EUA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
FALE CONOSCO

Categoria: Teste de Raspagem | Dureza de Raspagem

 

Dureza de Arranhão a Alta Temperatura usando um Tribômetro

DUREZA DE ARRANHÕES A ALTAS TEMPERATURAS

USANDO UM TRIBÔMETRO

Preparado por

DUANJIE, PhD

INTRODUÇÃO

A dureza mede a resistência dos materiais à deformação permanente ou plástica. Desenvolvido originalmente por um mineralogista alemão Friedrich Mohs em 1820, o teste de dureza de arranhões determina a dureza de um material a arranhões e abrasão devido ao atrito de um objeto cortante.1. A escala de Mohs é um índice comparativo e não uma escala linear, portanto uma medição de dureza de arranhões mais precisa e qualitativa foi desenvolvida como descrito na norma ASTM G171-03.2. Ele mede a largura média do risco criado por um estilete de diamante e calcula o número de dureza do risco (HSP).

IMPORTÂNCIA DA MEDIÇÃO DA DUREZA DOS ARRANHÕES EM ALTAS TEMPERATURAS

Os materiais são selecionados com base nas exigências do serviço. Para aplicações que envolvem mudanças significativas de temperatura e gradientes térmicos, é fundamental investigar as propriedades mecânicas dos materiais a altas temperaturas para estar plenamente ciente dos limites mecânicos. Os materiais, especialmente os polímeros, geralmente amolecem a altas temperaturas. Muitas falhas mecânicas são causadas pela deformação por fluência e fadiga térmica ocorrendo apenas a temperaturas elevadas. Portanto, uma técnica confiável para medir a dureza a altas temperaturas é necessária para garantir uma seleção adequada dos materiais para aplicações a altas temperaturas.

OBJETIVO DA MEDIÇÃO

Neste estudo, o Tribômetro NANOVEA T50 mede a dureza ao risco de uma amostra de Teflon em diferentes temperaturas, desde a temperatura ambiente até 300ºC. A capacidade de realizar medições de dureza a riscos em alta temperatura torna o NANOVEA Tribômetro um sistema versátil para avaliações tribológicas e mecânicas de materiais para aplicações em altas temperaturas.

NANOVEA

T50

CONDIÇÕES DE TESTE

O Tribômetro NANOVEA T50 Free Weight Standard foi usado para realizar os testes de dureza de arranhões em uma amostra de Teflon a temperaturas que variam da temperatura ambiente (RT) a 300°C. O teflon tem um ponto de derretimento de 326,8°C. Foi utilizada uma ponta diamantada cônica de ângulo de ápice de 120° com raio de ponta de 200 µm. A amostra de teflon foi fixada no estágio rotativo da amostra com uma distância de 10 mm até o centro do estágio. A amostra foi aquecida por um forno e testada a temperaturas de RT, 50°C, 100°C, 150°C, 200°C, 250°C e 300°C.

PARÂMETROS DE TESTE

da medição da dureza de arranhões a alta temperatura

FORÇA NORMAL 2 N
VELOCIDADE DE DESLIZAMENTO 1 mm/s
DISTÂNCIA DE DESLIZAMENTO 8mm por temperatura
ATMOSPHERE Ar
TEMPERATURA RT, 50°C, 100°C, 150°C, 200°C, 250°C, 300°C.

RESULTADOS & DISCUSSÃO

Os perfis de arranhões da amostra de Teflon em diferentes temperaturas são mostrados no FIGURA 1 para comparar a dureza do arranhão em diferentes temperaturas elevadas. O acúmulo de material nas bordas da trilha de arranhão se forma à medida que a ponta se desloca a uma velocidade constante viaja com uma carga constante de 2 N e arado na amostra de Teflon, empurrando e deformando o material no arranhão para o lado.

Os rastros de arranhões foram examinados sob o microscópio ótico, como mostrado na FIGURA 2. As larguras dos arranhões medidas e os números calculados de dureza de arranhão (HSP) são resumidos e comparados na FIGURA 3. A largura do arranhão medida pelo microscópio está de acordo com a medida usando o Perfilômetro NANOVEA - a amostra de Teflon exibe uma largura de arranhão maior a temperaturas mais altas. Sua largura de arranhão aumenta de 281 para 539 µm à medida que a temperatura se eleva de RT para 300oC, resultando na diminuição do HSP de 65 para 18 MPa.

A dureza dos arranhões em temperaturas elevadas pode ser medida com alta precisão e repetibilidade usando o Tribômetro NANOVEA T50. Ele fornece uma solução alternativa a partir de outras medições de dureza e faz do NANOVEA Tribometer um sistema mais completo para avaliações tribo-mecânicas abrangentes em alta temperatura.

FIGURA 1: Perfis de arranhões após os testes de dureza de arranhão em diferentes temperaturas.

FIGURA 2: Arranhões sob o microscópio após as medições em diferentes temperaturas.

FIGURA 3: Evolução da largura da pista de Arranhões e da dureza da Arranhão em relação à temperatura.

