EUA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
FALE CONOSCO

Categoria: Teste de profilometria

 

Desempenho da Lixa Abrasão Usando um Tribômetro

DESEMPENHO DA LIXA NA ABRASÃO

USANDO UM TRIBÔMETRO

Preparado por

DUANJIE LI, PhD

INTRODUÇÃO

A lixa consiste em partículas abrasivas coladas a uma face de um papel ou pano. Vários materiais abrasivos podem ser usados para as partículas, tais como granada, carboneto de silício, óxido de alumínio e diamante. A lixa é amplamente aplicada em diversos setores industriais para criar acabamentos de superfície específicos em madeira, metal e drywall. Muitas vezes, elas trabalham sob contato de alta pressão aplicada manualmente ou com ferramentas elétricas.

IMPORTÂNCIA DA AVALIAÇÃO DO DESEMPENHO DA LIXA DE LIXA POR ABRASÃO

A eficácia da lixa é muitas vezes determinada por seu desempenho em termos de abrasão sob diferentes condições. O tamanho do grão, ou seja, o tamanho das partículas abrasivas incrustadas na lixa, determina a taxa de desgaste e o tamanho dos arranhões do material a ser lixado. As lixas de maior granulometria têm partículas menores, resultando em menores velocidades de lixamento e acabamentos superficiais mais finos. Lixas com o mesmo número de grãos, mas feitas de materiais diferentes, podem ter comportamentos não semelhantes sob condições secas ou úmidas. São necessárias avaliações tribológicas confiáveis para garantir que a lixa fabricada possua o comportamento abrasivo desejado. Estas avaliações permitem aos usuários comparar quantitativamente os comportamentos de desgaste de diferentes tipos de lixas de forma controlada e monitorada, a fim de selecionar o melhor candidato para a aplicação desejada.

OBJETIVO DA MEDIÇÃO

Neste estudo, mostramos a capacidade do Tribômetro NANOVEA de avaliar quantitativamente o desempenho de abrasão de várias amostras de lixas em condições secas e úmidas.

NANOVEA

T2000

PROCEDIMENTOS DE TESTE

O coeficiente de atrito (COF) e o desempenho à abrasão de dois tipos de lixas foram avaliados pelo Tribômetro NANOVEA T100. Uma bola de aço inoxidável 440 foi usada como contra-material. As cicatrizes de desgaste da esfera foram examinadas após cada teste de desgaste utilizando o NANOVEA Perfilador óptico 3D sem contato para garantir medições precisas de perda de volume.

Observe que uma bola de aço inoxidável 440 foi escolhida como material do contador para criar um estudo comparativo, mas qualquer material sólido poderia ser substituído para simular uma condição de aplicação diferente.

RESULTADOS DOS TESTES E DISCUSSÃO

A FIGURA 1 mostra uma comparação COF da lixa 1 e 2 em condições ambientais secas e úmidas. A lixa 1, em condições secas, mostra um COF de 0,4 no início do teste que diminui progressivamente e se estabiliza a 0,3. Em condições úmidas, esta amostra apresenta um COF médio mais baixo de 0,27. Em contraste, o COF da amostra 2 mostra um COF seco de 0,27 e um COF úmido de ~ 0,37. 

Observe que a oscilação nos dados de todos os gráficos de COF foi causada pelas vibrações geradas pelo movimento de deslizamento da bola contra as superfícies ásperas da lixa.

FIGURA 1: Evolução do COF durante os testes de desgaste.

O FIGURA 2 resume os resultados da análise das cicatrizes de desgaste. As cicatrizes de desgaste foram medidas usando um microscópio ótico e um NANOVEA 3D Non-Contact Optical Profiler. FIGURA 3 e FIGURA 4 comparam as cicatrizes de desgaste das bolas SS440 desgastadas após os testes de desgaste em Lixa 1 e 2 (condições úmidas e secas). Como mostrado no FIGURA 4, o NANOVEA Optical Profiler captura com precisão a topografia da superfície das quatro bolas e suas respectivas faixas de desgaste que foram então processadas com o software NANOVEA Mountains Advanced Analysis para calcular a perda de volume e a taxa de desgaste. No microscópio e na imagem do perfil da bola, pode-se observar que a bola utilizada para o teste de lixa 1 (seca) exibia uma cicatriz de desgaste achatada maior em comparação com as outras, com uma perda de volume de 0,313 mm3. Em contraste, a perda de volume da Lixa 1 (molhada) foi de 0,131 mm3. Para Lixa 2 (seca) a perda de volume foi de 0,163 mm3 e para Lixa 2 (úmida) a perda de volume aumentou para 0,237 mm3.

Além disso, é interessante observar que o COF desempenhou um papel importante no desempenho de abrasão das lixas. A lixa 1 exibiu COF mais alto na condição seca, levando a uma maior taxa de abrasão para a esfera SS440 utilizada no teste. Em comparação, o maior COF da lixa 2 na condição úmida resultou em uma maior taxa de abrasão. Os rastros de desgaste das lixas após as medidas são exibidos na FIGURA 5.

Ambas as lixas 1 e 2 afirmam funcionar em ambientes secos e úmidos. No entanto, eles exibiram desempenho de abrasão significativamente diferente em condições secas e úmidas. NANOVEA tribômetros fornecem recursos de avaliação de desgaste bem controlados, quantificáveis e confiáveis que garantem avaliações de desgaste reproduzíveis. Além disso, a capacidade de medição in situ do COF permite aos usuários correlacionar diferentes estágios de um processo de desgaste com a evolução do COF, o que é fundamental para melhorar a compreensão fundamental do mecanismo de desgaste e das características tribológicas da lixa.

FIGURA 2: Usar o volume da cicatriz das bolas e o COF médio sob diferentes condições.

FIGURA 3: Usar as cicatrizes das bolas após os testes.

FIGURA 4: Morfologia 3D das cicatrizes de desgaste nas bolas.

FIGURA 5: Desgaste de faixas nas lixas sob diferentes condições.

