour améliorer la durée de vie des courroies, l'efficacité de la production et les performances des applications. La mesure précise du coefficient de friction et du taux d'usure de la courroie facilite la R&D et le contrôle de la qualité de la production de courroies.

OBJECTIF DE MESURE

Dans cette étude, nous avons simulé et comparé les comportements d'usure de courroies présentant différentes textures de surface afin de mettre en évidence la capacité de l NANOVEA Le tribomètre T2000 permet de simuler le processus d'usure de la courroie de manière contrôlée et surveillée.

NANOVEA

T2000

PROCÉDURES DE TEST

Le coefficient de frottement (COF) et la résistance à l'usure de deux courroies présentant des rugosités et des textures de surface différentes ont été évalués par l'analyse de l'indice de frottement. NANOVEA Charge élevée Tribomètre utilisant le module d'usure à mouvement alternatif linéaire. Une bille en acier 440 (diamètre 10 mm) a été utilisée comme contre-matériau. La rugosité de la surface et la trace d'usure ont été examinées à l'aide d'un Profilomètre 3D sans contact. Le taux d'usure, Ka été évaluée à l'aide de la formule K=Vl(Fxs)V est le volume usé, F est la charge normale et s est la distance de glissement.

 

Veuillez noter qu'une contrepartie lisse en acier 440 a été utilisée comme exemple dans cette étude. Tout matériau solide de forme et de finition de surface différentes peut être appliqué à l'aide de montages personnalisés pour simuler la situation d'application réelle.

RÉSULTATS ET DISCUSSION

La bande texturée et la bande lisse ont une rugosité de surface Ra de 33,5 et 8,7 um, respectivement, d'après les profils de surface analysés pris avec une NANOVEA Profileur optique 3D sans contact. Le COF et le taux d'usure des deux courroies testées ont été mesurés à 10 N et 100 N, respectivement, afin de comparer le comportement d'usure des courroies à différentes charges.

FIGURE 1 montre l'évolution du COF des courroies pendant les essais d'usure. Les courroies avec différentes textures présentent des comportements d'usure sensiblement différents. Il est intéressant de noter qu'après la période de rodage au cours de laquelle le COF augmente progressivement, la courroie texturée atteint un COF inférieur de ~0,5 dans les deux tests réalisés avec des charges de 10 N et 100 N. En comparaison, la courroie lisse testée sous une charge de 10 N présente un COF nettement plus élevé de ~1,4 lorsque le COF se stabilise et se maintient au-dessus de cette valeur pour le reste du test. La courroie lisse testée sous une charge de 100 N a été rapidement usée par la bille d'acier 440 et a formé une grande trace d'usure. L'essai a donc été arrêté à 220 tours.

FIGURE 1: Evolution du COF des courroies à différentes charges.

La FIGURE 2 compare les images des traces d'usure en 3D après les essais à 100 N. Le profilomètre sans contact NANOVEA 3D offre un outil pour analyser la morphologie détaillée des traces d'usure, ce qui permet de mieux comprendre le mécanisme d'usure.

TABLEAU 1 : Résultat de l'analyse des traces d'usure.

FIGURE 2 :  Vue 3D des deux courroies
après les essais à 100 N.

Le profil de la trace d'usure en 3D permet de déterminer directement et précisément le volume de la trace d'usure calculé par le logiciel d'analyse avancée, comme le montre le TABLEAU 1. Lors d'un essai d'usure de 220 tours, la courroie lisse présente une trace d'usure beaucoup plus grande et plus profonde avec un volume de 75,7 mm3, contre un volume d'usure de 14,0 mm3 pour la courroie texturée après un essai d'usure de 600 tours. Le frottement nettement plus élevé de la courroie lisse contre la bille d'acier entraîne un taux d'usure 15 fois supérieur à celui de la courroie texturée.

 

Une telle différence de COF entre la courroie texturée et la courroie lisse est probablement liée à la taille de la zone de contact entre la courroie et la bille d'acier, ce qui entraîne également des performances d'usure différentes. La FIGURE 3 montre les traces d'usure des deux courroies au microscope optique. L'examen des traces d'usure est en accord avec l'observation de l'évolution du COF : La courroie texturée, qui maintient un faible COF de ~0,5, ne présente aucun signe d'usure après le test d'usure sous une charge de 10 N. La courroie lisse présente une petite trace d'usure à 10 N. Les tests d'usure effectués à 100 N créent des traces d'usure beaucoup plus grandes sur les courroies texturées et lisses, et le taux d'usure sera calculé à l'aide de profils 3D, comme nous le verrons dans le paragraphe suivant.

FIGURE 3 :  Traces d'usure au microscope optique.

