EUA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
FALE CONOSCO

Teste de Desgaste do Revestimento de PTFE

TESTE DE DESGASTE DE REVESTIMENTO DE PTFE

USANDO TRIBÔMETRO E TESTE MECÂNICO

Preparado por

DUANJIE LI, PhD

INTRODUÇÃO

O politetrafluoretileno (PTFE), comumente conhecido como Teflon, é um polímero com coeficiente de atrito (COF) excepcionalmente baixo e excelente resistência ao desgaste, dependendo das cargas aplicadas. O PTFE exibe inércia química superior, alto ponto de fusão de 327°C (620°F) e mantém alta resistência, tenacidade e autolubrificação em baixas temperaturas. A excepcional resistência ao desgaste dos revestimentos de PTFE os torna altamente procurados em uma ampla gama de aplicações industriais, como automotiva, aeroespacial, médica e, principalmente, utensílios de cozinha.

IMPORTÂNCIA DA AVALIAÇÃO QUANTITATIVA DE REVESTIMENTOS DE PTFE

A combinação de um coeficiente de fricção (COF) superbaixo, excelente resistência ao desgaste e inércia química excepcional em altas temperaturas torna o PTFE a escolha ideal para revestimentos antiaderentes. Para aprimorar ainda mais seus processos mecânicos durante a P&D, bem como garantir o controle ideal sobre prevenção de mau funcionamento e medidas de segurança no processo de Controle de Qualidade, é crucial ter uma técnica confiável para avaliação quantitativa dos processos tribomecânicos de revestimentos de PTFE. O controle preciso sobre o atrito da superfície, desgaste e adesão dos revestimentos é essencial para garantir o desempenho pretendido.

OBJETIVO DA MEDIÇÃO

Nesta aplicação, o processo de desgaste de um revestimento de PTFE para uma panela antiaderente é simulado usando o NANOVEA Tribometer no modo recíproco linear.

NANOVEA T50

Tribômetro compacto de peso livre

Além disso, o testador mecânico NANOVEA foi usado para realizar um teste de adesão de microarranhões para determinar a carga crítica da falha de adesão do revestimento de PTFE.

NANOVEA PB1000

Testador mecânico de plataforma grande

PROCEDIMENTO DE TESTE

TESTE DE GUERRA

DESGASTE LINEAR RECIPROCANTE USANDO UM TRIBÔMETRO

O comportamento tribológico da amostra de revestimento de PTFE, incluindo o coeficiente de atrito (COF) e resistência ao desgaste, foi avaliado usando o NANOVEA Tribômetro no modo recíproco linear. Uma ponta esférica de aço inoxidável 440 com diâmetro de 3 mm (Grau 100) foi usada contra o revestimento. O COF foi monitorado continuamente durante o teste de desgaste do revestimento de PTFE.

 

A taxa de desgaste, K, foi calculada usando a fórmula K=V/(F×s)=A/(F×n), onde V representa o volume desgastado, F é a carga normal, s é a distância de deslizamento, A é a área da seção transversal da trilha de desgaste e n é o número de cursos. Os perfis de desgaste foram avaliados usando o NANOVEA Perfilômetro Óptico, e a morfologia da trilha de desgaste foi examinada usando um microscópio óptico.

PARÂMETROS DE TESTE DE DESGASTE

CARREGAR 30 N
DURAÇÃO DO TESTE 5 minutos
TAXA DE DESLIZAMENTO 80 rpm
AMPLITUDE DA PISTA 8mm
REVOLUÇÕES 300
DIÂMETRO DA ESFERA 3 mm
MATERIAL DA ESFERA Aço inoxidável 440
LUBRICANTE Nenhum
ATMOSPHERE Ar
TEMPERATURA 230C (RT)
UMIDADE 43%

PROCEDIMENTO DE TESTE

TESTE DE SCRATCH

TESTE DE ADESÃO DE MICRO RISCOS USANDO TESTE MECÂNICO

A medição da adesão ao risco de PTFE foi realizada usando o NANOVEA Testador Mecânico com uma ponta de diamante Rockwell C 1200 (raio de 200 μm) no modo Micro Scratch Tester.