CONCLUSÃO

O desempenho em abrasão de dois tipos de lixas com o mesmo número de grãos foi avaliado sob condições secas e úmidas neste estudo. As condições de serviço da lixa têm um papel fundamental na eficácia do desempenho do trabalho. A lixa 1 teve um comportamento de abrasão significativamente melhor sob condições secas, enquanto a lixa 2 teve um melhor desempenho sob condições úmidas. O atrito durante o processo de lixamento é um fator importante a ser considerado ao avaliar o desempenho em termos de abrasão. O NANOVEA Optical Profiler mede com precisão a morfologia 3D de qualquer superfície, como cicatrizes de desgaste em uma bola, garantindo uma avaliação confiável do desempenho de abrasão da lixa neste estudo. O Tribômetro NANOVEA mede o coeficiente de atrito in situ durante um teste de desgaste, fornecendo uma visão sobre as diferentes etapas de um processo de desgaste. Ele também oferece testes de desgaste e atrito repetíveis usando os modos rotativo e linear compatíveis com ISO e ASTM, com módulos opcionais de desgaste e lubrificação a alta temperatura disponíveis em um sistema pré-integrado. Esta gama inigualável permite aos usuários simular diferentes ambientes severos de trabalho dos rolamentos de esferas, incluindo alta tensão, desgaste e alta temperatura, etc. Também fornece uma ferramenta ideal para avaliar quantitativamente os comportamentos tribológicos de materiais superiores resistentes ao desgaste sob cargas elevadas.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Acabamento da superfície de couro processado utilizando a Perfilometria 3D

COURO PROCESSADO

ACABAMENTO DE SUPERFÍCIE UTILIZANDO A PERFILOMETRIA 3D

Preparado por

CRAIG LEISING

INTRODUÇÃO

Uma vez concluído o processo de curtimento de uma pele de couro, a superfície do couro pode passar por vários processos de acabamento para uma variedade de aparência e toque. Estes processos mecânicos podem incluir estiramento, polimento, lixamento, estampagem, revestimento, etc. Dependendo do uso final do couro, alguns podem exigir um processamento mais preciso, controlado e repetível.

IMPORTÂNCIA DA INSPEÇÃO DA PERFILOMETRIA PARA PESQUISA E DESENVOLVIMENTO E CONTROLE DE QUALIDADE

Devido à grande variação e à falta de confiabilidade dos métodos de inspeção visual, as ferramentas capazes de quantificar com precisão as características em micro e nano escalas podem melhorar os processos de acabamento do couro. A compreensão do acabamento da superfície do couro em um sentido quantificável pode levar a uma melhor seleção de processamento de superfície orientada por dados para obter resultados de acabamento ideais. NANOVEA 3D sem contato Perfilômetros utilizam a tecnologia confocal cromática para medir superfícies de couro acabadas e oferecem a mais alta repetibilidade e precisão do mercado. Quando outras técnicas não conseguem fornecer dados confiáveis, devido ao contato da sonda, à variação da superfície, ao ângulo, à absorção ou à refletividade, os Profilômetros NANOVEA são bem-sucedidos.

OBJETIVO DA MEDIÇÃO

Nesta aplicação, o NANOVEA ST400 é utilizado para medir e comparar o acabamento superficial de duas amostras de couro diferentes, mas bem processadas. Vários parâmetros de superfície são automaticamente calculados a partir do perfil de superfície.

Aqui vamos nos concentrar na rugosidade da superfície, profundidade da cavidade, passo da cavidade e diâmetro da cavidade para avaliação comparativa.

NANOVEA

ST400

RESULTADOS: AMOSTRA 1

ISO 25178

PARÂMETROS DE ALTURA

OUTROS PARÂMETROS 3D

RESULTADOS: AMOSTRA 2

ISO 25178

PARÂMETROS DE ALTURA

OUTROS PARÂMETROS 3D

COMPARAÇÃO DE PROFUNDIDADE

Distribuição de profundidade para cada amostra.
Um grande número de covinhas profundas foi observado em
AMOSTRA 1.

COMPARATIVO DE PASSO

Passo entre as cavidades em AMOSTRA 1 é um pouco menor
do que
AMOSTRA 2mas ambos têm uma distribuição semelhante

 DIÂMETRO MÉDIO COMPARATIVO

Distribuições similares de diâmetro médio das covinhas,
com
AMOSTRA 1 mostrando diâmetros médios ligeiramente menores em média.

CONCLUSÃO

Nesta aplicação, mostramos como o Perfilometro NANOVEA ST400 3D pode caracterizar com precisão o acabamento superficial do couro processado. Neste estudo, ter a capacidade de medir a rugosidade da superfície, profundidade da covinha, passo da covinha e diâmetro da covinha nos permitiu quantificar diferenças entre o acabamento e a qualidade das duas amostras que podem não ser óbvias pela inspeção visual.

Em geral, não houve diferença visível na aparência das varreduras 3D entre a SAMPLE 1 e a SAMPLE 2. Entretanto, na análise estatística, há uma clara distinção entre as duas amostras. A AMOSTRA 1 contém uma quantidade maior de covinhas com diâmetros menores, profundidades maiores e passo de covinhas menores em comparação com a AMOSTRA 2.

Por favor, observe que estudos adicionais estão disponíveis. Áreas especiais de interesse poderiam ter sido mais bem analisadas com um AFM ou módulo de Microscópio integrado. As velocidades do NANOVEA 3D Perfilometer variam de 20 mm/s a 1 m/s para laboratório ou pesquisa para atender às necessidades de inspeção de alta velocidade; pode ser construído com dimensionamento personalizado, velocidades, capacidades de escaneamento, conformidade de sala limpa Classe 1, esteira de indexação ou para integração em linha ou on-line.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Teste de Desgaste do Pistão

Teste de Desgaste do Pistão

Usando um Tribômetro

Preparado por

LIU FRANCA

INTRODUÇÃO

A perda por fricção representa aproximadamente 10% de energia total em combustível para um motor diesel[1]. 40-55% da perda de atrito vem do sistema do cilindro de potência. A perda de energia por atrito pode ser diminuída com uma melhor compreensão das interações tribológicas que ocorrem no sistema do cilindro de potência.

