Categoria: Indentação | Resistência à fratura
Micropartículas: Resistência à compressão e microindentação
MICROPARTICLES
RESISTÊNCIA À COMPRESSÃO E MICRO INDENTAÇÃO
TESTANDO OS SAIS
Autor:
Jorge Ramirez
Revisado por:
Jocelyn Esparza
INTRODUÇÃO
A resistência à compressão tornou-se vital para a medição do controle de qualidade no desenvolvimento e aperfeiçoamento de micropartículas e microcaracterísticas novas e existentes (pilares e esferas) vistas hoje em dia. As micropartículas têm várias formas, tamanhos e podem ser desenvolvidas a partir de cerâmicas, vidros, polímeros e metais. Os usos incluem o fornecimento de medicamentos, melhoria do sabor de alimentos, formulações de concreto, entre muitos outros. O controle das propriedades mecânicas das micropartículas ou microcaracterísticas é fundamental para seu sucesso e requer a capacidade de caracterizar quantitativamente sua integridade mecânica.
IMPORTÂNCIA DA PROFUNDIDADE VERSUS RESISTÊNCIA À COMPRESSÃO DA CARGA
Os instrumentos de medição compressiva padrão não são capazes de cargas baixas e falham em fornecer o dados de profundidade para micropartículas. Ao usar Nano ou MicroindentaçãoCom o uso da tecnologia de compressão, a resistência à compressão de nano ou micropartículas (macias ou duras) pode ser medida com precisão e exatidão.
CONDIÇÕES DE TESTE
força máxima
30 N
taxa de carga
60 N/min
taxa de descarga
60 N/min
tipo indenter
Perfurador plano
Aço | Diâmetro de 1mm
Curvas de carga vs profundidade
Resultados & Discussão
Altura, força de falha e resistência para Partícula 1 e Partícula 2
A falha de partículas foi determinada como sendo o ponto onde a inclinação inicial da curva força vs. profundidade começou a diminuir notavelmente. Este comportamento mostra que o material atingiu um ponto de rendimento e não é mais capaz de resistir às forças compressivas que estão sendo aplicadas. Uma vez ultrapassado o ponto de rendimento, a profundidade de recuo começa a aumentar exponencialmente pela duração do período de carga. Estes comportamentos podem ser vistos em Curvas de Carga vs Profundidade para ambas as amostras.
CONCLUSÃO
Em conclusão, mostramos como o NANOVEA Testador Mecânico em modo micro indentação é uma ótima ferramenta para testar a resistência à compressão de micropartículas. Embora as partículas testadas sejam feitas do mesmo material, suspeita-se que os diferentes pontos de falha medidos neste estudo foram provavelmente devido a micro fissuras pré-existentes nas partículas e tamanhos variados de partículas. Deve-se notar que para materiais frágeis, sensores de emissão acústica estão disponíveis para medir o início da propagação de fissuras durante um teste.
O NANOVEA Testador Mecânico oferece resoluções de deslocamento de profundidade até o nível do sub nanômetro,
tornando-a também uma ótima ferramenta para o estudo de micropartículas ou características muito frágeis. Para partículas macias e frágeis
materiais, cargas até 0,1mN são possíveis com nosso módulo de nano indentação
AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO
Melhorar os procedimentos de mineração com Microindendation
PESQUISA DE MICROINDENTAÇÃO E CONTROLE DE QUALIDADE
A mecânica das rochas é o estudo do comportamento mecânico dos maciços rochosos e é aplicada nas indústrias de mineração, perfuração, produção de reservatórios e construção civil. A instrumentação avançada com medição precisa das propriedades mecânicas permite a melhoria de peças e procedimentos dentro dessas indústrias. Procedimentos bem sucedidos de controle de qualidade são assegurados pela compreensão da mecânica de rochas na microescala.
OBJETIVO DA MEDIÇÃO
Nesta aplicação o Nanovea testador mecânico mede a dureza Vickers (Hv), o módulo de Young e a tenacidade à fratura de uma amostra de rocha mineral. A rocha é composta por biotita, feldspato e quartzo que formam o compósito granítico padrão. Cada um é testado separadamente.
RESULTADOS E DISCUSSÃO
Esta seção inclui uma tabela de resumo que compara os principais resultados numéricos para as diferentes amostras, seguida da lista completa dos resultados, incluindo cada indentação realizada, acompanhada por micrográficos da indentação, quando disponível. Estes resultados completos apresentam os valores medidos do módulo de Dureza e Young como a profundidade de penetração (Δd) com suas médias e desvios padrão. Deve-se considerar que pode ocorrer grande variação nos resultados caso a rugosidade superficial esteja na mesma faixa de tamanho que o recuo.
Tabela de resumo dos principais resultados numéricos para Dureza e Resistência à Fratura
CONCLUSÃO
O testador mecânico Nanovea demonstra reprodutibilidade e resultados precisos de indentação na superfície dura da rocha mineral. A dureza e o módulo de Young de cada material que forma o granito foi medido diretamente da profundidade versus curvas de carga. A superfície rugosa significou testes com cargas mais elevadas que podem ter causado micro fissuras. As micro fissuras explicariam algumas das variações observadas nas medições. As rachaduras não eram perceptíveis através da observação microscópica padrão por causa de uma superfície de amostra áspera. Portanto, não é possível calcular os números tradicionais de resistência à fratura que exigem medições do comprimento das fissuras. Em vez disso, utilizamos o sistema para detectar a iniciação de fissuras através dos deslocamentos na profundidade versus curvas de carga enquanto aumentava as cargas.
As cargas de limite de fraturas foram relatadas em cargas onde ocorreram falhas. Ao contrário dos testes tradicionais de resistência à fratura que medem simplesmente o comprimento da fratura, obtém-se uma carga na qual se inicia a fratura do limiar. Além disso, o ambiente controlado e monitorado de perto permite que a medição da dureza seja usada como um valor quantitativo para comparar uma variedade de amostras.
AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO
Resistência a arranhões de protetores de tela de celular
Importância dos protetores de tela de teste
Embora as telas telefônicas sejam projetadas para resistir a estilhaços e arranhões, elas ainda são suscetíveis a danos. O uso diário do telefone faz com que elas se desgastam e rasgam, por exemplo, acumulam arranhões e rachaduras. Como o reparo dessas telas pode ser caro, os protetores de tela são um item de prevenção de danos acessível, comumente adquirido e usado para aumentar a durabilidade de uma tela.
Usando o Macro Módulo do Nanovea PB1000 Mechanical Tester em conjunto com o sensor de emissões acústicas (AE), podemos identificar claramente cargas críticas nas quais os protetores de tela apresentam falhas devido a testes de risco1 para criar um estudo comparativo entre dois tipos de protetores de tela.
Dois tipos comuns de materiais protetores de tela são TPU (poliuretano termoplástico) e vidro temperado. Dos dois, o vidro temperado é considerado o melhor, pois proporciona melhor proteção contra impactos e arranhões. No entanto, é também o mais caro. Os protetores de tela TPU, por outro lado, são menos caros e uma escolha popular para os consumidores que preferem protetores de tela de plástico. Como os protetores de tela são projetados para absorver arranhões e impactos e geralmente são feitos de materiais com propriedades quebradiças, o teste de arranhões controlados emparelhados com a detecção de AE in-situ é uma configuração de teste ideal para determinar as cargas nas quais ocorrem falhas coesivas (por exemplo, rachaduras, lascas e fraturas) e/ou falhas adesivas (por exemplo, delaminação e espalação).
Objetivo da medição
Neste estudo, foram realizados três testes de arranhões em dois protetores de tela comerciais diferentes usando o módulo Macro do Nanovea's PB1000 Mechanical Tester. Utilizando um sensor de emissões acústicas e um microscópio ótico, foram identificadas as cargas críticas nas quais cada protetor de tela apresentava falha(s).
Procedimento e procedimentos de teste
O Testador Mecânico Nanovea PB1000 foi usado para testar dois protetores de tela aplicados em uma tela telefônica e fixados a uma mesa de sensores de fricção. Os parâmetros de teste para todos os arranhões são tabulados na Tabela 1 abaixo.
Resultados e Discussão
Como os protetores de tela eram feitos de um material diferente, cada um deles apresentava diferentes tipos de falhas. Apenas uma falha crítica foi observada para o protetor de tela TPU, enquanto o protetor de tela de vidro temperado exibia duas. Os resultados para cada amostra são mostrados na Tabela 2 abaixo. A carga crítica #1 é definida como a carga na qual os protetores de tela começaram a apresentar sinais de falha coesiva sob o microscópio. A carga crítica #2 é definida pela primeira mudança de pico vista nos dados do gráfico de emissões acústicas.
Para o protetor de tela TPU, a carga crítica #2 se correlaciona com o local junto com o arranhão onde o protetor começou a descascar visivelmente da tela do telefone. Um arranhão apareceu na superfície da tela do telefone quando a carga crítica #2 foi ultrapassada para o restante dos testes de arranhões. Para o protetor de tela de vidro temperado, a carga crítica #1 se correlaciona com o local onde as fraturas radiais começaram a aparecer. A carga crítica #2 acontece no final do arranhão com cargas mais altas. A emissão acústica é maior do que a do protetor de tela TPU, porém, não foi feito nenhum dano à tela do telefone. Em ambos os casos, a carga crítica #2 correspondeu a uma grande mudança de profundidade, indicando que o entalhe tinha atravessado o protetor de tela.
Conclusão
Neste estudo, mostramos a capacidade do Nanovea PB1000 Mechanical Tester de realizar testes de arranhões controlados e repetíveis e simultaneamente usar a detecção de emissão acústica para identificar com precisão as cargas nas quais ocorrem falhas adesivas e coesivas em protetores de tela feitos de TPU e vidro temperado. Os dados experimentais apresentados neste documento apóiam a suposição inicial de que o Vidro Temperado tem o melhor desempenho na prevenção de arranhões em telas telefônicas.
O testador mecânico Nanovea oferece recursos de medição precisos e repetíveis de indentação, arranhões e desgaste usando módulos Nano e Micro em conformidade com ISO e ASTM. O Testador Mecânico é um sistema completo, tornando-o a solução ideal para determinar toda a gama de propriedades mecânicas de revestimentos, filmes e substratos finos ou espessos, macios ou duros.
AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO
Teste de curva de 3 pontos usando microindentação
Nesta aplicação, a Nanovea Testador Mecânico, em Microindentação é usado para medir a resistência à flexão (usando 3 Point Bend) de várias amostras de haste (massa) para mostrar uma gama de dados. Foram escolhidos 2 diâmetros diferentes para demonstrar as características elásticas e quebradiças. Usando um indentro de ponta plana para aplicar uma carga pontual, determinamos a rigidez (Módulo Young) e identificamos as cargas críticas nas quais a amostra irá se fraturar.
Categorias
- Notas de Aplicação
- Tribologia Block-on-Ring
- Tribologia da Corrosão
- Teste de Fricção | Coeficiente de Fricção
- Testes Mecânicos de Alta Temperatura
- Tribologia de Alta Temperatura
- Tribologia em Umidade e Gases
- Testes Mecânico de Umidade
- Indentação | Deslizamento e Relaxamento
- Indentação | Resistência à Fratura
- Indentação | Dureza e Elástico
- Indentação | Perda e Armazenamento
- Indentação | Stress vs Deformação
- Indentação | Resistência ao Rendimento e Fadiga
- Testes de Laboratório
- Tribologia Linear
- Teste Mecânico em Líquidos
- Tribologia Líquida
- Tribologia de Baixa Temperatura
- Testes Mecânicos
- Comunicado à imprensa
- Perfilometria | Planicidade e Distorções
- Perfilometria | Geometria e Forma
- Perfilometria | Rugosidade e Acabamento
- Perfilometria | Altura e Espessura dos degraus
- Perfilometria | Textura e Grão
- Perfilometria | Volume e Área
- Teste de Perfilometria
- Tribologia Ring-on-Ring
- Tribologia Rotacional
- Teste de Arranhões | Falha Adesiva
- Teste de Arranhões | Falha Coesiva
- Teste de Arranhão | Desgaste Multi-Pass
- Teste de Arranhão | Dureza de Arranhão
- Tribologia de Teste de Arranhões
- Feiras e Eventos
- Testes de Tribologia
- Sem Categoria
Arquivos
- setembro 2023
- agosto 2023
- junho 2023
- maio 2023
- julho 2022
- maio 2022
- abril 2022
- janeiro 2022
- dezembro 2021
- novembro 2021
- outubro 2021
- setembro 2021
- agosto 2021
- julho 2021
- junho 2021
- maio 2021
- março 2021
- fevereiro 2021
- dezembro 2020
- novembro 2020
- outubro 2020
- setembro 2020
- julho 2020
- maio 2020
- abril 2020
- março 2020
- fevereiro 2020
- janeiro 2020
- novembro 2019
- outubro 2019
- setembro 2019
- agosto 2019
- julho 2019
- junho 2019
- maio 2019
- abril 2019
- março 2019
- janeiro 2019
- dezembro 2018
- novembro 2018
- outubro 2018
- setembro 2018
- julho 2018
- junho 2018
- maio 2018
- abril 2018
- março 2018
- fevereiro 2018
- novembro 2017
- outubro 2017
- setembro 2017
- agosto 2017
- junho 2017
- maio 2017
- abril 2017
- março 2017
- fevereiro 2017
- janeiro 2017
- novembro 2016
- outubro 2016
- agosto 2016
- julho 2016
- junho 2016
- maio 2016
- abril 2016
- março 2016
- fevereiro 2016
- janeiro 2016
- dezembro 2015
- novembro 2015
- outubro 2015
- setembro 2015
- agosto 2015
- julho 2015
- junho 2015
- maio 2015
- abril 2015
- março 2015
- fevereiro 2015
- janeiro 2015
- novembro 2014
- outubro 2014
- setembro 2014
- agosto 2014
- julho 2014
- junho 2014
- maio 2014
- abril 2014
- março 2014
- fevereiro 2014
- janeiro 2014
- dezembro 2013
- novembro 2013
- outubro 2013
- setembro 2013
- agosto 2013
- julho 2013
- junho 2013
- maio 2013
- abril 2013
- março 2013
- fevereiro 2013
- janeiro 2013
- dezembro 2012
- novembro 2012
- outubro 2012
- setembro 2012
- agosto 2012
- julho 2012
- junho 2012
- maio 2012
- abril 2012
- março 2012
- fevereiro 2012
- janeiro 2012
- dezembro 2011
- novembro 2011
- outubro 2011
- setembro 2011
- agosto 2011
- julho 2011
- junho 2011
- maio 2011
- novembro 2010
- janeiro 2010
- abril 2009
- março 2009
- janeiro 2009
- dezembro 2008
- outubro 2008
- agosto 2007
- julho 2006
- março 2006
- janeiro 2005
- abril 2004