 

Para garantir a reprodutibilidade dos resultados, três testes foram realizados em condições de teste idênticas.

PARÂMETROS DE TESTE DE ARRANHÕES

TIPO CARREGADO Progressivo
CARGA INICIAL 0,01 mN
CARGA FINAL 20 mN
TAXA DE CARREGAMENTO 40mN/min
COMPRIMENTO DE SCRATCH 3 mm
VELOCIDADE DE REPRESENTAÇÃO, dx/dt 6,0 mm/min
GEOMETRIA INDENTER 120o Rockwell C
MATERIAL INDENTERIAL (dica) Diamante
RAIO DA PONTA INDENTADA 200 μm

RESULTADOS & DISCUSSÃO

DESGASTE LINEAR RECIPROCANTE USANDO UM TRIBÔMETRO

O COF registrado in situ é mostrado na FIGURA 1. A amostra de teste exibiu um COF de ~0,18 durante as primeiras 130 rotações, devido à baixa pegajosidade do PTFE. No entanto, houve um aumento repentino no COF para ~1 quando o revestimento rompeu, revelando o substrato por baixo. Após os testes alternativos lineares, o perfil de desgaste foi medido usando o NANOVEA Perfilômetro óptico sem contato, conforme mostrado na FIGURA 2. A partir dos dados obtidos, a taxa de desgaste correspondente foi calculada como sendo ~2,78 × 10-3 mm3/Nm, enquanto a profundidade da trilha de desgaste foi determinada como sendo 44,94 µm.

Configuração do teste de desgaste do revestimento de PTFE no Tribômetro NANOVEA T50.

FIGURA 1: Evolução do COF durante o teste de desgaste do revestimento de PTFE.

FIGURA 2: Extração de perfil de pista de desgaste PTFE.

PTFE Antes da descoberta

COF máximo 0.217
Mínimo COF 0.125
COF médio 0.177

PTFE Após avanço

COF máximo 0.217
Mínimo COF 0.125
COF médio 0.177

TABELA 1: COF antes e depois do rompimento durante o teste de desgaste.

RESULTADOS & DISCUSSÃO

TESTE DE ADESÃO DE MICRO RISCOS USANDO TESTE MECÂNICO

A adesão do revestimento de PTFE ao substrato é medida usando testes de arranhão com uma ponta de diamante de 200 µm. A micrografia é mostrada na FIGURA 3 e FIGURA 4, Evolução do COF e profundidade de penetração na FIGURA 5. Os resultados do teste de arranhão do revestimento de PTFE estão resumidos na TABELA 4. À medida que a carga na ponta de diamante aumentou, ela penetrou progressivamente no revestimento, resultando em um aumento no COF. Quando uma carga de ~8,5 N foi atingida, o rompimento do revestimento e a exposição do substrato ocorreram sob alta pressão, levando a um alto COF de ~0,3. O St Dev baixo mostrado na TABELA 2 demonstra a repetibilidade do teste de arranhão do revestimento de PTFE conduzido usando o testador mecânico NANOVEA.

FIGURA 3: Micrografia do arranhão completo em PTFE (10X).

FIGURA 4: Micrografia do arranhão completo em PTFE (10X).

FIGURA 5: Gráfico de atrito mostrando a linha do ponto crítico de falha do PTFE.

ARRANHÃO Ponto de Falha [N] Força de Atrito [N] COF
1 0.335 0.124 0.285
2 0.337 0.207 0.310
3 0.380 0.229 0.295
Média 8.52 2.47 0.297
St dev 0.17 0.16 0.012

TABELA 2: Resumo da carga crítica, força de atrito e COF durante o teste de raspagem.