Uma parte significativa da perda de atrito no sistema de cilindros de potência provém do contato entre a saia do pistão e a camisa do cilindro. A interação entre a saia do pistão, lubrificante e as interfaces do cilindro é bastante complexa devido às constantes mudanças de força, temperatura e velocidade em um motor de vida real. A otimização de cada fator é fundamental para obter um ótimo desempenho do motor. Este estudo se concentrará em replicar os mecanismos que causam forças de fricção e desgaste nas interfaces saia do pistão - camisa do cilindro-lubrificante (P-L-C).

 Esquema do sistema de cilindros de potência e das interfaces saia-saia-cilindro-lubrificante-cilíndrico do pistão.

[1] Bai, Dongfang. Modelagem de lubrificação da saia do pistão em motores de combustão interna. Diss. MIT, 2012

IMPORTÂNCIA DOS PISTÕES DE TESTE COM TRIBÔMETROS

O óleo de motor é um lubrificante bem projetado para sua aplicação. Além do óleo básico, são adicionados aditivos como detergentes, dispersantes, melhorador de viscosidade (VI), agentes anti-desgaste/antifricção e inibidores de corrosão para melhorar seu desempenho. Estes aditivos afetam a forma como o óleo se comporta sob diferentes condições operacionais. O comportamento do óleo afeta as interfaces P-L-C e determina se está ocorrendo desgaste significativo do contato metal-metal ou se está ocorrendo lubrificação hidrodinâmica (muito pouco desgaste).

É difícil entender as interfaces P-L-C sem isolar a área das variáveis externas. É mais prático simular o evento com condições que sejam representativas de sua aplicação na vida real. O NANOVEA Tribômetro é ideal para isso. Equipado com vários sensores de força, sensor de profundidade, módulo de lubrificação gota a gota e estágio alternativo linear, o NANOVEA O T2000 é capaz de imitar de perto os eventos que ocorrem dentro de um bloco de motor e obter dados valiosos para compreender melhor as interfaces P-L-C.

Módulo Líquido no Tribômetro NANOVEA T2000

O módulo drop-by-drop é crucial para este estudo. Como os pistões podem se mover a uma velocidade muito rápida (acima de 3000 rpm), é difícil criar uma fina película de lubrificante submergindo a amostra. Para resolver este problema, o módulo gota a gota é capaz de aplicar uma quantidade constante de lubrificante na superfície da saia do pistão.

A aplicação de lubrificante fresco também elimina a preocupação com contaminantes de desgaste desalojados que influenciam as propriedades do lubrificante.

NANOVEA T2000

Tribômetro de alta carga

OBJETIVO DA MEDIÇÃO

As interfaces saia-saia-lubrificante-cilíndrico do pistão serão estudadas neste relatório. As interfaces serão replicadas pela realização de um teste de desgaste linear recíproco com módulo de lubrificante gota a gota.

O lubrificante será aplicado à temperatura ambiente e em condições de aquecimento para comparar as condições de partida a frio e de operação ideal. O COF e a taxa de desgaste serão observados para entender melhor como as interfaces se comportam nas aplicações da vida real.

PARÂMETROS DE TESTE

para testes de tribologia em pistões

CARREGAR ………………………. 100 N

DURAÇÃO DO TESTE ………………………. 30 min

SPEED ………………………. 2000 rpm

AMPLITUDE ………………………. 10 mm

DISTÂNCIA TOTAL ………………………. 1200 m

REVESTIMENTO DA PELE ………………………. Moli-grafite

PIN MATERIAL ………………………. Liga de Alumínio 5052

PIN DIAMETER ………………………. 10 mm

LUBRICANTE ………………………. Óleo de motor (10W-30)

APPROX. TAXA DE FLUXO ………………………. 60 mL/min

TEMPERATURA ………………………. Temperatura ambiente & 90°C

RESULTADOS DE TESTES RECÍPROCOS LINEARES

Nesta experiência, o A5052 foi usado como material de contagem. Enquanto os blocos de motor são normalmente feitos de alumínio fundido como o A356, o A5052 tem propriedades mecânicas similares ao A356 para este teste simulado [2].

Sob as condições de teste, o desgaste significativo foi
observado na saia do pistão em temperatura ambiente
em comparação a 90°C. Os arranhões profundos vistos nas amostras sugerem que o contato entre o material estático e a saia do pistão ocorre freqüentemente durante todo o teste. A alta viscosidade à temperatura ambiente pode estar restringindo o óleo de preencher completamente as lacunas nas interfaces e criar contato metal-metal. Em temperaturas mais altas, o óleo afina e é capaz de fluir entre o pino e o pistão. Como resultado, observa-se um desgaste significativamente menor a uma temperatura mais alta. O FIGURA 5 mostra que um lado da cicatriz de desgaste se desgastou significativamente menos do que o outro lado. Isto se deve muito provavelmente à localização da saída de óleo. A espessura da película lubrificante era mais espessa de um lado do que do outro, causando um desgaste desigual.

 

 

[2] "5052 Alumínio vs 356,0 Alumínio". MakeItFrom.com, makeitfrom.com/compare/5052-O-Aluminum/A356.0-SG70B-A13560-Cast-Aluminum

O COF dos testes de tribologia linear recíproca pode ser dividido em alta e baixa aprovação. O passe alto refere-se à amostra que se move na direção da frente, ou positiva, e o passe baixo refere-se à amostra que se move na direção inversa, ou negativa. A média de COF para o óleo RT foi observada como sendo inferior a 0,1 para ambas as direções. O COF médio entre os passes foi de 0,072 e 0,080. O COF médio do óleo de 90°C foi encontrado como diferente entre os passes. Os valores médios de COF de 0,167 e 0,09 foram observados. A diferença no COF dá uma prova adicional de que o óleo só foi capaz de molhar adequadamente um dos lados do pino. O COF alto foi obtido quando uma película espessa foi formada entre o pino e a saia do pistão devido à ocorrência de lubrificação hidrodinâmica. O COF mais baixo é observado na outra direção quando a lubrificação mista está ocorrendo. Para mais informações sobre lubrificação hidrodinâmica e lubrificação mista, por favor, visite nossa nota de aplicação em Curvas de Stribeck.

Tabela 1: Resultados do teste de desgaste lubrificado em pistões.

FIGURA 1: Gráficos COF para o teste de desgaste do óleo à temperatura ambiente A perfil cru B alto passe C baixo passe.

FIGURA 2: Gráficos COF para teste de óleo de desgaste a 90°C A perfil cru B alto passe C baixo passe.

FIGURA 3: Imagem ótica da cicatriz de desgaste do teste de desgaste do óleo do motor RT.

FIGURA 4: Volume de uma análise de cicatriz de desgaste de um furo do teste de desgaste de óleo de motor RT.

FIGURA 5: Exame de profilometria da cicatriz de desgaste do teste de desgaste do óleo do motor RT.

FIGURA 6: Imagem ótica da cicatriz de desgaste de 90°C teste de desgaste do óleo do motor

FIGURA 7: Volume de uma análise de cicatriz de desgaste de um furo de 90°C de teste de desgaste de óleo de motor.

FIGURA 8: Varredura da cicatriz de desgaste de 90°C do teste de desgaste do óleo do motor.

CONCLUSÃO

Foi realizado um teste de desgaste linear recíproco lubrificado em um pistão para simular eventos que ocorrem em um
motor operacional da vida real. As interfaces saia-saia-lubrificante-cilíndrico do pistão é crucial para o funcionamento de um motor. A espessura do lubrificante na interface é responsável pela perda de energia devido ao atrito ou desgaste entre a saia do pistão e a camisa do cilindro. Para otimizar o motor, a espessura da película deve ser a mais fina possível sem permitir que a saia do pistão e a camisa do cilindro se toquem. O desafio, entretanto, é como as mudanças de temperatura, velocidade e força irão afetar as interfaces P-L-C.

Com sua ampla gama de carga (até 2000 N) e velocidade (até 15000 rpm), o tribômetro NANOVEA T2000 é capaz de simular diferentes condições possíveis em um motor. Possíveis estudos futuros sobre este tópico incluem como as interfaces P-L-C se comportarão sob diferentes cargas constantes, carga oscilante, temperatura do lubrificante, velocidade e método de aplicação do lubrificante. Estes parâmetros podem ser facilmente ajustados com o tribômetro NANOVEA T2000 para dar uma compreensão completa sobre os mecanismos das interfaces de revestimento do pistão saia-lubrificante-cilíndrico do cilindro.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Topografia de superfície orgânica usando Perfilômetro 3D Portátil

TOPOGRAFIA DE SUPERFÍCIE ORGÂNICA

USANDO O PROFILÔMETRO PORTÁTIL 3D

Preparado por

CRAIG LEISING

INTRODUÇÃO

A natureza se tornou uma fonte vital de inspiração para o desenvolvimento de uma estrutura de superfície melhorada. A compreensão das estruturas de superfície encontradas na natureza levou a estudos de adesão baseados em pés de osga, estudos de resistência baseados em uma mudança textural de pepinos do mar e estudos de repelência baseados em folhas, entre muitos outros. Estas superfícies têm uma série de aplicações potenciais, desde biomédicas a vestuário e automotivas. Para que qualquer um destes avanços superficiais seja bem sucedido, técnicas de fabricação devem ser desenvolvidas para que as características da superfície possam ser imitadas e reproduzidas. É este processo que exigirá identificação e controle.

IMPORTÂNCIA DO PERFILADOR ÓPTICO PORTÁTIL 3D SEM CONTATO PARA SUPERFÍCIES ORGÂNICAS

Utilizando a tecnologia Chromatic Light, o NANOVEA Jr25 Portable Perfilador óptico tem capacidade superior para medir praticamente qualquer material. Isso inclui os ângulos únicos e íngremes, superfícies reflexivas e absorventes encontradas na ampla gama de características de superfície da natureza. As medições 3D sem contato fornecem uma imagem 3D completa para fornecer uma compreensão mais completa das características da superfície. Sem capacidades 3D, a identificação das superfícies da natureza dependeria apenas de informações 2D ou de imagens microscópicas, que não fornecem informações suficientes para imitar adequadamente a superfície estudada. Compreender toda a gama de características da superfície, incluindo textura, forma, dimensão, entre muitas outras, será fundamental para uma fabricação bem-sucedida.

A capacidade de obter facilmente resultados de qualidade de laboratório no campo abre as portas para novas oportunidades de pesquisa.

OBJETIVO DA MEDIÇÃO

Nesta aplicação, o NANOVEA Jr25 é usado para medir a superfície de uma folha. Há uma lista infinita de parâmetros de superfície que podem ser calculados automaticamente após a varredura da superfície 3D.

Aqui vamos rever a superfície 3D e selecionar
áreas de interesse para análise posterior, incluindo
quantificando e investigando a rugosidade superficial, canais e topografia

NANOVEA

JR25

CONDIÇÕES DE TESTE

PROFUNDIDADE AO ABRIGO

Densidade média de sulcos: 16.471 cm/cm2
Profundidade média dos sulcos: 97.428 μm
Profundidade máxima: 359.769 μm

CONCLUSÃO

Nesta aplicação, mostramos como o NANOVEA O Profiler Óptico 3D portátil sem contato Jr25 pode caracterizar com precisão tanto a topografia quanto os detalhes da escala nanométrica de uma superfície foliar no campo. A partir destas medidas de superfície 3D, as áreas de interesse podem ser rapidamente identificadas e depois analisadas com uma lista de estudos intermináveis (Dimensão, Rugosidade Textura de acabamento, Topografia de forma, Planaridade de deformação, Área de volume, Passo-Altura e outros). Uma seção transversal 2D pode ser facilmente escolhida para analisar mais detalhes. Com estas informações, superfícies orgânicas podem ser amplamente investigadas com um conjunto completo de recursos de medição de superfície. Áreas especiais de interesse poderiam ter sido analisadas mais detalhadamente com o módulo AFM integrado nos modelos de mesa.