CONCLUSÃO

Neste estudo, mostramos como o Tribômetro NANOVEA mede a dureza dos arranhões a temperaturas elevadas em conformidade com a norma ASTM G171-03. O teste de dureza de arranhões com carga constante fornece uma solução alternativa simples para comparar a dureza dos materiais usando o tribômetro. A capacidade de realizar medições de dureza de arranhões a temperaturas elevadas faz do Tribômetro NANOVEA uma ferramenta ideal para avaliar as propriedades tribo-mecânicas de materiais a altas temperaturas.

O Tribômetro NANOVEA também oferece testes de desgaste e atrito precisos e repetíveis usando os modos rotativo e linear conforme ISO e ASTM, com módulos opcionais de desgaste a alta temperatura, lubrificação e tribo-corrosão disponíveis em um sistema pré-integrado. O Perfilômetro 3D sem contato opcional está disponível para imagens 3D de alta resolução de faixas de desgaste, além de outras medições de superfície, como rugosidade.

1 Wredenberg, Fredrik; PL Larsson (2009). "Teste de arranhão de metais e polímeros: Experimentos e numéricos". Desgaste 266 (1-2): 76
2 ASTM G171-03 (2009), "Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Medição da Dureza de Arranhões usando o Testador Mecânico

MEDIÇÃO DA DUREZA DOS ARRANHÕES

USANDO UM TESTADOR MECÂNICO

Preparado por

DUANJIE LI, PhD

INTRODUÇÃO

Em geral, os testes de dureza medem a resistência dos materiais à deformação permanente ou plástica. Há três tipos de medidas de dureza: dureza de arranhão, dureza de recuo e dureza de ricochete. Um teste de dureza de arranhão mede a resistência de um material ao arranhão e à abrasão devido ao atrito de um objeto cortante1. Foi originalmente desenvolvido pelo mineralogista alemão Friedrich Mohs em 1820 e ainda é amplamente utilizado para classificar as propriedades físicas dos minerais2. Este método de teste também é aplicável a metais, cerâmicas, polímeros e superfícies revestidas.

Durante uma medição de dureza de arranhões, uma ponta de diamante de geometria especificada risca na superfície de um material ao longo de um caminho linear sob uma força normal constante com uma velocidade constante. A largura média do risco é medida e usada para calcular o número de dureza do risco (HSP). Esta técnica fornece uma solução simples para escalonar a dureza de diferentes materiais.

OBJETIVO DA MEDIÇÃO

Neste estudo, o Testador Mecânico NANOVEA PB1000 é usado para medir a dureza de arranhões de diferentes metais em conformidade com a ASTM G171-03.

Simultaneamente, este estudo mostra a capacidade da NANOVEA Testador Mecânico na realização de medições de dureza com alta precisão e reprodutibilidade.

NANOVEA

PB1000

CONDIÇÕES DE TESTE

O NANOVEA PB1000 Mechanical Tester realizou testes de dureza de arranhões em três metais polidos (Cu110, Al6061 e SS304). Foi usado um estilete cônico de diamante com ângulo de ponta de 120° e raio de ponta de 200 µm. Cada amostra foi riscada três vezes com os mesmos parâmetros de teste para garantir a reprodutibilidade dos resultados. Os parâmetros de teste estão resumidos abaixo. Uma varredura de perfil em uma carga normal baixa de 10 mN foi realizada antes e depois do teste de raspagem para medir a mudança no perfil da superfície do arranhão.

PARÂMETROS DE TESTE

FORÇA NORMAL

10 N

TEMPERATURA

24°C (RT)

VELOCIDADE DE DESLIZAMENTO

20 mm/min

DISTÂNCIA DE DESLIZAMENTO

10 mm

ATMOSPHERE

Ar

RESULTADOS & DISCUSSÃO

As imagens dos rastros de três metais (Cu110, Al6061 e SS304) após os testes são mostradas no FIGURA 1 para comparar a dureza dos rastros de diferentes materiais. A função de mapeamento do software mecânico NANOVEA foi usada para criar três riscos paralelos testados sob a mesma condição em um protocolo automatizado. A largura medida da pista de raspagem e o número calculado de dureza de raspagem (HSP) são resumidos e comparados na TABELA 1. Os metais mostram diferentes larguras de pista de desgaste de 174, 220 e 89 µm para Al6061, Cu110 e SS304, respectivamente, resultando em um HSP calculado de 0,84, 0,52 e 3,2 GPa.

Além da dureza da raspagem computada a partir da largura da raspagem, a evolução do coeficiente de atrito (COF), profundidade verdadeira e emissão acústica foram registradas in situ durante o teste de dureza da raspagem. Aqui, a profundidade verdadeira é a diferença de profundidade entre a profundidade de penetração da ponta durante o teste de raspagem e o perfil de superfície medido na pré-digitalização. O COF, profundidade verdadeira e emissão acústica do Cu110 são mostrados no FIGURA 2 como um exemplo. Tais informações fornecem uma visão das falhas mecânicas que ocorrem durante a raspagem, permitindo aos usuários detectar defeitos mecânicos e investigar melhor o comportamento da raspagem do material testado.

