USA/GLOBALNE: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT

Kategoria: Testowanie zarysowań | Twardość zarysowań

 

Twardość na zarysowania w wysokiej temperaturze przy użyciu tribometru

WYSOKA TEMPERATURA ODPORNOŚĆ NA ZARYSOWANIA

PRZY UŻYCIU TRYBOMETRU

Przygotowane przez

DUANJIE, PhD

WPROWADZENIE

Twardość mierzy odporność materiałów na odkształcenia trwałe lub plastyczne. Opracowany przez niemieckiego mineraloga Friedricha Mohsa w 1820 roku, test twardości zarysowania określa twardość materiału na zarysowania i ścieranie spowodowane tarciem o ostry przedmiot.1. Skala Mohsa jest indeksem porównawczym, a nie skalą liniową, dlatego opracowano bardziej dokładny i jakościowy pomiar twardości zarysowania, opisany w normie ASTM G171-032. Mierzy średnią szerokość rysy utworzonej przez diamentowy rysik i oblicza liczbę twardości rysy (HSP).

ZNACZENIE POMIARU TWARDOŚCI ZARYSOWANIA W WYSOKICH TEMPERATURACH

Materiały są wybierane na podstawie wymagań użytkowych. W przypadku zastosowań związanych ze znacznymi zmianami temperatury i gradientami termicznymi, kluczowe jest zbadanie właściwości mechanicznych materiałów w wysokich temperaturach, aby mieć pełną świadomość ograniczeń mechanicznych. Materiały, zwłaszcza polimery, zwykle miękną w wysokich temperaturach. Wiele uszkodzeń mechanicznych jest spowodowanych odkształceniem pełzającym i zmęczeniem termicznym zachodzącym tylko w podwyższonych temperaturach. Dlatego też, aby zapewnić właściwy dobór materiałów do zastosowań w wysokich temperaturach, konieczne jest opracowanie wiarygodnej techniki pomiaru twardości w wysokich temperaturach.

CEL POMIARU

W tym badaniu trybometr NANOVEA T50 mierzy twardość zarysowania próbki teflonu w różnych temperaturach od temperatury pokojowej do 300°C. Możliwość wykonywania pomiarów twardości zarysowania w wysokiej temperaturze sprawia, że NANOVEA Tribometr wszechstronny system do tribologicznej i mechanicznej oceny materiałów do zastosowań wysokotemperaturowych.

NANOVEA

T50

WARUNKI BADANIA

Tribometr NANOVEA T50 Free Weight Standard został użyty do wykonania testów twardości zarysowania próbki teflonu w temperaturach od pokojowej (RT) do 300°C. Temperatura topnienia teflonu wynosi 326,8°C. Zastosowano stożkowy trzpień diamentowy o kącie wierzchołkowym 120° i promieniu końcówki 200 µm. Próbka teflonowa została zamocowana na obrotowym stoliku z próbkami w odległości 10 mm od środka stolika. Próbkę wygrzewano w piecu i badano w temperaturach RT, 50°C, 100°C, 150°C, 200°C, 250°C i 300°C.

PARAMETRY BADANIA

pomiaru twardości zarysowania w wysokiej temperaturze

NORMALNA SIŁA 2 N
PRĘDKOŚĆ PRZESUWANIA 1 mm/s
ODLEGŁOŚĆ PRZESUWU 8mm na temp.
ATMOSFERY Air
TEMPERATURA RT, 50°C, 100°C, 150°C, 200°C, 250°C, 300°C.

WYNIKI I DYSKUSJA

Profile śladu zarysowania próbki teflonowej w różnych temperaturach pokazano na RYSUNKU 1 w celu porównania twardości zarysowania w różnych podwyższonych temperaturach. Spiętrzenie materiału na krawędziach ścieżki zarysowania tworzy się, gdy trzpień porusza się ze stałym obciążeniem 2 N i zagłębia się w próbkę teflonową, wypychając i deformując materiał w ścieżce zarysowania na boki.

Ślady zarysowań były badane pod mikroskopem optycznym, jak pokazano na RYSUNKU 2. Zmierzone szerokości śladów zarysowania i obliczone liczby twardości zarysowania (HSP) są podsumowane i porównane na RYSUNKU 3. Szerokość śladu zarysowania zmierzona przez mikroskop jest zgodna z tą zmierzoną przy użyciu NANOVEA Profiler - próbka teflonowa wykazuje większą szerokość zarysowania w wyższych temperaturach. Szerokość śladu zarysowania wzrasta z 281 do 539 µm w miarę wzrostu temperatury z RT do 300oC, co skutkuje zmniejszeniem HSP z 65 do 18 MPa.

Twardość zarysowania w podwyższonej temperaturze może być mierzona z wysoką precyzją i powtarzalnością przy użyciu Tribometru NANOVEA T50. Stanowi to alternatywne rozwiązanie w stosunku do innych pomiarów twardości i czyni Tribometry NANOVEA bardziej kompletnym systemem do kompleksowej oceny tribo-mechanicznej w wysokich temperaturach.

RYSUNEK 1: Profile śladów zarysowania po badaniach twardości zarysowania w różnych temperaturach.

RYSUNEK 2: Ślady zarysowań pod mikroskopem po pomiarach w różnych temperaturach.

RYSUNEK 3: Ewolucja szerokości śladu zarysowania i twardości zarysowania w zależności od temperatury.

PODSUMOWANIE

W niniejszej pracy zaprezentowano sposób pomiaru twardości zarysowania przez trybometr NANOVEA w podwyższonej temperaturze zgodnie z normą ASTM G171-03. Badanie twardości zarysowania przy stałym obciążeniu stanowi alternatywne, proste rozwiązanie umożliwiające porównanie twardości materiałów przy użyciu tribometru. Możliwość wykonania pomiarów twardości zarysowania w podwyższonej temperaturze czyni Tribometr NANOVEA idealnym narzędziem do oceny właściwości tribo-mechanicznych materiałów w wysokiej temperaturze.

Tribometr NANOVEA oferuje również precyzyjne i powtarzalne badania zużycia i tarcia z wykorzystaniem trybów obrotowych i liniowych zgodnych z normami ISO i ASTM, z opcjonalnymi modułami do badań zużycia w wysokich temperaturach, smarowania i tribo-korozji dostępnymi w jednym, wstępnie zintegrowanym systemie. Opcjonalny profiler bezdotykowy 3D jest dostępny do wysokorozdzielczego obrazowania 3D śladów zużycia, jako dodatek do innych pomiarów powierzchni, takich jak chropowatość.

1 Wredenberg, Fredrik; PL Larsson (2009). "Badanie zarysowania metali i polimerów: Experiments and numerics". Wear 266 (1-2): 76
2 ASTM G171-03 (2009), "Standardowa metoda badania twardości materiałów na zarysowania przy użyciu diamentowego rysika".

Pomiar twardości zarysowania przy użyciu testera mechanicznego

POMIAR TWARDOŚCI ZARYSOWANIA

PRZY UŻYCIU TESTERA MECHANICZNEGO

Przygotowane przez

DUANJIE LI, PhD

WPROWADZENIE

Ogólnie rzecz biorąc, testy twardości mierzą odporność materiałów na odkształcenia trwałe lub plastyczne. Istnieją trzy rodzaje pomiarów twardości: twardość zarysowania, twardość wgłębna i twardość odbicia. Test twardości zarysowania mierzy odporność materiału na zarysowanie i ścieranie w wyniku tarcia o ostry przedmiot1. Została ona opracowana przez niemieckiego mineraloga Friedricha Mohsa w 1820 roku i nadal jest powszechnie stosowana do oceny właściwości fizycznych minerałów2. Ta metoda badawcza ma również zastosowanie do metali, ceramiki, polimerów i powierzchni powlekanych.

Podczas pomiaru twardości zarysowania, trzpień diamentowy o określonej geometrii zarysowuje powierzchnię materiału wzdłuż liniowej ścieżki pod wpływem stałej siły normalnej ze stałą prędkością. Średnia szerokość rysy jest mierzona i używana do obliczenia liczby twardości zarysowania (HSP). Technika ta zapewnia proste rozwiązanie do skalowania twardości różnych materiałów.

CEL POMIARU

W badaniach zastosowano tester mechaniczny NANOVEA PB1000 do pomiaru twardości zarysowania różnych metali zgodnie z normą ASTM G171-03.

Jednocześnie badanie to prezentuje możliwości NANOVEA Tester mechaniczny w wykonywaniu pomiarów twardości zarysowania z dużą precyzją i powtarzalnością.