NANOVEA também oferece perfis portáteis de alta velocidade para pesquisa de campo e uma ampla gama de sistemas baseados em laboratório, bem como fornece serviços de laboratório.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Perfilômetro de Rugosidade de Lixa

Lixa: Análise de Rugosidade e Diâmetro de Partículas

Lixa: Análise de Rugosidade e Diâmetro de Partículas

Saiba mais

Lixas (Sandpaper)

Análise de Rugosidade e Diâmetro de Partículas

Preparado por

LIU FRANCA

INTRODUÇÃO

A lixa é um produto comumente disponível comercialmente e utilizado como abrasivo. O uso mais comum para lixas é para remover revestimentos ou para polir uma superfície com suas propriedades abrasivas. Estas propriedades abrasivas são classificadas em grão, cada uma relacionada ao quão suave ou
O acabamento áspero da superfície que ela proporcionará. Para obter as propriedades abrasivas desejadas, os fabricantes de lixas devem garantir que as partículas abrasivas tenham um tamanho específico e pouco desvio. Para quantificar a qualidade da lixa, a tecnologia 3D Non-Contact da NANOVEA Profilômetro pode ser usado para obter o parâmetro de altura média aritmética (Sa) e o diâmetro médio das partículas de uma área de amostra.

A IMPORTÂNCIA DA PERFILOMETRIA ÓTICA 3D SEM CONTATO PARA LIXAS

Ao utilizar lixas, a interação entre as partículas abrasivas e a superfície a ser lixada deve ser uniforme para obter um acabamento de superfície consistente. Para quantificar isto, a superfície da lixa pode ser observada com o Perfilômetro Ótico 3D sem contato da NANOVEA para ver os desvios nos tamanhos, alturas e espaçamento das partículas.

OBJETIVO DA MEDIÇÃO

Neste estudo, cinco tipos de lixa diferentes (120,
180, 320, 800 e 2000) são escaneadas com o
Perfilômetro Ótico 3D Sem Contato NANOVEA ST400.
O Sa é extraído da varredura e da partícula
é calculado através de uma análise de Motivos para
encontrar seu diâmetro equivalente

NANOVEA

ST400

RESULTADOS & DISCUSSÃO

A lixa diminui na aspereza da superfície (Sa) e no tamanho das partículas à medida que o grão aumenta, como esperado. O Sa variou de 42,37 μm a 3,639 μm. O tamanho da partícula varia de 127 ± 48,7 a 21,27 ± 8,35. Partículas maiores e altas variações de altura criam uma ação abrasiva mais forte nas superfícies, em oposição às partículas menores com baixa variação de altura.
Por favor, observe todas as definições dos parâmetros de altura indicados estão listados na página.A.1.

TABELA 1: Comparação entre os grãos de lixa e os parâmetros de altura.

TABELA 2: Comparação entre granalhas de lixa e diâmetro das partículas.

VISUALIZAÇÃO 2D & 3D DA LIXA 

Abaixo estão a falsa cor e a visualização 3D para as amostras de lixa.
Um filtro gaussiano de 0,8 mm foi usado para remover a forma ou ondulação.

ANÁLISE MOTIF

Para encontrar com precisão as partículas na superfície, o limite da escala de altura foi redefinido para mostrar apenas a camada superior da lixa. Uma análise dos motivos foi então realizada para detectar os picos.

CONCLUSÃO

O Perfilômetro Ótico 3D sem contato da NANOVEA foi usado para inspecionar as propriedades de superfície de vários grãos de lixa devido a sua capacidade de escanear superfícies com micro e nano características com precisão.

Os parâmetros de altura da superfície e os diâmetros de partículas equivalentes foram obtidos de cada uma das amostras de lixa, usando um software avançado para analisar as varreduras 3D. Foi observado que à medida que o tamanho do grão aumentava, a rugosidade superficial (Sa) e o tamanho das partículas diminuíam como esperado.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Profilometria de Medição de Limites de Superfície de isopor

Medição de Limite Superficial

Medição de Limites Superficiais Utilizando a Profilometria 3D

Saiba mais

MEDIÇÃO DOS LIMITES DE SUPERFÍCIE

USANDO A PROFILOMETRIA 3D

Preparado por

Craig Leising

INTRODUÇÃO

Em estudos onde a interface das características da superfície, padrões, formas, etc., estão sendo avaliados para orientação, será útil identificar rapidamente áreas de interesse em todo o perfil de medição. Ao segmentar uma superfície em áreas significativas, o usuário pode avaliar rapidamente limites, picos, poços, áreas, volumes e muitos outros para entender seu papel funcional em todo o perfil de superfície em estudo. Por exemplo, como a imagem de um limite de grãos de metais, a importância da análise é a interface de muitas estruturas e sua orientação geral. Através da compreensão de cada área de interesse podem ser identificados defeitos e ou anormalidades dentro da área geral. Embora as imagens de limite de grão sejam tipicamente estudadas em uma faixa que ultrapassa a capacidade do Profilômetro e seja apenas uma análise de imagem 2D, é uma referência útil para ilustrar o conceito do que será mostrado aqui em uma escala maior, juntamente com as vantagens da medição de superfície 3D.

IMPORTÂNCIA DO PROFILÔMETRO 3D SEM CONTATO PARA O ESTUDO DA SEPARAÇÃO DA SUPERFÍCIE

Ao contrário de outras técnicas, como sondas de toque ou interferometria, o Perfilômetro sem contato 3D, usando cromatismo axial, pode medir praticamente qualquer superfície, os tamanhos das amostras podem variar amplamente devido ao preparo aberto e não há necessidade de preparação da amostra. A faixa nano a macro é obtida durante a medição do perfil da superfície com influência zero da refletividade ou absorção da amostra, possui capacidade avançada para medir ângulos de superfície elevados e não há manipulação de resultados por software. Meça facilmente qualquer material: transparente, opaco, especular, difusivo, polido, áspero, etc. A técnica do perfilômetro sem contato fornece uma capacidade ideal, ampla e fácil de usar para maximizar estudos de superfície quando a análise de limites de superfície for necessária; juntamente com os benefícios da capacidade combinada de 2D e 3D.

OBJETIVO DA MEDIÇÃO

Nesta aplicação, o Nanovea ST400 Profilometer é usado para medir a área de superfície do isopor. Os limites foram estabelecidos pela combinação de um arquivo de intensidade refletida junto com a topografia, que são adquiridos simultaneamente usando o NANOVEA ST400. Estes dados foram então usados para calcular diferentes informações de forma e tamanho de cada "grão" de isopor.

NANOVEA

ST400

RESULTADOS & DISCUSSÃO: Medição de Limite de Superfície 2D

Imagem topográfica (abaixo à esquerda) mascarada pela imagem de intensidade refletida (abaixo à direita) para definir claramente os limites dos grãos. Todos os grãos com diâmetro inferior a 565µm foram ignorados pela aplicação de filtro.

Número total de grãos: 167
Área total projetada ocupada pelos grãos: 166.917 mm² (64.5962 %)
Área total projetada ocupada por limites: (35.4038 %)
Densidade de grãos: 0,646285 grãos / mm2

Área = 0,999500 mm² +/- 0,491846 mm²
Perímetro = 9114,15 µm +/- 4570,38 µm
Diâmetro equivalente = 1098,61 µm +/- 256,235 µm
Diâmetro médio = 945,373 µm +/- 248,344 µm
Diâmetro mínimo = 675,898 µm +/- 246,850 µm
Diâmetro máximo = 1312,43 µm +/- 295,258 µm

RESULTADOS & DISCUSSÃO: Medição 3D de Limites Superficiais

Utilizando os dados de topografia 3D obtidos, as informações de volume, altura, pico, relação de aspecto e forma geral podem ser analisadas em cada grão. Área 3D total ocupada: 2,525mm3

CONCLUSÃO

Nesta aplicação, mostramos como o NANOVEA 3D Non Contact Profilometer pode caracterizar com precisão a superfície do isopor. Informações estatísticas podem ser obtidas sobre toda a superfície de interesse ou sobre grãos individuais, sejam eles picos ou poços. Neste exemplo, todos os grãos maiores que um tamanho definido pelo usuário foram usados para mostrar a área, perímetro, diâmetro e altura. As características mostradas aqui podem ser críticas para a pesquisa e controle de qualidade de superfícies naturais e pré-fabricadas que vão desde aplicações bio-médicas a micromáquinas, juntamente com muitas outras. 

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Medição de contorno usando o Profilômetro da NANOVEA

Medição do contorno da banda de borracha

Medição do contorno da banda de borracha

Saiba mais

 

 

 

 

 

 

 

 

 

 

 

 

 

MEDIÇÃO DO CONTORNO DO PISO DE BORRACHA

USANDO O PERFIL ÓPTICO 3D

Medição do contorno da banda de borracha - NANOVEA Profiler

Preparado por

ANDREA HERRMANN

INTRODUÇÃO

Como todos os materiais, o coeficiente de atrito da borracha está relacionado em parte à rugosidade de sua superfície. Em aplicações de pneus de veículos, a tração com a estrada é muito importante. A aspereza da superfície e as marcas dos pneus desempenham um papel nisso. Neste estudo, são analisadas a superfície da borracha e a rugosidade e as dimensões da banda de rodagem.

* A AMOSTRA

IMPORTÂNCIA

DE PROFILOMETRIA 3D SEM CONTATO

PARA ESTUDOS DE BORRACHA

Ao contrário de outras técnicas, como sondas de toque ou interferometria, o NANOVEA Perfiladores ópticos 3D sem contato use o cromatismo axial para medir praticamente qualquer superfície. 

O sistema Profiler permite uma grande variedade de tamanhos de amostra e requer preparação de amostra zero. As características de nano através de macro range podem ser detectadas durante uma única varredura com influência zero da refletividade ou absorção da amostra. Além disso, estes profilers têm a capacidade avançada de medir ângulos de superfície elevados sem exigir a manipulação dos resultados por software.

Mede facilmente qualquer material: transparente, opaco, especular, difusivo, polido, rugoso, etc. A técnica de medição dos Perfis sem contato NANOVEA 3D proporciona uma capacidade ideal, ampla e de fácil utilização para maximizar os estudos de superfície juntamente com os benefícios da capacidade combinada 2D e 3D.

OBJETIVO DA MEDIÇÃO

Nesta aplicação, mostramos o NANOVEA ST400, um Perfilador Óptico de medição 3D sem contato a superfície e os degraus de um pneu de borracha.

Uma área de superfície de amostra suficientemente grande para representar toda a superfície do pneu foi selecionada ao acaso para este estudo. 

Para quantificar as características da borracha, utilizamos o software de análise NANOVEA Ultra 3D para medir as dimensões de contorno, profundidade, rugosidade e área desenvolvida da superfície.

NANOVEA

ST400

ANÁLISE: VIAGEM PNEUMÁTICA

A vista 3D e a falsa vista colorida dos degraus mostram o valor do mapeamento de desenhos de superfície 3D. Fornece aos usuários uma ferramenta simples para observar diretamente o tamanho e a forma das bandas de rodagem a partir de diferentes ângulos. A Análise Avançada de Contorno e a Análise de Altura por Passos são ambas ferramentas extremamente poderosas para medir dimensões precisas de formas e desenhos de amostras.

ANÁLISE AVANÇADA DE CONTORNO

ANÁLISE DA ALTURA DOS DEGRAUS

ANÁLISE: SUPERFÍCIE DE RUBRICAS

A superfície de borracha pode ser quantificada de inúmeras maneiras usando ferramentas de software embutidas, como mostrado nas figuras a seguir como exemplos. Pode-se observar que a rugosidade da superfície é de 2.688 μm, e a área desenvolvida vs. área projetada é de 9.410 mm² vs. 8.997 mm². Esta informação nos permite examinar a relação entre o acabamento superficial e a tração de diferentes formulações de borracha ou mesmo de borracha com graus variados de desgaste superficial.

CONCLUSÃO

Nesta aplicação, mostramos como a NANOVEA O Profiler Óptico 3D Sem Contato pode caracterizar com precisão a rugosidade da superfície e as dimensões do piso de borracha.

Os dados mostram uma rugosidade de superfície de 2,69 µm e uma área desenvolvida de 9,41 mm² com uma área projetada de 9 mm². Várias dimensões e raios dos degraus de borracha foram medida também.

