USA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT US

Rauheitskartierung mit 3D-Profilometrie

PRÜFUNG DER RAUHEITSKARTIERUNG

3D-PROFILOMETRIE VERWENDEN

Vorbereitet von

DUANJIE, PhD

EINFÜHRUNG

Oberflächenrauheit und -beschaffenheit sind entscheidende Faktoren, die sich auf die endgültige Qualität und Leistung eines Produkts auswirken. Ein gründliches Verständnis von Oberflächenrauheit, -textur und -konsistenz ist für die Auswahl der besten Verarbeitungs- und Kontrollmaßnahmen unerlässlich. Eine schnelle, quantifizierbare und zuverlässige Inline-Inspektion von Produktoberflächen ist notwendig, um fehlerhafte Produkte rechtzeitig zu erkennen und die Bedingungen in der Produktionslinie zu optimieren.

BEDEUTUNG DES BERÜHRUNGSLOSEN 3D-PROFILOMETERS FÜR DIE INLINE-OBERFLÄCHENPRÜFUNG

Oberflächenfehler an Produkten entstehen durch Materialverarbeitung und Produktherstellung. Die Inline-Oberflächenqualitätsprüfung gewährleistet eine strengste Qualitätskontrolle der Endprodukte. NANOVEA Berührungslose optische 3D-Profiler Nutzen Sie die Chromatic Light-Technologie mit der einzigartigen Fähigkeit, die Rauheit einer Probe berührungslos zu bestimmen. Der Zeilensensor ermöglicht das Scannen des 3D-Profils einer großen Oberfläche mit hoher Geschwindigkeit. Der von der Analysesoftware in Echtzeit berechnete Rauheitsschwellenwert dient als schnelles und zuverlässiges Gut/Schlecht-Instrument.

MESSZIEL

In dieser Studie wird das mit einem Hochgeschwindigkeitssensor ausgestattete NANOVEA ST400 zur Inspektion der Oberfläche einer Teflon-Probe mit einem Defekt verwendet, um die Fähigkeiten des NANOVEA

Berührungslose Profilometer ermöglichen eine schnelle und zuverlässige Oberflächenprüfung in einer Produktionslinie.

NANOVEA

ST400

ERGEBNISSE & DISKUSSION

3D-Oberflächenanalyse des Rauhigkeit Standardprobe

Die Oberfläche eines Rauheitsnormals wurde mit einem NANOVEA ST400 abgetastet, der mit einem Hochgeschwindigkeitssensor ausgestattet ist, der eine helle Linie mit 192 Punkten erzeugt, wie in ABBILDUNG 1 dargestellt. Diese 192 Punkte tasten die Probenoberfläche gleichzeitig ab, was zu einer deutlich höheren Abtastgeschwindigkeit führt.

ABBILDUNG 2 zeigt Falschfarbenansichten der Oberflächenhöhenkarte und der Rauheitsverteilungskarte der Rauheitsstandardprobe. In ABBILDUNG 2a weist der Rauheitsstandard eine leicht schräge Oberfläche auf, die durch den unterschiedlichen Farbverlauf in jedem der Standard-Rauheitsblöcke dargestellt wird. In ABBILDUNG 2b wird eine homogene Rauheitsverteilung in verschiedenen Rauheitsblöcken gezeigt, deren Farbe die Rauheit in den Blöcken darstellt.

ABBILDUNG 3 zeigt Beispiele für die Pass/Fail-Karten, die von der Analysesoftware auf der Grundlage verschiedener Rauheitsschwellenwerte erstellt wurden. Die Rauheitsblöcke werden rot hervorgehoben, wenn ihre Oberflächenrauheit über einem bestimmten Schwellenwert liegt. Auf diese Weise kann der Benutzer einen Rauheitsschwellenwert festlegen, um die Qualität der Oberflächenbeschaffenheit einer Probe zu bestimmen.

ABBILDUNG 1: Abtastung des optischen Zeilensensors auf der Probe des Rauheitsnormals

a. Karte der Oberflächenhöhe:

b. Rauhigkeitskarte:

ABBILDUNG 2: Falschfarbenansichten der Oberflächenhöhenkarte und der Rauheitsverteilungskarte der Rauheitsstandardprobe.

ABBILDUNG 3: Pass/Fail Map basierend auf dem Roughness Threshold.

Oberflächeninspektion einer Teflonprobe mit Defekten

Die Oberflächenhöhenkarte, die Rauheitsverteilungskarte und die Pass/Fail-Rauheitsschwellenkarte der Oberfläche der Teflon-Probe sind in ABBILDUNG 4 dargestellt. Die Teflon-Probe weist in der rechten Mitte der Probe eine Rippenform auf, wie in der Oberflächenhöhenkarte dargestellt.

a. Karte der Oberflächenhöhe:

Die verschiedenen Farben in der Palette von ABBILDUNG 4b stellen den Rauheitswert auf der lokalen Oberfläche dar. Die Rauhigkeitskarte zeigt eine homogene Rauheit im intakten Bereich der Teflon-Probe. Die Defekte in Form eines eingedrückten Rings und einer Verschleißnarbe sind jedoch in heller Farbe hervorgehoben. Der Benutzer kann leicht einen Schwellenwert für die Pass/Fail-Rauheit festlegen, um die Oberflächendefekte zu lokalisieren, wie in ABBILDUNG 4c gezeigt. Mit einem solchen Werkzeug kann der Benutzer die Oberflächenqualität des Produkts in der Produktionslinie vor Ort überwachen und fehlerhafte Produkte rechtzeitig erkennen. Der Echtzeit-Rauigkeitswert wird berechnet und aufgezeichnet, während die Produkte den optischen Inline-Sensor passieren, was als schnelles und zuverlässiges Werkzeug für die Qualitätskontrolle dienen kann.

b. Rauhigkeitskarte:

c. Pass/Fail Roughness Threshold Map:

ABBILDUNG 4: Oberflächenhöhenkarte, Rauhigkeitsverteilungskarte und Pass/Fail-Rauhigkeitsschwellenwertkarte der Teflon-Probenoberfläche.

SCHLUSSFOLGERUNG

In dieser Anwendung haben wir gezeigt, wie der berührungslose optische 3D-Profiler NANOVEA ST400, ausgestattet mit einem optischen Zeilensensor, als zuverlässiges Qualitätskontrollwerkzeug effektiv und effizient arbeitet.

Der optische Zeilensensor erzeugt eine helle Linie aus 192 Punkten, die die Probenoberfläche gleichzeitig abtasten, was zu einer deutlich höheren Abtastgeschwindigkeit führt. Er kann in der Produktionslinie installiert werden, um die Oberflächenrauhigkeit der Produkte vor Ort zu überwachen. Der Schwellenwert für die Rauheit dient als zuverlässiges Kriterium zur Bestimmung der Oberflächenqualität der Produkte und ermöglicht es dem Benutzer, fehlerhafte Produkte rechtzeitig zu erkennen.

Die hier gezeigten Daten stellen nur einen Teil der in der Analysesoftware verfügbaren Berechnungen dar. NANOVEA Profilometer messen praktisch jede Oberfläche in Bereichen wie Halbleiter, Mikroelektronik, Solar, Faseroptik, Automobil, Luft- und Raumfahrt, Metallurgie, Bearbeitung, Beschichtungen, Pharmazeutik, Biomedizin, Umwelt und vielen anderen.

UND NUN ZU IHRER BEWERBUNG

Kommentar