NANOVEA

PB1000

WARUNKI BADANIA

Tester mechaniczny NANOVEA PB1000 przeprowadził testy twardości zarysowania na trzech polerowanych metalach (Cu110, Al6061 i SS304). Zastosowano stożkowy trzpień diamentowy o kącie wierzchołkowym 120° i promieniu końcówki 200 µm. Każda próbka została zarysowana trzykrotnie z tymi samymi parametrami testowymi, aby zapewnić powtarzalność wyników. Parametry testu podsumowano poniżej. Skanowanie profilu przy niskim obciążeniu normalnym wynoszącym 10 mN przeprowadzono przed i po zadrapaniu. test zdrapki do pomiaru zmiany profilu powierzchni rysy.

PARAMETRY BADANIA

NORMALNA SIŁA

10 N

TEMPERATURA

24°C (RT)

PRĘDKOŚĆ PRZESUWANIA

20 mm/min

ODLEGŁOŚĆ PRZESUWU

10 mm

ATMOSFERY

Air

WYNIKI I DYSKUSJA

Obrazy śladów zarysowań trzech metali (Cu110, Al6061 i SS304) po przeprowadzonych badaniach przedstawiono na RYSUNKU 1 w celu porównania twardości zarysowań różnych materiałów. Funkcja mapowania oprogramowania NANOVEA Mechanical została wykorzystana do stworzenia trzech równoległych zarysowań testowanych w tych samych warunkach w zautomatyzowanym protokole. Zmierzona szerokość śladu zarysowania i obliczona liczba twardości zarysowania (HSP) zostały podsumowane i porównane w TABELI 1. Metale wykazują różne szerokości śladów zużycia, wynoszące 174, 220 i 89 µm odpowiednio dla Al6061, Cu110 i SS304, co skutkuje obliczoną liczbą HSP wynoszącą 0,84, 0,52 i 3,2 GPa.

Oprócz twardości zarysowania obliczonej na podstawie szerokości śladu zarysowania, podczas badania twardości zarysowania rejestrowano in situ ewolucję współczynnika tarcia (COF), głębokości rzeczywistej i emisji akustycznej. Głębokość rzeczywista to różnica pomiędzy głębokością penetracji trzpienia podczas testu zarysowania a profilem powierzchni zmierzonym podczas skanowania wstępnego. Przykładowe wartości COF, prawdziwej głębokości i emisji akustycznej dla Cu110 przedstawiono na RYSUNKU 2. Takie informacje zapewniają wgląd w uszkodzenia mechaniczne zachodzące podczas zarysowania, umożliwiając użytkownikom wykrywanie wad mechanicznych i dalsze badanie zachowania zarysowania badanego materiału.

Testy twardości zarysowania mogą być zakończone w ciągu kilku minut z wysoką precyzją i powtarzalnością. W porównaniu do konwencjonalnych procedur wgłębnych, test twardości zarysowania w tym badaniu zapewnia alternatywne rozwiązanie dla pomiarów twardości, co jest przydatne w kontroli jakości i rozwoju nowych materiałów.

Al6061

Cu110

SS304

RYSUNEK 1: Obraz mikroskopowy śladów zarysowania po badaniu (powiększenie 100x).

 Szerokość śladu zarysowania (μm)HSp (GPa)
Al6061174±110.84
Cu110220±10.52
SS30489±53.20

TABELA 1: Zestawienie szerokości śladu zarysowania i numeru twardości zarysowania.

RYSUNEK 2: Ewolucja współczynnika tarcia, głębokości rzeczywistej i emisji akustycznej podczas badania twardości zarysowania na Cu110.

PODSUMOWANIE

W niniejszej pracy zaprezentowano możliwości urządzenia NANOVEA Mechanical Tester w zakresie prowadzenia badań twardości zarysowania zgodnie z wymaganiami normy ASTM G171-03. Poza badaniem przyczepności powłoki i odporności na zarysowanie, próba zarysowania przy stałym obciążeniu stanowi alternatywne, proste rozwiązanie umożliwiające porównanie twardości materiałów. W przeciwieństwie do konwencjonalnych urządzeń do badania twardości zarysowania, Mechaniczne Testery NANOVEA oferują opcjonalne moduły do monitorowania ewolucji współczynnika tarcia, emisji akustycznej oraz głębokości rzeczywistej w warunkach in situ.

Moduły Nano i Micro Testera Mechanicznego NANOVEA zawierają tryby pracy zgodne z normami ISO i ASTM - wgłębnik, zarysowanie i ścieranie, zapewniając najszerszy i najbardziej przyjazny dla użytkownika zakres badań dostępny w jednym systemie. Niezrównany zakres badań NANOVEA stanowi idealne rozwiązanie do wyznaczania pełnego zakresu właściwości mechanicznych cienkich lub grubych, miękkich lub twardych powłok, filmów i podłoży, w tym twardości, modułu Younga, odporności na pękanie, przyczepności, odporności na ścieranie i wielu innych.

Lepsze spojrzenie na soczewki poliwęglanowe

Lepsze spojrzenie na soczewki poliwęglanowe Dowiedz się więcej
 
Soczewki poliwęglanowe są powszechnie stosowane w wielu aplikacjach optycznych. Ich wysoka odporność na uderzenia, mała masa oraz tani koszt produkcji wielkoseryjnej sprawiają, że w różnych zastosowaniach są bardziej praktyczne niż tradycyjne szkło [1]. Niektóre z tych zastosowań wymagają kryteriów bezpieczeństwa (np. okulary ochronne), złożoności (np. soczewki Fresnela) lub trwałości (np. soczewki świateł drogowych), które trudno spełnić bez użycia tworzyw sztucznych. Możliwość taniego spełnienia wielu wymagań przy zachowaniu wystarczających właściwości optycznych sprawia, że soczewki plastikowe wyróżniają się w swojej dziedzinie. Soczewki poliwęglanowe mają również ograniczenia. Głównym problemem dla konsumentów jest łatwość, z jaką można je zarysować. Aby to zrekompensować, można przeprowadzić dodatkowe procesy w celu nałożenia powłoki antyzadrapaniowej. Nanovea przygląda się niektórym ważnym właściwościom soczewek plastikowych, wykorzystując nasze trzy instrumenty metrologiczne: Profilometr, Tribometroraz Tester mechaniczny.   Kliknij, aby przeczytać więcej!
Tribologia w wysokich temperaturach

Twardość zarysowań w wysokiej temperaturze z wykorzystaniem tribometru

Materiały są wybierane na podstawie wymagań serwisowych. W przypadku zastosowań obejmujących znaczne zmiany temperatury i gradienty termiczne, kluczowe znaczenie ma zbadanie właściwości mechanicznych materiałów w wysokich temperaturach, aby być w pełni świadomym ograniczeń mechanicznych. Materiały, zwłaszcza polimery, zwykle miękną w wysokich temperaturach. Wiele uszkodzeń mechanicznych jest spowodowanych odkształceniem pełzającym i zmęczeniem cieplnym, które ma miejsce tylko w podwyższonych temperaturach. W związku z tym potrzebna jest niezawodna technika pomiaru twardości zarysowania w wysokiej temperaturze, aby zapewnić właściwy dobór materiałów do zastosowań wysokotemperaturowych.

Twardość zarysowań w wysokiej temperaturze z wykorzystaniem tribometru

 

Pomiar twardości zarysowania za pomocą tribometru

W tym badaniu, Nanovea Tribometr służy do pomiaru twardości zarysowań różnych metali. W przypadku
Zdolność do wykonywania pomiarów twardości zarysowania z wysoką precyzją i powtarzalnością sprawia, że
Tribometr Nanovea to bardziej kompletny system do oceny trybologicznej i mechanicznej.

Pomiar twardości zarysowania za pomocą tribometru

Właściwości mechaniczne i trybologiczne włókien węglowych

W połączeniu z testem zużycia przeprowadzonym przez Tribometr i analiza powierzchni za pomocą optycznego profilometru 3D, my
zaprezentować wszechstronność i dokładność instrumentów Nanovea w testowaniu materiałów kompozytowych
o kierunkowych właściwościach mechanicznych.

Właściwości mechaniczne i trybologiczne włókna węglowego

Pomiar głębokości mikro zarysowań z wykorzystaniem profilometrii 3D

W tym zastosowaniu Nanovea ST400 Profilometer jest używany do pomiar głębokości rzędu mikrozadrapań powstałych przy użyciu Nanovea Tester mechaniczny w trybie zarysowania. W ciągu kilku sekund Profilometr po pojedynczym przejściu linii w trybie 2D umożliwia pomiar powierzchni i głębokości.

Pomiar głębokości mikrozarysowań przy użyciu profilometrii 3D