As informações apresentadas neste estudo podem ser utilizadas para comparar o desempenho dos pneus de borracha com diferentes designs de banda de rodagem, formulações ou graus variáveis de desgaste. Os dados mostrados aqui representam apenas uma parte do cálculos disponíveis no software de análise Ultra 3D.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Análise de superfície de escamas de peixe usando perfilador ótico 3D

Análise de superfície de escamas de peixe usando perfilador ótico 3D

Saiba mais

ANÁLISE DE SUPERFÍCIE DE ESCAMAS DE PEIXE

usando o PERFIL ÓPTICO 3D

Perfilômetro de escamas de peixe

Preparado por

Andrea Novitsky

INTRODUÇÃO

A morfologia, padrões e outras características de uma escama de peixe são estudadas usando o NANOVEA Perfilador óptico 3D sem contato. A natureza delicada desta amostra biológica, juntamente com as suas ranhuras muito pequenas e em ângulo elevado, também realçam a importância da técnica sem contacto do perfilador. Os sulcos na escama são chamados de circuli, e podem ser estudados para estimar a idade dos peixes, e até mesmo distinguir períodos de diferentes taxas de crescimento, semelhantes aos anéis de uma árvore. Esta é uma informação muito importante para a gestão das populações de peixes selvagens, a fim de evitar a sobrepesca.

Importância da Profilometria 3D Sem Contato para ESTUDOS BIOLÓGICOS

Ao contrário de outras técnicas, tais como sondas de toque ou interferometria, o Profiler Óptico 3D sem contato, utilizando cromatismo axial, pode medir praticamente qualquer superfície. Os tamanhos das amostras podem variar muito devido ao estadiamento aberto e não há necessidade de preparação de amostras. As características de nano através de macro range são obtidas durante uma medição de perfil de superfície com influência zero da refletividade ou absorção da amostra. O instrumento oferece uma capacidade avançada de medir ângulos de superfície elevados sem manipulação dos resultados por software. Qualquer material pode ser facilmente medido, seja transparente, opaco, especular, difusivo, polido ou rugoso. A técnica fornece uma capacidade ideal, ampla e amigável para maximizar os estudos de superfície, juntamente com os benefícios das capacidades combinadas 2D e 3D.

OBJETIVO DA MEDIÇÃO

Nesta aplicação, mostramos o NANOVEA ST400, um Profiler 3D sem contato com um sensor de alta velocidade, fornecendo uma análise abrangente da superfície de uma escala.

O instrumento tem sido usado para escanear toda a amostra, juntamente com uma varredura de maior resolução da área central. A rugosidade da superfície externa e interna da escala também foi medida para comparação.

NANOVEA

ST400

Caracterização da superfície 3D e 2D da escala externa

A 3D View e a False Color View da escala externa mostram uma estrutura complexa semelhante a uma impressão digital ou os anéis de uma árvore. Isto proporciona aos usuários uma ferramenta simples para observar diretamente a caracterização da superfície da escala a partir de diferentes ângulos. Várias outras medidas da escala externa são mostradas juntamente com a comparação dos lados externo e interno da escala.

Escala de Peixe Scan 3D View Profilometer
Profilômetro de Escala de Peixe de Volume 3D
Profiler Óptico 3D de Escala de Peixe em Altura

COMPARAÇÃO DE RUGOSIDADE DE SUPERFÍCIE

Escala de Peixe Profilômetro 3D Scanning

CONCLUSÃO

Nesta aplicação, mostramos como o NANOVEA 3D Non-Contact Optical Profiler pode caracterizar uma balança de peixe de diversas maneiras. 

As superfícies externas e internas da escala podem ser facilmente distinguidas apenas pela rugosidade superficial, com valores de rugosidade de 15.92μm e 1.56μm respectivamente. Além disso, informações precisas e precisas podem ser aprendidas sobre uma balança de peixe através da análise das ranhuras, ou circuli, na superfície externa da balança. A distância das faixas de circuli do foco central foi medida, e a altura do circuli também foi encontrada aproximadamente 58μm em média alta. 

Os dados mostrados aqui representam apenas uma parte dos cálculos disponíveis no software de análise.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Topografia da Lente Fresnel

FRESNEL LENS

DIMENSÕES UTILIZANDO A PROFILOMETRIA 3D

Preparado por

Duanjie Li & Benjamin Mell

INTRODUÇÃO

Uma lente é um dispositivo óptico de simetria axial que transmite e refrai a luz. Uma lente simples consiste em um único componente óptico para convergir ou divergir a luz. Mesmo que as superfícies esféricas não tenham a forma ideal para fazer uma lente, elas são freqüentemente usadas como a forma mais simples para a qual o vidro pode ser retificado e polido.

Uma lente Fresnel consiste de uma série de anéis concêntricos, que são partes finas de uma lente simples com uma largura tão pequena quanto alguns milésimos de polegada. As lentes Fresnel contêm uma abertura grande e uma distância focal curta, com um desenho compacto que reduz o peso e o volume do material necessário, em comparação com as lentes convencionais com as mesmas propriedades ópticas. Uma quantidade muito pequena de luz é perdida por absorção devido à fina geometria da lente Fresnel.

IMPORTÂNCIA DA PROFILOMETRIA 3D SEM CONTATO PARA A INSPEÇÃO DE LENTES FRESNEL

As lentes Fresnel são amplamente empregadas na indústria automotiva, faróis, energia solar e sistemas ópticos de pouso para porta-aviões. Moldar ou estampar as lentes em plástico transparente pode tornar sua produção econômica. A qualidade do serviço das lentes Fresnel depende principalmente da precisão e da qualidade da superfície do seu anel concêntrico. Ao contrário de uma técnica de sonda de toque, NANOVEA Perfis ópticos realize medições de superfície 3D sem tocar na superfície, evitando o risco de fazer novos arranhões. A técnica Luz Cromática é ideal para digitalização precisa de formas complexas, como lentes de diferentes geometrias.

ESQUEMA DE LENTES FRESNEL

As lentes Fresnel de plástico transparente podem ser fabricadas por moldagem ou estampagem. Um controle de qualidade preciso e eficiente é fundamental para revelar moldes ou carimbos defeituosos na produção. Ao medir a altura e o passo dos anéis concêntricos, as variações de produção podem ser detectadas comparando-se os valores medidos com os valores de especificação dados pelo fabricante da lente.

A medição precisa do perfil da lente garante que os moldes ou carimbos sejam usinados corretamente para atender às especificações do fabricante. Além disso, o carimbo pode desgastar-se progressivamente com o tempo, fazendo com que ele perca sua forma inicial. O desvio consistente da especificação do fabricante da lente é uma indicação positiva de que o molde precisa ser substituído.

OBJETIVO DA MEDIÇÃO

Nesta aplicação, mostramos o NANOVEA ST400, um Profiler 3D sem contato com um sensor de alta velocidade, fornecendo uma análise abrangente do perfil 3D de um componente óptico de uma forma complexa.

NANOVEA

ST400

A lente acrílica Fresnel de 2,3" x 2,3" utilizada para este estudo consiste em 

uma série de anéis concêntricos e um complexo perfil de seção transversal serrilhada. 

Tem uma distância focal de 1,5", diâmetro efetivo de 2,0", 

125 ranhuras por polegada, e um índice de refração de 1,49.

A varredura NANOVEA ST400 da lente Fresnel mostra um aumento perceptível da altura dos anéis concêntricos, deslocando-se para fora do centro.

COR FALSA 2D

Representação em altura

VISÃO 3D

PERFIL EXTRAÍDO

PEAK & VALLEY

Análise Dimensional do Perfil

CONCLUSÃO

Nesta aplicação, mostramos que o NANOVEA ST400 Profiler Óptico sem contato mede com precisão a topografia de superfície das lentes Fresnel. 

A dimensão da altura e do passo pode ser determinada com precisão a partir do complexo perfil serrilhado usando o software de análise NANOVEA. Os usuários podem inspecionar efetivamente a qualidade dos moldes ou carimbos de produção comparando a altura do anel e as dimensões do passo das lentes fabricadas com a especificação ideal do anel.

Os dados mostrados aqui representam apenas uma parte dos cálculos disponíveis no software de análise. 

Os Perfiladores Ópticos NANOVEA medem praticamente qualquer superfície em campos incluindo Semicondutores, Microeletrônica, Solar, Fibra Óptica, Automotiva, Aeroespacial, Metalúrgica, Usinagem, Revestimentos, Farmacêutica, Biomédica, Ambiental e muitos outros.

 

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Peças usinadas QC

Inspeção de peças usinadas

PEÇAS FABRICADAS

inspeção a partir do modelo CAD utilizando a profilometria 3D

Autor:

Duanjie Li, PhD

Revisado por

Jocelyn Esparza

Inspeção de peças usinadas com um Perfílômetro

INTRODUÇÃO

A demanda por usinagem de precisão capaz de criar geometrias complexas tem aumentado em todo um espectro de indústrias. Do aeroespacial, médico e automotivo, a engrenagens tecnológicas, máquinas e instrumentos musicais, a contínua inovação e evolução elevam as expectativas e os padrões de precisão a novos patamares. Conseqüentemente, vemos o aumento da demanda por técnicas e instrumentos de inspeção rigorosos para garantir a mais alta qualidade dos produtos.

Importância da Profilometria 3D sem contato para inspeção de peças

A comparação das propriedades das peças usinadas com seus modelos CAD é essencial para verificar as tolerâncias e a aderência aos padrões de produção. A inspeção durante o tempo de serviço também é crucial, pois o desgaste das peças pode exigir a substituição das mesmas. A identificação de quaisquer desvios das especificações exigidas em tempo hábil ajudará a evitar reparos dispendiosos, paradas de produção e reputação manchada.

Ao contrário de uma técnica de sonda de toque, o NANOVEA Perfis ópticos execute varreduras de superfícies 3D com contato zero, permitindo medições rápidas, precisas e não destrutivas de formas complexas com a mais alta precisão.

OBJETIVO DA MEDIÇÃO

Nesta aplicação, mostramos o NANOVEA HS2000, um Profiler 3D sem contato com um sensor de alta velocidade, realizando uma inspeção de superfície abrangente de dimensão, raio e rugosidade. 

Tudo isso em menos de 40 segundos.

NANOVEA

HS2000

MODELO CAD

Uma medição precisa da dimensão e rugosidade da superfície da peça usinada é fundamental para garantir que ela atenda às especificações, tolerâncias e acabamentos superficiais desejados. O modelo 3D e o desenho de engenharia da peça a ser inspecionada são apresentados abaixo. 

FALSA VISÃO COLORIDA

A falsa visão de cor do modelo CAD e a superfície da peça usinada digitalizada são comparadas na FIGURA 3. A variação de altura na superfície da amostra pode ser observada pela mudança de cor.

Três perfis 2D são extraídos do scan de superfície 3D, como indicado no FIGURA 2, para verificar melhor a tolerância dimensional da peça usinada.

COMPARAÇÃO DE PERFIS E RESULTADOS

Os perfis de 1 a 3 são mostrados no FIGURA 3 a 5. A inspeção de tolerância quantitativa é realizada comparando o perfil medido com o modelo CAD para manter padrões rigorosos de fabricação. O perfil 1 e o perfil 2 medem o raio de diferentes áreas na peça usinada curvada. A variação de altura do Perfil 2 é de 30 µm sobre um comprimento de 156 mm que atende à exigência de tolerância desejada de ±125 µm. 

Ao estabelecer um valor limite de tolerância, o software de análise pode determinar automaticamente a passagem ou falha da peça usinada.

Inspeção de peças de máquinas com um perfilômetro

A rugosidade e uniformidade da superfície da peça usinada desempenham um papel importante para garantir sua qualidade e funcionalidade. O FIGURA 6 é uma área de superfície extraída da varredura da peça usinada que foi utilizada para quantificar o acabamento superficial. A rugosidade média da superfície (Sa) foi calculada como sendo de 2,31 µm.

CONCLUSÃO

Neste estudo, mostramos como o perfilador sem contato HS2000 da NANOVEA, equipado com um sensor de alta velocidade, realiza uma inspeção de superfície abrangente das dimensões e rugosidade. 

As varreduras de alta resolução permitem aos usuários medir a morfologia detalhada e as características de superfície das peças usinadas e compará-las quantitativamente com seus modelos CAD. O instrumento também é capaz de detectar quaisquer defeitos, incluindo arranhões e rachaduras. 

A análise avançada de contorno serve como uma ferramenta inigualável não apenas para determinar se as peças usinadas satisfazem as especificações estabelecidas, mas também para avaliar os mecanismos de falha dos componentes desgastados.

Os dados mostrados aqui representam apenas uma parte dos cálculos possíveis com o software de análise avançada que vem equipado com cada NANOVEA Optical Profiler.

 

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO