USA/GLOBAL : +1-949-461-9292
EUROPE : +39-011-3052-794
CONTACTEZ-NOUS

Test de rayure sur le revêtement en nitrure de titane

TEST DE RAYURE DU REVÊTEMENT EN NITRURE DE TITANE

INSPECTION DU CONTRÔLE DE LA QUALITÉ

Préparé par

DUANJIE LI, PhD

INTRODUCTION

La combinaison d'une dureté élevée, d'une excellente résistance à l'usure, d'une résistance à la corrosion et d'une inertie fait du nitrure de titane (TiN) un revêtement protecteur idéal pour les composants métalliques dans diverses industries. Par exemple, la rétention des arêtes et la résistance à la corrosion d'un revêtement TiN peuvent augmenter considérablement l'efficacité du travail et prolonger la durée de vie des machines-outils telles que les lames de rasoir, les coupeurs de métaux, les moules à injection et les scies. Sa grande dureté, son inertie et sa non-toxicité font du TiN un excellent candidat pour les applications dans les dispositifs médicaux, notamment les implants et les instruments chirurgicaux.

IMPORTANCE DES ESSAIS D'ÉCRASEMENT DU REVÊTEMENT TiN

La contrainte résiduelle dans les revêtements protecteurs PVD/CVD joue un rôle essentiel dans les performances et l'intégrité mécanique du composant revêtu. La contrainte résiduelle provient de plusieurs sources principales, notamment la contrainte de croissance, les gradients thermiques, les contraintes géométriques et la contrainte de service¹. Le décalage de la dilatation thermique entre le revêtement et le substrat créé lors du dépôt du revêtement à des températures élevées entraîne une contrainte résiduelle thermique élevée. En outre, les outils revêtus de TiN sont souvent utilisés sous des contraintes concentrées très élevées, par exemple les forets et les roulements. Il est essentiel de développer un processus de contrôle de qualité fiable pour inspecter quantitativement la force cohésive et adhésive des revêtements fonctionnels de protection.

[1] V. Teixeira, Vacuum 64 (2002) 393-399.

OBJECTIF DE MESURE

Dans cette étude, nous montrons que le NANOVEA Testeurs mécaniques en mode Scratch sont idéaux pour évaluer la force de cohésion/adhérence des revêtements protecteurs TiN de manière contrôlée et quantitative.

NANOVEA

PB1000

CONDITIONS DE TEST

Le testeur mécanique NANOVEA PB1000 a été utilisé pour effectuer le revêtement. tests de résistance à l'abrasion sur trois revêtements TiN en utilisant les mêmes paramètres d'essai que ceux résumés ci-dessous :

MODE DE CHARGE : Linéaire progressif

CHARGE INITIALE

0.02 N

CHARGE FINALE

10 N

TAUX DE CHARGEMENT

20 N/min

LONGUEUR DU GRATTAGE

5 mm

INDENTER TYPE

Sphéro-conique

Diamant, rayon 20 μm

RÉSULTATS ET DISCUSSION

La FIGURE 1 montre l'évolution enregistrée de la profondeur de pénétration, du coefficient de frottement (COF) et de l'émission acoustique pendant l'essai. Les microtraces complètes sur les échantillons de TiN sont illustrées à la FIGURE 2. Les comportements de défaillance à différentes charges critiques sont présentés dans la FIGURE 3, où la charge critique Lc1 est définie comme la charge à laquelle le premier signe de fissure cohésive apparaît dans la piste de rayure, Lc2 est la charge après laquelle des défaillances par spallation répétées ont lieu, et Lc3 est la charge à laquelle le revêtement est complètement retiré du substrat. Les valeurs de charge critique (Lc) pour les revêtements TiN sont résumées dans la FIGURE 4.

L'évolution de la profondeur de pénétration, du COF et de l'émission acoustique donne un aperçu du mécanisme de rupture du revêtement à différents stades, qui sont représentés par les charges critiques dans cette étude. On peut observer que l'échantillon A et l'échantillon B présentent un comportement comparable pendant l'essai de rayure. Le stylet pénètre progressivement dans l'échantillon jusqu'à une profondeur de ~0,06 mm et le COF augmente graduellement jusqu'à ~0,3 alors que la charge normale augmente linéairement au début du test de rayure du revêtement. Lorsque le Lc1 de ~3,3 N est atteint, le premier signe de rupture par écaillage apparaît. Cela se reflète également dans les premiers pics importants dans le tracé de la profondeur de pénétration, du COF et de l'émission acoustique. Lorsque la charge continue d'augmenter jusqu'à Lc2 de ~3,8 N, de nouvelles fluctuations de la profondeur de pénétration, du COF et de l'émission acoustique se produisent. Nous pouvons observer une défaillance continue par spallation présente des deux côtés de la piste de rayure. À Lc3, le revêtement se détache complètement du substrat métallique sous la pression élevée appliquée par le stylet, laissant le substrat exposé et non protégé.

En comparaison, l'échantillon C présente des charges critiques plus faibles à différents stades des essais de rayure du revêtement, ce qui se reflète également dans l'évolution de la profondeur de pénétration, du coefficient de friction (COF) et de l'émission acoustique pendant l'essai de rayure du revêtement. L'échantillon C possède une couche intermédiaire d'adhésion avec une dureté plus faible et une contrainte plus élevée à l'interface entre le revêtement TiN supérieur et le substrat métallique par rapport à l'échantillon A et l'échantillon B.

Cette étude démontre l'importance d'un support de substrat et d'une architecture de revêtement appropriés pour la qualité du système de revêtement. Une couche intermédiaire plus solide peut mieux résister à la déformation sous une charge externe élevée et une contrainte de concentration, et ainsi améliorer la force cohésive et adhésive du système revêtement/substrat.

FIGURE 1: Évolution de la profondeur de pénétration, du COF et de l'émission acoustique des échantillons de TiN.

FIGURE 2 : Trace complète de rayure des revêtements TiN après les tests.

FIGURE 3 : Défaillances du revêtement TiN sous différentes charges critiques, Lc.

FIGURE 4 : Résumé des valeurs de charge critique (Lc) pour les revêtements TiN.

CONCLUSION

Dans cette étude, nous avons montré que le testeur mécanique NANOVEA PB1000 réalise des tests de rayures fiables et précis sur des échantillons revêtus de TiN de manière contrôlée et étroitement surveillée. Les mesures de rayures permettent aux utilisateurs d'identifier rapidement la charge critique à laquelle les défaillances typiques des revêtements cohésifs et adhésifs se produisent. Nos instruments sont des outils de contrôle qualité supérieurs qui peuvent inspecter et comparer quantitativement la qualité intrinsèque d'un revêtement et l'intégrité interfaciale d'un système revêtement/substrat. Un revêtement avec une couche intermédiaire appropriée peut résister à une grande déformation sous une charge externe élevée et une contrainte de concentration, et améliorer la force cohésive et adhésive d'un système revêtement/substrat.

Les modules Nano et Micro d'un testeur mécanique NANOVEA comprennent tous des modes d'indentation, de rayure et d'usure conformes aux normes ISO et ASTM, offrant ainsi la gamme d'essais la plus large et la plus conviviale disponible dans un seul système. La gamme inégalée de NANOVEA est une solution idéale pour déterminer l'ensemble des propriétés mécaniques des revêtements, films et substrats minces ou épais, souples ou durs, y compris la dureté, le module de Young, la résistance à la rupture, l'adhérence, la résistance à l'usure et bien d'autres encore.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Commentaire