CONCLUSION

Dans cette étude, nous avons démontré la capacité du tribomètre NANOVEA T2000 à évaluer le coefficient de friction et le taux d'usure des courroies d'une manière bien contrôlée et quantitative. La texture de la surface joue un rôle essentiel dans la résistance au frottement et à l'usure des courroies pendant leur durée de vie. La courroie texturée présente un coefficient de frottement stable de ~0,5 et possède une longue durée de vie, ce qui permet de réduire le temps et les coûts de réparation ou de remplacement des outils. En comparaison, le frottement excessif de la courroie lisse contre la bille d'acier use rapidement la courroie. En outre, la charge exercée sur la courroie est un facteur essentiel de sa durée de vie. La surcharge crée une friction très élevée, ce qui entraîne une usure accélérée de la courroie.

Le tribomètre NANOVEA T2000 offre des essais d'usure et de friction précis et répétables en utilisant des modes rotatifs et linéaires conformes aux normes ISO et ASTM, avec des modules optionnels d'usure à haute température, de lubrification et de tribocorrosion disponibles dans un système pré-intégré. NANOVEA's est une solution idéale pour déterminer la gamme complète des propriétés tribologiques des revêtements, films et substrats minces ou épais, mous ou durs.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Performance d'abrasion du papier de verre à l'aide d'un tribomètre

PERFORMANCE D'ABRASION DU PAPIER DE VERRE

EN UTILISANT UN TRIBOMÈTRE

Préparé par

DUANJIE LI, PhD

INTRODUCTION

Le papier de verre est constitué de particules abrasives collées sur une face d'un papier ou d'une toile. Divers matériaux abrasifs peuvent être utilisés pour les particules, comme le grenat, le carbure de silicium, l'oxyde d'aluminium et le diamant. Le papier de verre est largement appliqué dans divers secteurs industriels pour créer des finitions de surface spécifiques sur le bois, le métal et les cloisons sèches. Ils travaillent souvent sous un contact à haute pression appliqué par des outils manuels ou électriques.

IMPORTANCE DE L'ÉVALUATION DES PERFORMANCES D'ABRASION DU PAPIER DE VERRE

L'efficacité d'un papier de verre est souvent déterminée par ses performances d'abrasion dans différentes conditions. La granulométrie, c'est-à-dire la taille des particules abrasives incorporées dans le papier de verre, détermine le taux d'usure et la taille des rayures du matériau à poncer. Les papiers de verre à granulométrie élevée ont des particules plus petites, ce qui se traduit par des vitesses de ponçage plus faibles et des finitions de surface plus fines. Les papiers de verre ayant le même numéro de grain mais fabriqués dans des matériaux différents peuvent avoir des comportements différents dans des conditions sèches ou humides. Des évaluations tribologiques fiables sont nécessaires pour garantir que le papier de verre fabriqué possède le comportement abrasif souhaité. Ces évaluations permettent aux utilisateurs de comparer quantitativement les comportements d'usure de différents types de papier de verre d'une manière contrôlée et surveillée afin de sélectionner le meilleur candidat pour l'application visée.

OBJECTIF DE MESURE

Dans cette étude, nous démontrons la capacité du tribomètre NANOVEA à évaluer quantitativement les performances d'abrasion de divers échantillons de papier de verre dans des conditions sèches et humides.

NANOVEA

T2000

PROCÉDURES DE TEST

Le coefficient de frottement (COF) et les performances à l'abrasion de deux types de papiers de verre ont été évalués par le tribomètre NANOVEA T100. Une bille en acier inoxydable 440 a été utilisée comme matériau de comptoir. Les traces d'usure des billes ont été examinées après chaque test d'usure à l'aide du NANOVEA Profileur optique 3D sans contact pour assurer des mesures précises de perte de volume.

Veuillez noter qu'une bille en acier inoxydable 440 a été choisie comme contre-matériau pour créer une étude comparative, mais tout matériau solide pourrait être substitué pour simuler une condition d'application différente.

RÉSULTATS DES TESTS ET DISCUSSION

La FIGURE 1 montre une comparaison du COF des papiers de verre 1 et 2 dans des conditions environnementales sèches et humides. Le papier de verre 1, dans des conditions sèches, présente un COF de 0,4 au début du test qui diminue progressivement et se stabilise à 0,3. Dans des conditions humides, cet échantillon présente un COF moyen plus faible de 0,27. En revanche, les résultats du COF de l'échantillon 2 montrent un COF à sec de 0,27 et un COF humide de ~ 0,37. 

Veuillez noter que l'oscillation dans les données pour tous les graphiques COF a été causée par les vibrations générées par le mouvement de glissement de la balle contre les surfaces rugueuses du papier de verre.

FIGURE 1: Évolution du COF pendant les essais d'usure.