Os testes de dureza de arranhões podem ser terminados em poucos minutos com alta precisão e repetibilidade. Em comparação com os procedimentos convencionais de indentação, o teste de dureza de arranhões neste estudo fornece uma solução alternativa para medições de dureza, que é útil para o controle de qualidade e o desenvolvimento de novos materiais.

Al6061

Cu110

SS304

FIGURA 1: Imagem microscópica dos rastros de risco pós-teste (ampliação de 100x).

 Largura da pista de raspagem (μm)HSp (GPa)
Al6061174±110.84
Cu110220±10.52
SS30489±53.20

TABELA 1: Resumo da largura da pista de raspagem e do número de dureza da raspagem.

FIGURA 2: A evolução do coeficiente de atrito, profundidade verdadeira e emissões acústicas durante o teste de dureza de arranhões no Cu110.

CONCLUSÃO

Neste estudo, demonstramos a capacidade do Testador Mecânico NANOVEA em realizar testes de dureza de arranhões em conformidade com a ASTM G171-03. Além da adesão do revestimento e da resistência aos riscos, o teste de raspagem com carga constante fornece uma solução alternativa simples para comparar a dureza dos materiais. Em contraste com os ensaios de dureza de arranhões convencionais, os ensaios mecânicos NANOVEA oferecem módulos opcionais para monitorar a evolução do coeficiente de atrito, emissão acústica e profundidade real in situ.

Os módulos Nano e Micro de um Testador Mecânico NANOVEA incluem indentação compatível com ISO e ASTM, modos de teste de arranhões e desgaste, proporcionando a mais ampla e mais fácil de usar gama de testes disponíveis em um único sistema. A gama inigualável do NANOVEA é uma solução ideal para determinar a gama completa de propriedades mecânicas de revestimentos finos ou grossos, macios ou duros, filmes e substratos, incluindo dureza, módulo Young, resistência à fratura, aderência, resistência ao desgaste e muitos outros.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Um Olhar MELHOR sobre Lentes de Policarbonato

Um Olhar MELHOR sobre Lentes de Policarbonato Saiba mais
 
As lentes de policarbonato são comumente usadas em muitas aplicações ópticas. Sua alta resistência ao impacto, baixo peso e custo baixo de produção de alto volume as torna mais práticas do que o vidro tradicional em várias aplicações [1]. Algumas dessas aplicações exigem critérios de segurança (por exemplo, óculos de proteção), complexidade (por exemplo, lentes Fresnel) ou durabilidade (por exemplo, lentes de semáforo) que são difíceis de atender sem o uso de plásticos. Sua capacidade de atender a muitos requisitos de forma barata, mantendo qualidades óticas suficientes, faz com que as lentes plásticas se destaquem em seu campo. As lentes de policarbonato também têm limitações. A principal preocupação dos consumidores é a facilidade com que eles podem ser arranhados. Para compensar isto, processos extras podem ser realizados para aplicar um revestimento anti-riscos. A Nanovea analisa algumas propriedades importantes das lentes de plástico utilizando nossos três instrumentos de metrologia: Profilômetro, Tribômetroe Testador Mecânico.   Clique para ler mais!
Tribologia de Alta Temperatura

Dureza de Arranhão a Alta Temperatura usando Tribômetro

Os materiais são selecionados com base nas exigências do serviço. Para aplicações que envolvem mudanças significativas de temperatura e gradientes térmicos, é fundamental investigar as propriedades mecânicas dos materiais a altas temperaturas para estar plenamente ciente dos limites mecânicos. Os materiais, especialmente os polímeros, geralmente amolecem a altas temperaturas. Muitas falhas mecânicas são causadas pela deformação por fluência e fadiga térmica ocorrendo apenas a temperaturas elevadas. Portanto, uma técnica confiável para medir a dureza de arranhões a altas temperaturas é necessária para garantir uma seleção adequada dos materiais para aplicações a altas temperaturas.

Dureza de Arranhão a Alta Temperatura usando Tribômetro

 

Medição da dureza dos arranhões usando o Tribômetro

Neste estudo, a Nanovea Tribômetro é usado para medir a dureza dos arranhões de diferentes metais. O
capacidade de realizar medições de dureza de arranhões com alta precisão e reprodutibilidade faz
Nanovea Tribometer um sistema mais completo para avaliações tribológicas e mecânicas.

Medição da dureza dos arranhões usando o Tribômetro

Propriedades Mecânicas e Tribológicas da Fibra de Carbono

Combinado com o teste de desgaste por Tribômetro e análise de superfície por Profilômetro 3D Óptico, nós
mostram a versatilidade e a precisão dos instrumentos Nanovea no teste de materiais compostos
com propriedades mecânicas direcionais.

Propriedades Mecânicas e Tribológicas da Fibra de Carbono

Medição da profundidade de micro-riscos usando a Profilometria 3D

Nesta aplicação, o Nanovea ST400 Profilometer é utilizado para medição de profundidade de uma fileira de micro riscos criados usando o Nanovea Testador Mecânico no modo zero. Em segundos, o perfilômetro, com uma única passagem de linha no modo 2D, fornece medição de área e profundidade.

Medição de Profundidade de Micro-rachaduras usando a Profilometria 3D