CONCLUSÃO

Neste estudo, realizamos uma simulação do processo de desgaste de um revestimento de PTFE para panelas antiaderentes usando o Tribômetro NANOVEA T50 no modo recíproco linear. O revestimento de PTFE exibiu um baixo COF de ~0,18, o revestimento experimentou um avanço em torno de 130 revoluções. A avaliação quantitativa da adesão do revestimento de PTFE ao substrato de metal foi realizada usando o NANOVEA Mechanical Tester, que determinou a carga crítica da falha de adesão do revestimento em ~8,5 N neste teste.

 

Os tribômetros NANOVEA oferecem recursos de teste de atrito e desgaste precisos e repetíveis usando modos rotativos e lineares compatíveis com ISO e ASTM. Eles fornecem módulos opcionais para desgaste em alta temperatura, lubrificação e tribocorrosão, todos integrados em um único sistema. Essa versatilidade permite que os usuários simulem ambientes de aplicação do mundo real com mais precisão e compreendam melhor os mecanismos de desgaste e as propriedades tribológicas de diferentes materiais.

 

Os Testadores Mecânicos NANOVEA oferecem módulos Nano, Micro e Macro, cada um dos quais inclui modos de teste de indentação, arranhão e desgaste compatíveis com ISO e ASTM, fornecendo a mais ampla e amigável gama de recursos de teste disponíveis em um único sistema.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Mapeamento de desgaste progressivo de pisos usando tribômetro

Mapeamento de desgaste progressivo de pisos

Uso do Tribômetro com Profilômetro integrado

Preparado por

LIU FRANCA

INTRODUÇÃO

Os materiais do piso são projetados para serem duráveis, mas muitas vezes sofrem desgaste devido às atividades cotidianas, como movimento e uso de móveis. Para garantir sua longevidade, a maioria dos tipos de piso possui uma camada protetora contra desgaste que resiste a danos. No entanto, a espessura e a durabilidade da camada de desgaste variam dependendo do tipo de piso e do nível de tráfego de pedestres. Além disso, diferentes camadas dentro da estrutura do piso, como revestimentos UV, camadas decorativas e esmaltes, apresentam taxas de desgaste variadas. É aí que entra o mapeamento de desgaste progressivo. Usando o Tribômetro NANOVEA T2000 com um Perfilômetro 3D sem contato, monitoramento preciso e análise do desempenho e longevidade dos materiais de piso podem ser feitos. Ao fornecer informações detalhadas sobre o comportamento de desgaste de vários materiais de piso, cientistas e profissionais técnicos podem tomar decisões mais informadas ao selecionar e projetar novos sistemas de piso.

IMPORTÂNCIA DO MAPEAMENTO DE DESGASTE PROGRESSIVO PARA PAINÉIS DE PISO

Tradicionalmente, os testes de pisos têm se concentrado na taxa de desgaste de uma amostra para determinar sua durabilidade contra o desgaste. No entanto, o mapeamento de desgaste progressivo permite analisar a taxa de desgaste da amostra durante todo o teste, fornecendo informações valiosas sobre seu comportamento de desgaste. Essa análise aprofundada permite correlações entre os dados de atrito e a taxa de desgaste, o que pode identificar as causas principais do desgaste. Deve-se observar que as taxas de desgaste não são constantes durante os testes de desgaste. Portanto, observar a progressão do desgaste proporciona uma avaliação mais precisa do desgaste da amostra. Indo além dos métodos de teste tradicionais, a adoção do mapeamento de desgaste progressivo contribuiu para avanços significativos no campo de testes de pisos.

O Tribômetro NANOVEA T2000 com perfilômetro 3D sem contato integrado é uma solução inovadora para testes de desgaste e medições de perda de volume. Sua capacidade de se mover com precisão entre o pino e o perfilômetro garante a confiabilidade dos resultados, eliminando qualquer desvio no raio ou localização da trilha de desgaste. Mas isso não é tudo – os recursos avançados do perfilômetro sem contato 3D permitem medições de superfície em alta velocidade, reduzindo o tempo de digitalização para meros segundos. Com capacidade de aplicar cargas de até 2.000 N e atingir velocidades de fiação de até 5.000 rpm, a NANOVEA T2000 Tribômetro oferece versatilidade e precisão no processo de avaliação. Está claro que este equipamento desempenha um papel vital no mapeamento do desgaste progressivo.