La FIGURE 2 résume les résultats de l'analyse des cicatrices d'usure. Les cicatrices d'usure ont été mesurées à l'aide d'un microscope optique et d'un profileur optique sans contact NANOVEA 3D. La FIGURE 3 et la FIGURE 4 comparent les cicatrices d'usure des billes SS440 usées après les tests d'usure sur le papier de verre 1 et 2 (conditions humides et sèches). Comme le montre la FIGURE 4, le profileur optique NANOVEA a capturé avec précision la topographie de la surface des quatre billes et leurs traces d'usure respectives, qui ont ensuite été traitées par le logiciel d'analyse avancée NANOVEA Mountains pour calculer la perte de volume et le taux d'usure. Sur le microscope et l'image de profil de la bille, on peut observer que la bille utilisée pour l'essai avec le papier de verre 1 (sec) présentait une cicatrice d'usure aplatie plus importante que les autres, avec une perte de volume de 0,313 %. mm3. En revanche, la perte de volume pour le papier de verre 1 (humide) était de 0.131 mm3. Pour le papier de verre 2 (sec) la perte de volume était de 0.163 mm3 et pour le papier de verre 2 (humide) la perte de volume a augmenté à 0.237 mm3.

De plus, il est intéressant d'observer que le COF a joué un rôle important dans les performances d'abrasion des papiers de verre. Le papier de verre 1 a présenté un COF plus élevé dans les conditions sèches, ce qui a conduit à un taux d'abrasion plus élevé pour la bille SS440 utilisée dans le test. En comparaison, le COF plus élevé du papier de verre 2 à l'état humide a entraîné un taux d'abrasion plus élevé. Les traces d'usure des papiers de verre après les mesures sont présentées dans la FIGURE 5.

Les papiers de verre 1 et 2 prétendent fonctionner dans des environnements secs et humides. Cependant, ils ont présenté des performances d’abrasion significativement différentes dans des conditions sèches et humides. NANOVÉA tribomètres fournir des capacités d'évaluation de l'usure bien contrôlées, quantifiables et fiables qui garantissent des évaluations d'usure reproductibles. De plus, la capacité de mesure du COF in situ permet aux utilisateurs de corréler les différentes étapes d'un processus d'usure avec l'évolution du COF, ce qui est essentiel pour améliorer la compréhension fondamentale du mécanisme d'usure et des caractéristiques tribologiques du papier de verre.

FIGURE 2 : Volume de la cicatrice d'usure des billes et COF moyen dans différentes conditions.

FIGURE 3 : Cicatrices d'usure des balles après les tests.

FIGURE 4 : Morphologie 3D des cicatrices d'usure sur les billes.

FIGURE 5 : Traces d'usure sur les papiers de verre dans différentes conditions.

CONCLUSION

Dans cette étude, les performances d'abrasion de deux types de papiers de verre de même numéro de grain ont été évaluées dans des conditions sèches et humides. Les conditions d'utilisation du papier de verre jouent un rôle essentiel dans l'efficacité du travail. Le papier de verre 1 possède un comportement à l'abrasion significativement meilleur dans des conditions sèches, tandis que le papier de verre 2 est plus performant dans des conditions humides. La friction pendant le processus de ponçage est un facteur important à prendre en compte lors de l'évaluation des performances d'abrasion. Le profileur optique NANOVEA mesure précisément la morphologie 3D de toute surface, comme les cicatrices d'usure sur une bille, ce qui garantit une évaluation fiable des performances d'abrasion du papier de verre dans cette étude. Le tribomètre NANOVEA mesure le coefficient de friction in situ pendant un essai d'usure, ce qui permet de mieux comprendre les différentes étapes d'un processus d'usure. Il offre également des tests d'usure et de friction répétables en utilisant des modes rotatifs et linéaires conformes aux normes ISO et ASTM, avec des modules optionnels d'usure et de lubrification à haute température disponibles dans un système pré-intégré. Cette gamme inégalée permet aux utilisateurs de simuler différents environnements de travail sévères pour les roulements à billes, notamment les contraintes élevées, l'usure et les températures élevées, etc. Elle constitue également un outil idéal pour évaluer quantitativement les comportements tribologiques de matériaux supérieurs résistant à l'usure sous des charges élevées.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Test d'usure des pistons

Test d'usure des pistons

Utilisation d'un tribomètre

Préparé par

FRANK LIU

INTRODUCTION

La perte par frottement représente environ 10% de l'énergie totale du carburant d'un moteur diesel.[1]. 40-55% de la perte par friction provient du système de cylindre de puissance. La perte d'énergie due au frottement peut être diminuée par une meilleure compréhension des interactions tribologiques qui se produisent dans le système de cylindre de puissance.

Une partie importante de la perte par frottement dans le système de cylindre de puissance provient du contact entre la jupe du piston et la chemise du cylindre. L'interaction entre la jupe du piston, le lubrifiant et les interfaces du cylindre est assez complexe en raison des changements constants de force, de température et de vitesse dans un moteur réel. L'optimisation de chaque facteur est essentielle pour obtenir des performances optimales du moteur. Cette étude se concentre sur la reproduction des mécanismes à l'origine des forces de frottement et de l'usure aux interfaces jupe du piston - lubrifiant - chemise du cylindre (P-L-C).

 Schéma du système de vérins de puissance et des interfaces jupe de piston-lubrifiant-revêtement de vérin.

[1] Bai, Dongfang. Modélisation de la lubrification de la jupe du piston dans les moteurs à combustion interne. Diss. MIT, 2012

IMPORTANCE DE TESTER LES PISTONS AVEC DES TRIBOMÈTRES

L'huile moteur est un lubrifiant bien conçu pour son application. Outre l'huile de base, des additifs tels que des détergents, des dispersants, des améliorants de viscosité (VI), des agents anti-usure/anti-friction et des inhibiteurs de corrosion sont ajoutés pour améliorer ses performances. Ces additifs influent sur le comportement de l'huile dans différentes conditions de fonctionnement. Le comportement de l'huile affecte les interfaces P-L-C et détermine si une usure importante par contact métal-métal ou une lubrification hydrodynamique (très peu d'usure) se produit.

Il est difficile de comprendre les interfaces P-L-C sans isoler la zone des variables externes. Il est plus pratique de simuler l'événement avec des conditions représentatives de son application réelle. Le site NANOVEA Tribomètre est idéal pour cela. Équipé de plusieurs capteurs de force, d'un capteur de profondeur, d'un module de lubrifiant goutte à goutte et d'un étage linéaire alternatif, le NANOVEA Le T2000 est capable de reproduire fidèlement les événements qui se produisent dans un bloc moteur et d'obtenir des données précieuses pour mieux comprendre les interfaces P-L-C.

Module liquide sur le tribomètre NANOVEA T2000

Le module goutte à goutte est crucial pour cette étude. Comme les pistons peuvent se déplacer à une vitesse très rapide (supérieure à 3 000 tr/min), il est difficile de créer un film mince de lubrifiant en immergeant l'échantillon. Pour remédier à ce problème, le module de goutte-à-goutte est capable d'appliquer une quantité constante de lubrifiant sur la surface de la jupe du piston.

L'application d'un lubrifiant frais élimine également le risque que des contaminants d'usure délogés influencent les propriétés du lubrifiant.

NANOVEA T2000

Tribomètre à charge élevée

OBJECTIF DE MESURE

Les interfaces jupe du piston - lubrifiant - chemise du cylindre seront étudiées dans ce rapport. Les interfaces seront reproduites en effectuant un essai d'usure linéaire alternatif avec un module de lubrifiant goutte à goutte.

Le lubrifiant sera appliqué à température ambiante et à chaud pour comparer les conditions de démarrage à froid et de fonctionnement optimal. Le COF et le taux d'usure seront observés pour mieux comprendre le comportement des interfaces dans des applications réelles.

PARAMÈTRES D'ESSAI

pour les essais tribologiques sur les pistons

CHARGE ............................ 100 N

DURÉE DU TEST ............................ 30 minutes

VITESSE ............................ 2000 rpm

AMPLITUDE ............................ 10 mm

DISTANCE TOTALE ............................ 1200 m

REVÊTEMENT DE LA JUPE ............................ Moly-graphite

MATÉRIAU DE LA BROCHE ............................ Alliage d'aluminium 5052

DIAMÈTRE DE LA BROCHE ............................ 10 mm

LUBRIFIANT ............................ Huile moteur (10W-30)

APPROX. DÉBIT ............................ 60 mL/min

TEMPÉRATURE ............................ Température ambiante et 90°C

RÉSULTATS DES ESSAIS DE RÉCIPROCITÉ LINÉAIRE

Dans cette expérience, l'A5052 a été utilisé comme contre-matériau. Alors que les blocs moteurs sont généralement fabriqués en aluminium moulé tel que l'A356, l'A5052 a des propriétés mécaniques similaires à l'A356 pour ce test de simulation [2].

Dans les conditions d'essai, une usure importante a été
observée sur la jupe du piston à température ambiante
par rapport à la température de 90°C. Les rayures profondes observées sur les échantillons suggèrent que le contact entre le matériau statique et la jupe du piston se produit fréquemment tout au long de l'essai. La viscosité élevée à température ambiante peut empêcher l'huile de remplir complètement les espaces aux interfaces et de créer un contact métal-métal. À une température plus élevée, l'huile s'amincit et est capable de s'écouler entre l'axe et le piston. Par conséquent, on observe une usure nettement moindre à une température plus élevée. La FIGURE 5 montre qu'un côté de la cicatrice d'usure s'est beaucoup moins usé que l'autre. Cela est très probablement dû à l'emplacement de la sortie d'huile. L'épaisseur du film de lubrifiant était plus importante d'un côté que de l'autre, provoquant une usure inégale.

 

 

[2] "Aluminium 5052 vs aluminium 356.0." MakeItFrom.com, makeitfrom.com/compare/5052-O-Aluminum/A356.0-SG70B-A13560-Cast-Aluminum

Le COF des essais de tribologie à mouvement alternatif linéaire peut être divisé en un passage haut et un passage bas. Le passage haut fait référence à l'échantillon se déplaçant dans la direction avant, ou positive, et le passage bas fait référence à l'échantillon se déplaçant dans la direction inverse, ou négative. On a observé que le COF moyen pour l'huile RT était inférieur à 0,1 dans les deux sens. Les COF moyens entre les passages étaient de 0,072 et 0,080. Le COF moyen de l'huile à 90°C s'est avéré différent entre les passages. Des valeurs moyennes de COF de 0,167 et 0,09 ont été observées. La différence de COF est une preuve supplémentaire que l'huile n'a pu mouiller correctement qu'un seul côté de l'axe. Un COF élevé a été obtenu lorsqu'un film épais s'est formé entre l'axe et la jupe du piston en raison de la lubrification hydrodynamique qui s'est produite. Un COF plus faible est observé dans l'autre sens lorsqu'une lubrification mixte se produit. Pour plus d'informations sur la lubrification hydrodynamique et la lubrification mixte, veuillez consulter notre note d'application sur Courbes de Stribeck.

Tableau 1 : Résultats d'un essai d'usure lubrifié sur des pistons.

FIGURE 1: Graphiques COF pour l'essai d'usure de l'huile à température ambiante A profil brut B passage élevé C passage bas.

FIGURE 2 : Graphiques COF pour un essai d'huile d'usure à 90°C A profil brut B passe haut C passe bas.

FIGURE 3 : Image optique d'une cicatrice d'usure provenant d'un test d'usure d'huile moteur RT.

FIGURE 4 : Volume d'un trou analyse de la cicatrice d'usure de l'essai d'usure de l'huile moteur RT.

FIGURE 5 : Scan de profilométrie d'une cicatrice d'usure provenant d'un test d'usure d'huile moteur RT.

FIGURE 6 : Image optique d'une cicatrice d'usure provenant d'un essai d'usure d'huile moteur à 90°C

FIGURE 7 : Volume de l'analyse d'un trou de la cicatrice d'usure provenant d'un essai d'usure d'huile moteur à 90°C.

FIGURE 8 : Balayage profilométrique d'une cicatrice d'usure provenant d'un essai d'usure d'huile moteur à 90°C.

CONCLUSION

Des essais d'usure par mouvement alternatif linéaire lubrifié ont été menés sur un piston afin de simuler les événements qui se produisent dans une machine à café.
moteur opérationnel en situation réelle. Les interfaces jupe du piston - lubrifiant - chemise du cylindre sont cruciales pour le fonctionnement d'un moteur. L'épaisseur du lubrifiant à l'interface est responsable de la perte d'énergie due à la friction ou à l'usure entre la jupe du piston et la chemise du cylindre. Pour optimiser le moteur, l'épaisseur du film doit être aussi fine que possible sans que la jupe du piston et la chemise du cylindre ne se touchent. Le défi, cependant, est de savoir comment les changements de température, de vitesse et de force affecteront les interfaces P-L-C.

Avec sa large gamme de charge (jusqu'à 2000 N) et de vitesse (jusqu'à 15000 tr/min), le tribomètre NANOVEA T2000 est capable de simuler les différentes conditions possibles dans un moteur. Les études futures possibles sur ce sujet incluent le comportement des interfaces P-L-C sous différentes charges constantes, charges oscillantes, température du lubrifiant, vitesse et méthode d'application du lubrifiant. Ces paramètres peuvent être facilement ajustés avec le tribomètre NANOVEA T2000 pour donner une compréhension complète des mécanismes des interfaces jupe de piston-lubrifiant-revêtement de cylindre.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Test d'usure du revêtement de verre en fonction de l'humidité par tribomètre

Test d'usure du revêtement de verre en fonction de l'humidité par tribomètre

En savoir plus

HUMIDITÉ DE LA COUCHE DE VERRE

TEST D'USURE PAR TRIBOMÈTRE

Préparé par

DUANJIE LIPhD

INTRODUCTION

Le revêtement de verre autonettoyant crée une surface de verre facile à nettoyer qui empêche l'accumulation de saleté, de crasse et de taches. Sa caractéristique autonettoyante réduit considérablement la fréquence, le temps, l'énergie et les coûts de nettoyage, ce qui en fait un choix intéressant pour une variété d'applications résidentielles et commerciales, telles que les façades en verre, les miroirs, les verres de douche, les fenêtres et les pare-brise.

IMPORTANCE DE LA RÉSISTANCE À L'USURE DU REVÊTEMENT DE VERRE AUTONETTOYANT

Une application majeure du revêtement autonettoyant est la surface extérieure de la façade en verre des gratte-ciel. La surface du verre est souvent attaquée par des particules à haute vitesse transportées par des vents forts. Les conditions météorologiques jouent également un rôle important dans la durée de vie du revêtement en verre. Il peut être très difficile et coûteux de traiter la surface du verre et d'appliquer un nouveau revêtement lorsque l'ancien est défaillant. Par conséquent, la résistance à l'usure du revêtement en verre sous
Les différentes conditions météorologiques sont critiques.


Afin de simuler les conditions environnementales réalistes du revêtement autonettoyant dans différentes conditions climatiques, une évaluation répétable de l'usure dans une humidité contrôlée et surveillée est nécessaire. Elle permet aux utilisateurs de comparer correctement la résistance à l'usure des revêtements autonettoyants exposés à différentes humidités et de sélectionner le meilleur candidat pour l'application visée.

OBJECTIF DE MESURE

Dans cette étude, nous avons montré que les NANOVEA Le tribomètre T100 équipé d'un contrôleur d'humidité est un outil idéal pour étudier la résistance à l'usure des revêtements de verre autonettoyants dans différentes conditions d'humidité.

NANOVEA

T100

PROCÉDURES DE TEST

Les lames de microscope en verre sodocalcique ont été recouvertes de revêtements de verre autonettoyants avec deux recettes de traitement différentes. Ces deux revêtements sont identifiés comme Revêtement 1 et Revêtement 2. Une lame de verre nue non revêtue est également testée à des fins de comparaison.


NANOVEA Tribomètre équipé d'un module de contrôle de l'humidité, a été utilisé pour évaluer le comportement tribologique, par exemple le coefficient de frottement, le COF et la résistance à l'usure des revêtements de verre autonettoyants. Une pointe sphérique WC (diamètre 6 mm) a été appliquée contre les échantillons testés. Le COF a été enregistré in situ. Le contrôleur d'humidité fixé à la tribo-chambre contrôlait avec précision la valeur de l'humidité relative (HR) dans la plage de ± 1 %. La morphologie des traces d'usure a été examinée au microscope optique après les tests d'usure.

CHARGE MAXIMALE 40 mN
RÉSULTATS ET DISCUSSION

Les essais d'usure de l'axe sur le disque dans différentes conditions d'humidité ont été réalisés sur le verre revêtu et non revêtu.
échantillons. Le COF a été enregistré in situ pendant les essais d'usure, comme le montre l'illustration suivante
FIGURE 1 et le COF moyen est résumé dans FIGURE 2. FIGURE 4 compare les traces d'usure après les tests d'usure.


Comme indiqué dans
FIGURE 1Le verre non revêtu présente un COF élevé de ~0,45 lorsque le mouvement de glissement commence dans le 30% RH, et il augmente progressivement jusqu'à ~0,6 à la fin du test d'usure de 300 révolutions. En comparaison, le verre
Les échantillons de verre revêtus Coating 1 et Coating 2 présentent un faible COF inférieur à 0,2 au début de l'essai. Le COF
du revêtement 2 se stabilise à ~0,25 pendant le reste de l'essai, tandis que le revêtement 1 présente une forte augmentation du COF à ~0,25.
~250 tours et le COF atteint une valeur de ~0,5. Lorsque les essais d'usure sont effectués dans la 60% RH, la
Le verre non revêtu présente toujours un COF plus élevé de ~0,45 tout au long du test d'usure. Les revêtements 1 et 2 présentent des valeurs de COF de 0,27 et 0,22, respectivement. Pour le 90% RH, le verre non revêtu présente un COF élevé de ~0,5 à la fin du test d'usure. Les revêtements 1 et 2 présentent un COF comparable de ~0,1 au début du test d'usure. Le revêtement 1 maintient un COF relativement stable de ~0,15. Le revêtement 2, cependant, échoue à ~ 100 tours, suivi d'une augmentation significative du COF à ~0,5 vers la fin de l'essai d'usure.


La faible friction du revêtement de verre autonettoyant est due à sa faible énergie de surface. Il crée une très haute statique
angle de contact avec l'eau et un faible angle de roulement. Cela conduit à la formation de petites gouttelettes d'eau sur la surface du revêtement dans le 90% RH, comme le montre le microscope en
FIGURE 3. Il en résulte également une diminution du COF moyen de ~0,23 à ~0,15 pour le revêtement 2 lorsque la valeur de l'HR augmente de 30% à 90%.

FIGURE 1: Coefficient de friction pendant les essais "pin-on-disk" dans différentes conditions d'humidité relative.

FIGURE 2 : Moyenne du COF pendant les tests "pin-on-disk" dans différentes conditions d'humidité relative.

FIGURE 3 : Formation de petites gouttelettes d'eau sur la surface du verre revêtu.

FIGURE 4 compare les traces d'usure sur la surface du verre après les tests d'usure dans différentes humidités. Le revêtement 1 présente des signes d'usure légère après les tests d'usure dans les HR de 30% et 60%. Il possède une grande trace d'usure après le test dans l'HR de 90%, en accord avec l'augmentation significative du COF pendant le test d'usure. Le revêtement 2 ne montre pratiquement aucun signe d'usure après les tests d'usure en environnement sec et humide, et il présente également un faible COF constant pendant les tests d'usure dans différentes humidités. La combinaison de bonnes propriétés tribologiques et d'une faible énergie de surface fait du revêtement 2 un bon candidat pour les applications de revêtement de verre autonettoyant dans des environnements difficiles. En comparaison, le verre non revêtu présente des traces d'usure plus importantes et un COF plus élevé dans différentes conditions d'humidité, ce qui démontre la nécessité de la technique du revêtement autonettoyant.

FIGURE 4 : Traces d'usure après les tests pin-on-disk dans différentes conditions d'humidité relative (grossissement 200x).

CONCLUSION

NANOVEA Le tribomètre T100 est un outil supérieur pour l'évaluation et le contrôle de qualité des revêtements de verre autonettoyants dans différentes conditions d'humidité. La capacité de mesure in situ du COF permet aux utilisateurs de corréler les différentes étapes du processus d'usure avec l'évolution du COF, ce qui est essentiel pour améliorer la compréhension fondamentale du mécanisme d'usure et des caractéristiques tribologiques des revêtements en verre. Sur la base de l'analyse tribologique complète des revêtements de verre autonettoyants testés dans différentes conditions d'humidité, nous montrons que le revêtement 2 possède un faible COF constant et une résistance à l'usure supérieure dans des environnements secs et humides, ce qui en fait un meilleur candidat pour les applications de revêtements de verre autonettoyants exposés à différents temps.


NANOVEA Les tribomètres offrent des tests d'usure et de friction précis et répétables en utilisant des modes rotatifs et linéaires conformes aux normes ISO et ASTM, avec des modules optionnels d'usure à haute température, de lubrification et de tribo-corrosion disponibles dans un système pré-intégré. Un profileur 3D sans contact est disponible en option pour les essais à haute température.
l'imagerie 3D à haute résolution des traces d'usure, en plus d'autres mesures de surface telles que la rugosité. 

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Mesure de l'usure in situ à haute température

MESURE DE L'USURE IN SITU À HAUTE TEMPÉRATURE

EN UTILISANT UN TRIBOMÈTRE

MESURE DE L'USURE IN-SITU Tribomètre aérospatial

Préparé par

Duanjie Li, PhD

INTRODUCTION

Le transformateur différentiel variable linéaire (LVDT) est un type de transformateur électrique robuste utilisé pour mesurer un déplacement linéaire. Il a été largement utilisé dans une variété d'applications industrielles, y compris les turbines de puissance, l'hydraulique, l'automatisation, les avions, les satellites, les réacteurs nucléaires, et bien d'autres.

Dans cette étude, nous présentons les modules complémentaires LVDT et haute température du NANOVEA. Tribomètre qui permettent de mesurer le changement de profondeur de la trace d'usure de l'échantillon testé pendant le processus d'usure à des températures élevées. Cela permet aux utilisateurs de corréler les différentes étapes du processus d'usure avec l'évolution du COF, ce qui est essentiel pour améliorer la compréhension fondamentale du mécanisme d'usure et des caractéristiques tribologiques des matériaux destinés aux applications à haute température.

OBJECTIF DE MESURE

Dans cette étude, nous souhaitons mettre en évidence la capacité du tribomètre NANOVEA T50 à surveiller in situ l'évolution du processus d'usure des matériaux à des températures élevées.

Le processus d'usure de la céramique de silicate d'alumine à différentes températures est simulé de manière contrôlée et surveillée.

NANOVEA

T50

PROCÉDURE DE TEST

Le comportement tribologique, par exemple le coefficient de friction (COF) et la résistance à l'usure des plaques en céramique de silicate d'alumine, a été évalué par le tribomètre NANOVEA. La plaque en céramique de silicate d'alumine a été chauffée par un four de la température ambiante, RT, à des températures élevées (400°C et 800°C), suivies par des tests d'usure à ces températures. 

À titre de comparaison, les essais d'usure ont été réalisés lorsque l'échantillon a refroidi de 800°C à 400°C, puis à la température ambiante. Une bille en AI2O3 (6 mm de diamètre, grade 100) a été appliquée contre les échantillons testés. Le COF, la profondeur d'usure et la température ont été contrôlés in situ.

PARAMÈTRES D'ESSAI

de la mesure de l'épingle sur le disque

Tribomètre LVDT Échantillon

Le taux d'usure, K, a été évalué à l'aide de la formule K=V/(Fxs)=A/(Fxn), où V est le volume usé, F est la charge normale, s est la distance de glissement, A est la surface de section transversale de la piste d'usure et n est le nombre de tours. La rugosité de surface et les profils des traces d'usure ont été évalués par le profileur optique NANOVEA, et la morphologie des traces d'usure a été examinée à l'aide d'un microscope optique.

RÉSULTATS ET DISCUSSION

Le COF et la profondeur de la trace d'usure enregistrés in situ sont représentés respectivement sur la FIGURE 1 et la FIGURE 2. Sur la FIGURE 1, "-I" indique le test effectué lorsque la température a été augmentée de la température ambiante à une température élevée. "-D" représente la température diminuée à partir d'une température plus élevée de 800°C.

Comme le montre la FIGURE 1, les échantillons testés à différentes températures présentent un COF comparable de ~0,6 tout au long des mesures. Un COF aussi élevé conduit à un processus d'usure accéléré qui crée une quantité importante de débris. La profondeur de la trace d'usure a été contrôlée pendant les essais d'usure par LVDT, comme le montre la FIGURE 2. Les essais réalisés à température ambiante avant le chauffage de l'échantillon et après le refroidissement de l'échantillon montrent que la plaque céramique en silicate d'alumine présente un processus d'usure progressif à RT, la profondeur de la trace d'usure augmente progressivement tout au long de l'essai d'usure pour atteindre ~170 et ~150 μm, respectivement. 

En comparaison, les essais d'usure à des températures élevées (400°C et 800°C) présentent un comportement d'usure différent - la profondeur de la trace d'usure augmente rapidement au début du processus d'usure, et elle ralentit au fur et à mesure que l'essai se poursuit. Les profondeurs des traces d'usure pour les essais réalisés aux températures 400°C-I, 800°C et 400°C-D sont respectivement de ~140, ~350 et ~210 μm.

COF pendant les essais "pin-on-desk" à différentes températures

FIGURE 1. Coefficient de frottement pendant les essais "pin-on-disk" à différentes températures

Profondeur de la trace d'usure de la plaque céramique en silicate d'alumine à différentes températures

FIGURE 2. Évolution de la profondeur des traces d'usure de la plaque céramique en silicate d'alumine à différentes températures

Le taux d'usure moyen et la profondeur des traces d'usure des plaques céramiques en silicate d'alumine à différentes températures ont été mesurés à l'aide de la méthode suivante NANOVEA Optical Profiler comme résumé dans FIGURE 3. La profondeur de la trace d'usure est en accord avec celle enregistrée par LVDT. La plaque en céramique de silicate d'alumine présente un taux d'usure sensiblement accru de ~0,5 mm3/Nm à 800°C, par rapport aux taux d'usure inférieurs à 0,2 mm3/Nm à des températures inférieures à 400°C. La plaque en céramique de silicate d'alumine ne présente pas de propriétés mécaniques/tribologiques significativement améliorées après le court processus de chauffage, possédant un taux d'usure comparable avant et après le traitement thermique.

La céramique de silicate d'alumine, également connue sous le nom de lave et de pierre des merveilles, est molle et usinable avant le traitement thermique. Un long processus de cuisson à des températures élevées (jusqu'à 1093°C) peut considérablement améliorer sa dureté et sa résistance, après quoi un usinage au diamant est nécessaire. Cette caractéristique unique fait de la céramique de silicate d'alumine un matériau idéal pour la sculpture.

Dans cette étude, nous montrons que le traitement thermique à une température inférieure à celle requise pour la cuisson (800°C vs 1093°C) dans un temps court n'améliore pas les caractéristiques mécaniques et tribologiques de la céramique de silicate d'alumine, faisant de la cuisson appropriée un processus essentiel pour ce matériau avant son utilisation dans les applications réelles.

 
Taux d'usure et profondeur des traces d'usure de l'échantillon à différentes températures 1

FIGURE 3. Taux d'usure et profondeur des traces d'usure de l'échantillon à différentes températures

CONCLUSION

Sur la base de l'analyse tribologique complète de cette étude, nous montrons que la plaque en céramique de silicate d'alumine présente un coefficient de frottement comparable à différentes températures, de la température ambiante à 800°C. Cependant, elle présente un taux d'usure sensiblement accru de ~0,5 mm3/Nm à 800°C, ce qui démontre l'importance d'un traitement thermique approprié de cette céramique.

Les tribomètres NANOVEA sont capables d'évaluer les propriétés tribologiques des matériaux pour des applications à des températures élevées allant jusqu'à 1000°C. La fonction de mesure in situ du COF et de la profondeur des traces d'usure permet aux utilisateurs de corréler les différentes étapes du processus d'usure avec l'évolution du COF, ce qui est essentiel pour améliorer la compréhension fondamentale du mécanisme d'usure et des caractéristiques tribologiques des matériaux utilisés à des températures élevées.

Les tribomètres NANOVEA offrent des tests d'usure et de friction précis et répétables en utilisant des modes rotatifs et linéaires conformes aux normes ISO et ASTM, avec des modules optionnels d'usure à haute température, de lubrification et de tribo-corrosion disponibles dans un système pré-intégré. La gamme inégalée de NANOVEA est une solution idéale pour déterminer la gamme complète des propriétés tribologiques des revêtements, films et substrats minces ou épais, souples ou durs.

Des profileurs 3D sans contact sont disponibles en option pour l'imagerie 3D haute résolution des traces d'usure en plus d'autres mesures de surface telles que la rugosité.

MESURE DE L'USURE IN-SITU

MAINTENANT, PARLONS DE VOTRE CANDIDATURE