 

FIGURA 1: Configuração da amostra antes do teste de desgaste (esquerda) e profilometria da trilha de desgaste após o teste de desgaste (direita).

OBJETIVO DA MEDIÇÃO

O teste de mapeamento de desgaste progressivo foi realizado em dois tipos de materiais de piso: pedra e madeira. Cada amostra foi submetida a um total de 7 ciclos de teste, com durações crescentes de 2, 4, 8, 20, 40, 60 e 120 s, permitindo uma comparação do desgaste ao longo do tempo. Após cada ciclo de teste, a trilha de desgaste foi perfilada usando o NANOVEA 3D Non-Contact Profilometer. A partir dos dados coletados pelo perfilômetro, o volume do furo e a taxa de desgaste podem ser analisados usando os recursos integrados do software NANOVEA Tribometer ou do nosso software de análise de superfície, Mountains.

NANOVEA

T2000

amostras de teste de mapeamento de desgaste de madeira e pedra

 AS AMOSTRAS 

PARÂMETROS DE TESTE DE MAPEAMENTO DE DESGASTE

CARREGAR40 N
DURAÇÃO DO TESTEvaria
SPEED200 rpm
RADIUS10 mm
DISTÂNCIAvaria
MATERIAL DA ESFERACarbeto de tungstênio
DIÂMETRO DA ESFERA10 mm

A duração do teste usada nos 7 ciclos foi 2, 4, 8, 20, 40, 60 e 120 segundosrespectivamente. As distâncias percorridas foram 0,40, 0,81, 1,66, 4,16, 8,36, 12,55 e 25,11 metros.

RESULTADOS DO MAPEAMENTO DE DESGASTE

PISO DE MADEIRA

Ciclo de testeCOF máximoMínimo COFAvg. COF
10.3350.1240.275
20.3370.2070.295
30.3800.2290.329
40.3930.2650.354
50.3520.2050.314
60.3450.1990.312
70.3150.2110.293

 

ORIENTAÇÃO RADIAL

Ciclo de testePerda de volume total (µm3)Distância total
Percorrida (m)
Taxa de desgaste
(mm/Nm) x10-5
Taxa de desgaste instantâneo
(mm/Nm) x10-5
12962476870.401833.7461833.746
23552452271.221093.260181.5637
35963713262.88898.242363.1791
48837477677.04530.629172.5496
5120717995115.40360.88996.69074
6147274531827.95293.32952.89311
7185131921053.06184.34337.69599
taxa de desgaste progressivo da madeira versus distância total

FIGURA 2: Taxa de desgaste versus distância total percorrida (esquerda)
e taxa de desgaste instantâneo versus ciclo de teste (direita) para pisos de madeira.

mapeamento do desgaste progressivo do piso de madeira

FIGURA 3: Gráfico COF e visualização 3D do rastro de desgaste do teste #7 em piso de madeira.

perfil extraído do mapeamento de desgaste

FIGURA 4: Análise da seção transversal da trilha de desgaste de madeira do teste #7

mapeamento progressivo de desgaste análise de volume e área

FIGURA 5: Análise de volume e área da trilha de desgaste no teste de amostra de madeira #7.

RESULTADOS DO MAPEAMENTO DE DESGASTE

PISO DE PEDRA

Ciclo de testeCOF máximoMínimo COFAvg. COF
10.2490.0350.186
20.3490.1970.275
30.2940.1540.221
40.5030.1240.273
50.5480.1060.390
60.5100.1290.434
70.5270.1810.472

 

ORIENTAÇÃO RADIAL

Ciclo de testePerda de volume total (µm3)Distância total
Percorrida (m)
Taxa de desgaste
(mm/Nm) x10-5
Taxa de desgaste instantâneo
(mm/Nm) x10-5
1962788460.40595.957595.9573
28042897311.222475.1852178.889
313161478552.881982.355770.9501
431365302157.041883.2691093.013
51082173218015.403235.1802297.508
62017496034327.954018.2821862.899
74251206342053.064233.0812224.187
taxa de desgaste do piso de pedra versus distância
Gráfico de taxa de desgaste instantâneo de pisos de pedra

FIGURA 6: Taxa de desgaste versus distância total percorrida (esquerda)
e taxa de desgaste instantâneo versus ciclo de teste (direita) para pisos de pedra.

piso de pedra perfil 3d da pista de desgaste

FIGURA 7: Gráfico COF e visualização 3D do rastro de desgaste do teste #7 em piso de pedra.

mapeamento de desgaste progressivo do piso de pedra extraído do perfil
perfil extraído do piso de pedra profundidade e altura máximas área do furo e do pico

FIGURA 8: Análise de seção transversal da trilha de desgaste de pedra do teste #7.

Análise de volume de mapeamento de desgaste progressivo de pisos de madeira

FIGURA 9: Análise de volume e área da trilha de desgaste no teste de amostra de pedra #7.

DISCUSSÃO

A taxa de desgaste instantânea é calculada com a seguinte equação:
mapeamento do desgaste progressivo da fórmula do piso

Onde V é o volume de um furo, N é a carga e X é a distância total, essa equação descreve a taxa de desgaste entre os ciclos de teste. A taxa de desgaste instantânea pode ser usada para identificar melhor as alterações na taxa de desgaste durante o teste.

Ambas as amostras têm comportamentos de desgaste muito diferentes. Com o tempo, o piso de madeira começa com uma alta taxa de desgaste, mas cai rapidamente para um valor menor e estável. No caso do piso de pedra, a taxa de desgaste parece começar em um valor baixo e tende a um valor mais alto ao longo dos ciclos. A taxa de desgaste instantâneo também apresenta pouca consistência. Não se sabe ao certo o motivo específico da diferença, mas pode ser devido à estrutura das amostras. O piso de pedra parece consistir de partículas soltas semelhantes a grãos, que se desgastariam de forma diferente em comparação com a estrutura compacta da madeira. Testes e pesquisas adicionais seriam necessários para determinar a causa desse comportamento de desgaste.

Os dados do coeficiente de atrito (COF) parecem concordar com o comportamento de desgaste observado. O gráfico do COF do piso de madeira parece consistente ao longo dos ciclos, complementando sua taxa de desgaste constante. Para o piso de pedra, o COF médio aumenta ao longo dos ciclos, da mesma forma que a taxa de desgaste também aumenta com os ciclos. Também há mudanças aparentes na forma dos gráficos de atrito, sugerindo mudanças na forma como a bola está interagindo com a amostra de pedra. Isso é mais evidente no ciclo 2 e no ciclo 4.

CONCLUSÃO

O tribômetro NANOVEA T2000 demonstra sua capacidade de realizar o mapeamento progressivo do desgaste, analisando a taxa de desgaste entre duas amostras diferentes de pisos. Pausar o teste de desgaste contínuo e escanear a superfície com o NANOVEA 3D Non-Contact Profilometer fornece informações valiosas sobre o comportamento de desgaste do material ao longo do tempo.

O tribômetro NANOVEA T2000 com o perfilômetro 3D sem contato integrado fornece uma ampla variedade de dados, incluindo dados de COF (coeficiente de atrito), medições de superfície, leituras de profundidade, visualização de superfície, perda de volume, taxa de desgaste e muito mais. Esse conjunto abrangente de informações permite que os usuários obtenham uma compreensão mais profunda das interações entre o sistema e a amostra. Com sua carga controlada, alta precisão, facilidade de uso, alta carga, ampla faixa de velocidade e módulos ambientais adicionais, o Tribômetro NANOVEA T2000 leva a tribologia para o próximo nível.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO