カテゴリープロフィロメトリー|テクスチャーとグレイン
タイヤの溝深さとゴム表面の粗さ測定|3Dオプティカルプロファイラ
タイヤトレッド深さ&ゴム表面粗さ測定 3D光学式プロファイラを使用
作成者
アンドレア・ハーマン
はじめに
標本、見本
タイヤトレッド深さ測定における3D非接触プロフィロメトリーの重要性
タッチプローブや干渉計などの他の技術とは異なる、, NANOVEAの3D非接触光学式プロファイラー 軸色収差を使用して、ほぼあらゆる表面を測定します。
プロファイラーシステムのオープンステージは、多様なサンプルサイズに対応し、サンプルの前処理は不要です。1回のスキャンで、サンプルの反射率や吸収率の影響を受けずに、タイヤ全体のトレッド深さとミクロレベルの表面粗さの両方を測定できます。さらに、これらのプロファイラには、ソフトウェアで結果を操作することなく、高い表面角度を測定できる高度な機能があります。.
この汎用性により、NANOVEAプロファイラーがタイヤトレッドの摩耗試験と高度なゴム材料の研究の両方に理想的なものとなっています。.
測定目的
このアプリケーションでは ナノベアST400, タイヤのトレッド深さ、輪郭形状、ゴム表面の粗さを測定する3D非接触光学式プロファイラー。この研究では、タイヤ表面全体を表すのに十分な大きさのサンプル表面積を無作為に選択した。ゴムの特性を定量化するため、NANOVEA Ultra 3D解析ソフトウェアを使用し、溝寸法、トレッド深さ、表面粗さ、展開対投影面積を測定した。.
ナノビア ST400スタンダード
光学式3Dプロフィロメーター
アドバンストコンターアナリシス
ステップ高さ解析
まとめ
フレネルレンズトポグラフィー
フレネルレンズトポグラフィー使用 3D 非接触光学式形状測定機
作成者
Duanjie Li & Benjamin Mell
はじめに
レンズは、光を透過・屈折させる軸対称の光学デバイスです。単純なレンズは、光を収束または発散させるための単一の光学部品で構成されています。球面はレンズを作るには理想的な形状ではないが、ガラスを研磨して作ることができる最も単純な形状としてよく使われる。
フレネルレンズは、同心円状のリングを並べたもので、幅が数千分の一インチと小さい単純なレンズの薄い部分である。フレネルレンズは、同じ光学特性を持つ従来のレンズに比べて、大口径で焦点距離が短く、コンパクトに設計されているため、必要な重量や材料の体積が少なくて済む。フレネルレンズの形状が薄いため、光の吸収による損失が非常に少ない。
フレネルレンズ検査における3D非接触形状計測の重要性
フレネル レンズは、自動車産業、灯台、太陽エネルギー、航空母艦の光学着陸システムで広く使用されています。透明なプラスチックからレンズを成形または打ち抜き加工することにより、製造のコスト効率を高めることができます。フレネル レンズのサービス品質は、主に同心リングの精度と表面品質に依存します。 NANOVEA はタッチプローブ技術とは異なり、 光学プロファイラー 表面に触れずに 3D 表面測定を実行できるため、新たな傷ができるリスクが回避されます。クロマティック ライト技術は、さまざまな形状のレンズなど、複雑な形状を正確にスキャンするのに最適です。
フレネルレンズ回路図
透明プラスチックフレネルレンズは、成形またはスタンピングによって製造することができます。正確で効率的な品質管理は、不良品の金型やスタンプを明らかにするために重要です。同心円の高さとピッチを測定し、その値をレンズメーカーが指定する仕様値と比較することで、製造上のばらつきを検出することができます。
レンズのプロファイルを正確に測定することで、金型やスタンプがメーカーの仕様に合うように適切に加工されます。さらに、スタンプは時間の経過とともに徐々に磨耗し、初期の形状を失う可能性があります。レンズメーカーの仕様から一貫して逸脱している場合は、金型の交換が必要であることを示すポジティブな兆候です。
測定目的
このアプリケーションでは、複雑な形状の光学部品の包括的な3Dプロファイル解析を提供する、高速センサー搭載の3D非接触プロファイラ、NANOVEA ST400を紹介します。当社のクロマティック・ライト・テクノロジーの卓越した能力を実証するため、フレネルレンズの輪郭解析を実施しました。.
ナノビア ST400 大面積
光学式3Dプロフィロメーター
今回使用した2.3インチ×2.3インチのアクリルフレネルレンズは、以下のような構成になっています。
同心円状のリングと複雑な鋸歯状の断面形状が特徴です。
焦点距離は1.5インチ、有効径は2.0インチです。
1インチあたり125本の溝があり、屈折率は1.49です。
NANOVEA ST400でフレネルレンズをスキャンすると、同心円のリングの高さが中心から外側に向かうにつれて顕著に増加していることがわかります。
2D FALSE COLOR
高さ方向の表現
3D VIEW
抽出されたプロファイル
ピーク&バレイ
プロファイルの寸法解析
まとめ
このアプリケーションでは、非接触光学式プロファイラ「NANOVEA ST400」がフレネルレンズの表面形状を正確に測定することを紹介しています。
複雑なセレーション形状から、高さとピッチの寸法をNANOVEA解析ソフトウェアで正確に決定することができます。ユーザーは、製造したレンズのリングの高さとピッチの寸法を理想的なリングの仕様と比較することにより、製造金型やスタンプの品質を効果的に検査することができます。
ここに掲載したデータは、解析ソフトで利用できる計算の一部に過ぎません。
半導体、マイクロエレクトロニクス、太陽電池、光ファイバー、自動車、航空宇宙、冶金、機械加工、コーティング、医薬品、バイオメディカル、環境などの分野で、ほぼあらゆる表面を測定するナノベアの光学式プロファイラ。
医薬品錠剤の表面粗さ検査
医薬用錠剤
3Dプロフィロメーターによる粗さの検査
著者
Jocelyn Esparza
はじめに
医薬品の錠剤は、現在最も一般的に使用されている医薬品である。各錠剤は、活性物質(薬理効果をもたらす化学物質)と不活性物質(崩壊剤、結合剤、潤滑剤、希釈剤-通常は粉末状)の組み合わせで構成されている。活性物質と不活性物質は、その後、圧縮または成形されて固形物となる。その後、メーカーの仕様に応じて、錠剤はコーティングされるか、またはコーティングされない。
錠剤コーティングを効果的に行うには、錠剤にエンボス加工されたロゴや文字の細かい輪郭に沿う必要があり、錠剤の取り扱いに耐える安定性と頑丈さが必要で、コーティング工程で錠剤同士がくっつかないようにする必要があります。現在の錠剤は、一般的に顔料や可塑剤などの物質を含む多糖類やポリマーベースのコーティングが施されています。錠剤のコーティングには、フィルムコーティングとシュガーコーティングの2種類が一般的である。フィルムコーティングは、シュガーコーティングと比較して、かさばらず、耐久性があり、調製や塗布に時間がかからないのが特徴です。しかし、フィルムコーティングは、錠剤の外観を隠すのが難しい。
錠剤コーティングは、防湿、成分の味のマスキング、錠剤の飲み込みやすさなどに不可欠です。さらに重要なことは、錠剤のコーティングが、薬物を放出する場所と速度を制御することである。
測定目的
このアプリケーションでは NANOVEA光学式プロファイラ と高度なMountainソフトウェアを使って、様々なブランドの押し薬(コーティングされたもの1個とコーティングされていないもの2個)の表面形状を測定・定量化し、その表面粗さを比較しました。
アドビル(コーティング)は、保護膜があるため、表面粗さが最も小さくなると推測される。
ナノビア
HS2000
テスト条件
3つのバッチの製薬会社の錠剤をNanovea HS2000でスキャンしました。
高速ラインセンサを使用して、ISO 25178に準拠したさまざまな表面粗さパラメータを測定します。
スキャンエリア
2 x 2 mm
横方向のスキャン分解能
5 x 5 μm
スキャンタイム
4秒
サンプル
結果と考察
錠剤をスキャンした後、Advanced Mountains解析ソフトウェアで表面粗さ調査を行い、各錠剤の表面平均、二乗平均平方根、最大高さを算出した。
この計算値は、アドビルが成分を包む保護膜のために表面粗さが小さいという仮定を支持するものである。タイレノールは、測定された3つの錠剤の中で最も高い表面粗さを持っていることがわかります。
各タブレットの表面形状を測定し、その高さ分布を示す2次元および3次元の高さマップを作成した。5つのタブレットのうち1つが、各ブランドのハイトマップを表すために選ばれました。これらの高さマップは、ピットやピークなどの表面上の特徴を視覚的に検出するための優れたツールです。
結論
本研究では,3つのブランド医薬品の圧搾錠剤の表面粗さを分析し,比較した。アドヴィル、タイレノール、エキセドリンである。アドビルは、最も低い平均表面粗さを持っていることが分かった。これは、薬剤を包むオレンジ色のコーティングの存在に起因していると考えられる。一方、エキセドリンとタイレノールは、コーティングがないにもかかわらず、その表面粗さは互いに異なっています。Tylenolは、調査したすべての錠剤の中で、最も高い平均表面粗さを持っていることが証明されました。
を使用しています。 ナノビア 高速ラインセンサを搭載したHS2000では、5錠を1分以内に測定することができました。これは、現在生産している数百錠の品質管理テストに有効であることが証明されます。
インライン粗さ検査
インラインプロファイラによるエラーの即時検出
Surface roughness and texture is vital to the end-use of a product. Fast, quantiable, and reliable inline inspection of the product surface ensures detecting the defective products immediately so as to determine the work
conditions of the production line. It not only improves productivity and eciency, but also reduces defect rates,
re-work, and waste.
インライン粗さ検査における非接触式プロファイラの重要性
表面欠陥は、材料の加工や製品の製造に起因します。インライン表面品質検査により、最終製品の最も厳密な品質管理が保証されます。ナノベア 3D非接触形状計 非接触でサンプルの粗さを測定する独自の機能を備えたクロマチック共焦点技術を利用します。複数のプロファイラー センサーを設置して、製品のさまざまな領域の粗さと質感を同時に監視できます。解析ソフトウェアによってリアルタイムで計算された粗さのしきい値は、高速で信頼性の高い合否判定ツールとして機能します。
測定目的
本研究では、ポイントセンサーを搭載したナノベアーの粗さ検査コンベアシステムを用いて、アクリルとサンドペーパーサンプルの表面粗さを検査します。生産ラインにおいて、高速で信頼性の高いインライン粗さ検査をリアルタイムに提供するナノベアーの能力を紹介します。
結果および考察
コンベア式プロフィロメータシステムは、トリガモードと連続モードの2つのモードで動作させることができる。図2に示すように、トリガーモードでは、試料が光学式プロファイラヘッドの下を通過する際に表面粗さが測定されます。これに対し、連続モードでは、金属板や布地などの連続した試料の表面粗さをノンストップで測定することができます。複数の光学式プロファイラーセンサーを設置し、異なるサンプル領域の粗さをモニターし記録することができます。
リアルタイムの粗さ検査測定中、図4と図5に示すように、合格と不合格の警告がソフトウェアのウィンドウに表示されます。粗さの値が与えられた閾値の範囲内にある場合、測定された粗さは緑色でハイライトされます。しかし、測定された表面粗さが設定されたしきい値の範囲外である場合、ハイライトは赤色に変化する。これは、ユーザーが製品の表面仕上げの品質を判断するためのツールを提供するものである。
以下では、アクリルと紙やすりの2種類の試料を用いて、検査システムのトリガーモードと連続モードのデモンストレーションを行います。
トリガーモード。アクリル試料の表面検査
図1に示すように、一連のアクリル試料はコンベアベルト上に整列され、光学式プロファイラヘッドの下を移動します。図6の擬似カラー図は、表面の高さの変化を示しています。鏡面仕上げされたアクリルサンプルの一部は、図6bに示すように、サンディングされて粗い表面テクスチャを形成していた。
アクリルサンプルは光学式プロファイラヘッドの下を一定速度で移動するため、図7および図8に示すように表面形状が測定される。測定されたプロファイルの粗さ値も同時に計算され、閾値と比較されます。粗さの値が設定されたしきい値を超えると赤色のフェイルアラートが起動し、ユーザーは生産ライン上の不良品を即座に発見し、場所を特定することができるようになります。
連続モード。サンドペーパーサンプルの表面検査
図9に示すように、サンドペーパーサンプル表面の表面高さマップ、粗さ分布マップ、および粗さ閾値の合否マップを作成した。サンドペーパーサンプルは、表面高さマップに示されるように、使用部分にいくつかの高いピークがある。図9Cのパレット内の異なる色は、局所表面の粗さ値を表している。粗さマップは、サンドペーパーサンプルの無傷の領域で均質な粗さを示す一方、使用済みの領域は濃い青色で強調され、この領域で粗さの値が低下していることを示している。図9Dに示すように、このような領域を特定するために、粗さの合否のしきい値を設定することができます。
サンドペーパーがインラインプロファイラセンサーの下を連続的に通過すると、図10にプロットされているように、リアルタイムの局所粗さ値が計算され記録される。設定された粗さのしきい値に基づいて合否のアラートがソフトウェア画面に表示され、品質管理のための迅速かつ信頼性の高いツールとして機能する。生産ラインにおける製品の表面品質をその場で検査し、不良箇所をいち早く発見することができる。
このアプリケーションでは、光学式非接触プロファイラーセンサーを搭載したナノベアコンベアプロフィロメーターが、信頼性の高いインライン品質管理ツールとして効果的かつ効率的に機能することを示しました。
生産ラインに設置することで、製品の表面品質をその場で監視することができる検査装置です。粗さの閾値は、製品の表面品質を判断するための信頼できる基準として機能し、ユーザーは不良品にいち早く気づくことができます。トリガーモードと連続モードの2つの検査モードがあり、さまざまな種類の製品の検査に対応します。
ここに掲載されているデータは、解析ソフトウェアで利用可能な計算の一部に過ぎません。ナノベアプロフィロメータは、半導体、マイクロエレクトロニクス、太陽電池、ファイバー、光学、自動車、航空宇宙、冶金、機械加工、コーティング、医薬品、バイオメディカル、環境などの分野で、ほぼすべての表面を測定することができます。
さて、次はアプリケーションについてです。
ブロック・オン・リング摩耗試験
ブロック・オン・リングの摩耗評価の重要性
ブロック オン リング (ASTM G77) 試験は、さまざまなシミュレーション条件で材料の滑り摩耗挙動を評価する広く使用されている手法で、特定のトライボロジー用途における材料カップルの信頼できるランク付けを可能にします。
測定目的
このアプリケーションでは、ナノベアメカニカルテスターが、ステンレス鋼SS304とアルミニウムAl6061金属合金サンプルのYSとUTSを測定しています。これらのサンプルは、ナノベアの圧痕法の信頼性を示す、一般的に認識されているYSとUTSの値で選ばれました。
S-10 リング上の H-30 ブロックの滑り摩耗挙動は、Block-on-Ring モジュールを使用する Nanovea のトライボメータによって評価されました。 H-30 ブロックは硬度 30HRC の 01 工具鋼で作られていますが、S-10 リングは表面硬度 58 ~ 63 HRC の鋼タイプ 4620、リング直径約 34.98 mm です。摩耗挙動への影響を調査するために、乾燥した潤滑環境でブロック オン リング テストが実行されました。潤滑試験は USP 重鉱油で実施されました。 Nanovea の摩耗痕跡を調査しました。 3D非接触表面形状計。試験パラメータを表 1 にまとめます。摩耗率 (K) は、式 K=V/(F×s) を使用して評価しました。ここで、V は摩耗量、F は垂直荷重、s は滑り距離です。
結果および考察
図 2 は、乾燥環境と潤滑環境でのブロックオンリング テストの摩擦係数 (COF) を比較しています。乾燥した環境では、潤滑された環境よりもブロックの摩擦が大幅に大きくなります。 COF
最初の 50 回転のならし期間中に変動し、残りの 200 回転摩耗テストでは約 0.8 の一定 COF に達します。比較すると、USP 重鉱油潤滑で実行されたブロック オン リング テストは、500,000 回転摩耗テスト全体を通じて 0.09 という低い COF を一定に示しました。潤滑剤は、表面間の COF を最大 90 分の 1 に大幅に削減します。
図3,図4に乾式および潤滑式摩耗試験後のブロックの摩耗痕の光学画像と断面2次元プロフィールを示す。また,摩耗痕の体積と摩耗速度を表2に示す。72rpmの低回転数で200回転させた乾式摩耗試験後のスチールブロックは、9.45mm˙と大きな摩耗痕体積を示しています。これに対し、鉱物油潤滑剤を用いて197rpmの高速回転で50万回転させた摩耗試験では、0.03mm˙と大幅に小さい摩耗痕が形成されました。
図3は、潤滑摩耗試験での穏やかな摩耗に比べ、乾式摩耗試験での激しい摩耗の様子を示しています。乾式摩耗試験で発生する高熱と激しい振動は、金属片の酸化を促進し、激しい3体摩耗を引き起こします。潤滑摩耗試験では、鉱油が摩擦を減らし、接触面を冷却し、摩耗中に生じた摩耗粉を運び去ります。この結果、摩耗量は約8×10ˆと大幅に減少した。このような環境による耐摩耗性の大きな違いは、現実的な使用条件下での適切な滑り摩耗シミュレーションの重要性を示している。
試験条件にわずかな変化が加わると、摩耗の挙動が大きく変化することがあります。ナノベアのトライボメータは汎用性が高いため、高温、潤滑、トライボコロージョンの各条件で摩耗測定が可能です。高度なモーターによる正確な速度および位置制御により、0.001~5000rpmの速度で摩耗試験を行うことができるため、研究/試験ラボにとって、さまざまな⾰命条件での摩耗を調べるための理想的なツールとなっています。
試料の表面状態は、Nanovea社の非接触型光学式プロイオメーターで検査した。図5は、摩耗試験後のリングの表面形態を示しています。摺動摩耗により生じた表面形態と粗さをより良く表現するために、円筒形状を除去しています。200回転の乾式摩耗試験では、3体摩耗により著しい表面荒れが発生しました。乾式摩耗試験後のブロックとリングの粗さRaは、それぞれ14.1μmと18.1μmであるのに対し、より高速の50万回転潤滑摩耗試験では5.7μmと9.1μmとなりました。このテストは、ピストンリングとシリンダーの接触面に適切な潤滑を行うことの重要性を示しています。激しい摩耗は、無潤滑では接触面を素早く損傷させ、不可逆的なサービス品質の劣化、さらにはエンジンの破損につながる。
まとめ
この研究では、ASTM G77 規格に準拠したブロック オン リング モジュールを使用して、Nanovea のトライボメーターを使用してスチール金属カップルの滑り摩耗挙動を評価する方法を紹介します。潤滑剤は、材料対の摩耗特性において重要な役割を果たします。鉱油は、H-30 ブロックの摩耗率を約 8×10 分の 1 に減少させ、COF を約 90 分の 1 に減少させます。 Nanovea のトライボメーターは多用途性を備えているため、さまざまな潤滑、高温、摩擦腐食条件下での摩耗挙動を測定するための理想的なツールとなっています。
Nanovea のトライボメーターは、ISO および ASTM 準拠の回転モードおよび直線モードを使用して、正確で再現性のある摩耗および摩擦試験を提供します。また、オプションの高温摩耗、潤滑、および摩擦腐食モジュールも 1 つの事前統合システムで利用できます。 Nanovea の比類のない製品群は、薄いか厚いか、柔らかいか硬いコーティング、フィルム、および基材のあらゆる範囲のトライボロジー特性を決定するための理想的なソリューションです。
さて、次はアプリケーションについてです。
3次元形状測定による複合材料解析
複合材料における非接触形状測定の重要性
複合材料の補強用途では、欠陥を最小限に抑え、可能な限り強度を高めることが重要です。異方性材料であるため、織物の方向が一定であることが、高い性能予測性を維持するために重要である。複合材料は重量に対する強度が最も高い材料の一つであり、場合によっては鉄よりも強くなります。化学的な脆弱性や熱膨張の影響を最小限に抑えるために、複合材料の露出表面積を制限することが重要です。プロフィロメトリーによる表面検査は、長期間の使用に耐える強度を確保するために、複合材料の品質管理製造に不可欠です。
ナノベアの 3D非接触形状計 タッチプローブや干渉法などの他の表面測定技術とは異なります。当社の表面形状計は軸色収差を使用してほぼあらゆる表面を測定し、オープンステージングにより準備を必要とせずにあらゆるサイズのサンプルを測定できます。ナノからマクロまでの測定は、サンプルの反射率や吸収の影響を受けることなく表面プロファイル測定中に得られます。当社の表面形状計は、ソフトウェア操作なしで高い表面角度を測定できる高度な機能を備えており、透明、不透明、鏡面、拡散、研磨、粗いなど、あらゆる材質を簡単に測定できます。非接触粗面計技術は、複合材料表面の研究を最大限に高めるための理想的で使いやすい機能を提供します。 2D と 3D 機能を組み合わせたメリットも得られます。
測定目的
このアプリケーションで使用されたナノベアーのHS2000Lプロフィロメーターは、炭素繊維複合材料の2つの織り目の表面を測定しました。表面粗さ、織り長、等方性、フラクタル解析、およびその他の表面パラメータを使用して、複合材料を特性評価します。測定領域はランダムに選択され、Nanoveaの強力な表面分析ソフトウェアを使用して特性値を比較できるほど十分に大きいと想定されています。
結果および考察
表面解析
等方性は、織物の方向性を示し、期待される特性値を決定します。我々の研究では、双方向性複合材料が予想通り〜60%の等方性であることを示しています。一方、一方向性複合材料は、強い単一繊維経路方向繊維のため、〜13%の等方性であることがわかります。
織り目の大きさは、複合材料に使用される繊維の詰め具合と幅を決定します。私たちの研究は、部品の品質を保証するために、ミクロン単位の精度で織りのサイズをいかに簡単に測定できるかを示しています。


支配的な波長のテクスチャー分析から、どちらのコンポジットもストランドサイズは4.27ミクロンであることがわかりました。繊維表面のフラクタル次元解析は、繊維がマトリックスに定着しやすいかどうかを調べるために、平滑度を決定します。一方向繊維のフラクタル次元は、双方向繊維よりも高く、複合材料の加工に影響を与える可能性があります。
結論
このアプリケーションでは、ナノベアーの HS2000L 非接触型プロフィロメーターが複合材料の繊維表面を正確に特性評価できることを示しました。高さパラメータ、等方性、テクスチャ分析、距離測定などを用いて、炭素繊維の織り方の違いを識別しました。
ナノベアのプロフィロメーターによる表面計測は、複合材料の損傷を正確かつ迅速に軽減し、部品の欠陥を減らし、複合材料の能力を最大化します。ナノベアの3Dプロフィロメーターの速度は、<1mm/sから500mm/sまであり、研究用途から高速検査のニーズまで対応可能です。ナノベアーのプロフィロメーターはソリューションです。
あらゆる複合的な測定ニーズに対応します。
さて、次はアプリケーションについてです。
表面処理銅線の耐摩耗性とスクラッチ性の評価
銅線の摩耗・傷評価の重要性
銅は、電磁石や電信機の発明以来、電気配線に使用されてきた長い歴史があります。銅線は、耐食性、はんだ付け性、150℃までの高温での特性から、パネル、メーター、コンピューター、事務機、家電製品など、幅広い電子機器に使用されています。採掘される銅の約半分は、電線・ケーブルの導体製造に使用されています。
銅線の表面品質は、アプリケーションの性能と寿命にとって非常に重要です。ワイヤの微細な欠陥は、過度の摩耗、亀裂の発生と伝播、導電性の低下、不十分なはんだ付け性などにつながる可能性があります。銅線の適切な表面処理は伸線時に発生する表面欠陥を取り除き、耐腐食性、耐傷性、耐摩耗性を向上させます。銅線を使った多くの航空宇宙用途では、予期せぬ機器の故障を防ぐため、その挙動を制御する必要がありま す。銅線表面の耐摩耗性や耐傷性を正しく評価するためには、定量的で信頼性の高い測定が必要です。
測定目的
このアプリケーションでは、異なる銅線の表面処理を制御した摩耗プロセスをシミュレートしています。 スクラッチテスト 処理された表面層に破損を引き起こすのに必要な荷重を測定します。この研究では Nanovea を紹介します トライボメータ と メカニカルテスター 電線の評価・品質管理に最適なツールです。
試験方法と手順
銅線 (ワイヤ A およびワイヤ B) の 2 つの異なる表面処理の摩擦係数 (COF) と耐摩耗性は、線形往復摩耗モジュールを使用する Nanovea トライボメータによって評価されました。 Al₂O₃ ボール (直径 6 mm) が、この用途で使用される相手材です。 Nanovea の摩耗痕跡を調査しました。 3D非接触表面形状計。テストパラメータを表 1 にまとめます。
本研究では、カウンター材料として滑らかなAl₂O₃球を例として使用した。形状や表面仕上げが異なる任意の固体材料は、実際の適用状況をシミュレートするために、カスタムフィクスチャを使用して適用することができます。
結果および考察
銅線の磨耗。
図 2 は,摩耗試験中の銅線の COF の変化を示している。A線は摩耗試験中、COFが〜0.4と安定しているのに対し、B線は最初の100回転でCOFが〜0.35となり、徐々に〜0.4まで増加した。
図3は、試験後の銅線の摩耗痕を比較したものです。ナノベアの3D非接触プロフィロメータは、摩耗痕の詳細な形態について優れた分析を提供しました。摩耗のメカニズムを根本的に理解することで、摩耗痕の体積を直接かつ正確に把握することができます。ワイヤーBの表面は、600回転の摩耗試験後に摩耗痕が顕著に損傷しています。プロフィロメーターの3D表示では、ワイヤーBの表面処理層が完全に除去され、摩耗プロセスが大幅に加速されたことが分かります。このため、ワイヤーBの銅基板が露出している部分には、平坦な摩耗痕が残っています。この結果、ワイヤBを使用する電気機器の寿命が著しく短くなる可能性があります。一方、ワイヤーAは比較的摩耗が少なく、浅い摩耗痕が残っています。また,ワイヤAの表面処理層は,ワイヤBの表面処理層のように同じ条件下で剥離することはなかった。
銅線表面の傷つきにくさ。
図4は、試験後のワイヤのスクラッチ痕を示したものである。ワイヤーAの保護層は非常に優れた耐傷性を示し、〜12.6Nの荷重で剥離した。これに対し、ワイヤBの保護層は荷重~1.0Nで剥離した。このようにワイヤの耐傷性に大きな差があることから、ワイヤAは耐摩耗性が大幅に向上していることがわかる。図5に示すように、スクラッチ試験中の法線力、COF、深さの変化から、試験中の皮膜破壊についてより深く理解することができる。
結論
この対照研究では、表面処理された銅線の耐摩耗性を定量的に評価するナノベア社のトライボメータと、銅線の耐傷性を確実に評価するナノベア社のメカニカルテスターを紹介しました。ワイヤの表面処理は、その寿命期間中のトライボメカニカル特性に重要な役割を果たします。ワイヤーAの適切な表面処理により、耐摩耗性と耐傷性が大幅に向上し、過酷な環境下での電線の性能と寿命に重要な役割を果たしました。
ナノベアのトライボメータは、ISOおよびASTMに準拠した回転モードとリニアモードによる精密で再現性の高い摩耗・摩擦試験と、オプションの高温摩耗、潤滑、トライボ腐食モジュールを1つの統合済みシステムで利用することができます。ナノベアの比類なき製品群は、薄型・厚型、軟質・硬質コーティング、フィルム、基材のあらゆるトライボロジー特性を測定するための理想的なソリューションです。
3次元形状測定による塗料オレンジピールの質感解析
3次元形状測定による塗料オレンジピールの質感解析
はじめに
基材の表面構造の大きさと頻度は、光沢塗装の品質に影響を与えます。塗料のオレンジピールテクスチャーは、その外観から名付けられたもので、基材の影響と塗料の塗布技術から発生することがあります。テクスチャーの問題は、一般的に、波長、およびそれらが光沢コーティングに与える視覚的効果によって定量化されます。小さなテクスチャは光沢の低下を招き、大きなテクスチャは塗膜表面に目に見える波紋を生じさせる。これらのテクスチャーの発生と基材や技術との関係を理解することは、品質管理上非常に重要である。
質感測定におけるプロフィロメトリの重要性
光沢テクスチャーの測定に使用される従来の2D測定器とは異なり、3D非接触測定は、表面特性を理解するために使用される3D画像を迅速に提供し、関心のある領域を迅速に調査する機能を追加します。スピードと3Dレビューがなければ、品質管理環境は、表面全体の予測可能性がほとんどない2D情報だけに頼ることになります。3Dでテクスチャーを理解することで、処理と管理手段を最適に選択することができます。このようなパラメーターの品質管理は、定量的で再現性が高く、信頼性の高い検査に大きく依存しています。ナノベア3D非接触 プロフィロメーター ナノベア・プロフィロメーターは、クロマティック共焦点技術を利用し、高速測定時に見られる急峻な角度を測定するユニークな機能を備えています。ナノベア・プロフィロメーターは、プローブの接触、表面のばらつき、角度、反射率によって、他の技術では信頼性の高いデータが得られない場合でも、成功します。
測定目的
このアプリケーションでは、Nanovea HS2000Lが光沢塗料のオレンジピールテクスチャを測定しています。3次元表面スキャンから自動的に算出される表面パラメータは無数にあります。ここでは、スキャンした3次元表面について、塗料のオレンジピールテクスチャの特徴を数値化し、解析しています。
Nanovea HS2000Lは、オレンジピールペイントの等方性と高さパラメータを定量化しました。オレンジピールのテクスチャは、94.4%の等方性でランダムパターン方向を定量化しました。高さパラメータは、24.84μmの高低差のあるテクスチャを定量化しました。
図4の支持率曲線は、深度分布をグラフ化したものである。これはソフトウェア内のインタラクティブな機能で、様々な深さでの分布とパーセンテージを見ることができます。図5の抽出されたプロファイルは、オレンジピールテクスチャの有用な粗さ値を示しています。144ミクロンの閾値以上のピーク抽出は、オレンジの皮の質感を示しています。これらのパラメータは、関心のある他の領域やパラメータに簡単に調整することができます。
結論
このアプリケーションでは、Nanovea HS2000L 3D非接触プロフィロメーターが、光沢塗装のオレンジピールテクスチャのトポグラフィーとナノメータ詳細の両方を正確に特性評価します。3D表面測定から関心のある領域をすばやく特定し、多くの有用な測定値(寸法、粗さ仕上げテクスチャ、形状フォームトポグラフィー、平坦度反り平面度、ボリューム面積、ステップハイトなど)で分析します。素早く選択された2D断面図は、光沢テクスチャに関する表面測定リソースの完全なセットを提供します。AFMモジュールを使用することで、特殊な領域の分析も可能です。ナノベアーの3Dプロフィロメーターの速度は、<1 mm/sから500 mm/sまであり、研究アプリケーションから高速検査のニーズまで対応できます。ナノベアーの3Dプロフィロメーターは、お客様のアプリケーションに適した幅広い構成があります。
非接触式プロフィロメータによるペニーの3次元表面解析
コインの非接触形状測定の重要性
通貨は商品やサービスと交換されるため、現代社会では高く評価されています。硬貨や紙幣の通貨は多くの人の手に渡ります。物理的な通貨の継続的な転送により、表面の変形が生じます。ナノベアの3D プロフィロメーター 異なる年に鋳造されたコインの地形をスキャンして、表面の違いを調査します。
コインの特徴は、一般的なオブジェクトであるため、一般の人々にとって容易に認識できます。 Nanovea の高度な表面解析ソフトウェアである Mountains 3D の強みを紹介するには、1 ペニーが最適です。当社の 3D 表面形状計で収集された表面データにより、表面の減算と 2D 輪郭抽出による複雑な形状の高度な分析が可能になります。制御されたマスク、スタンプ、または金型を使用した表面減算により製造プロセスの品質を比較し、輪郭抽出により寸法解析により公差を特定します。 Nanovea の 3D プロフィロメーターと Mountains 3D ソフトウェアは、ペニー硬貨のような一見単純な物体のサブミクロンの地形を調査します。
測定目的
Nanovea社の高速ラインセンサーを使用して、5枚のペニーの上面全体をスキャンしました。各ペニーの内側と外側の半径は、Mountains Advanced Analysis Softwareを使用して測定されました。各ペニー表面から関心領域の抽出と表面の直接減算を行い、表面の変形を定量化しました。
結果および考察
3Dサーフェス
Nanovea HS2000 プロフィロメーターは、1円玉の表面を取得するために、10um x 10um のステップサイズで 20mm x 20mm の領域を 400 万点スキャンするのにわずか 24 秒しかかかりませんでした。以下は、スキャンのハイトマップと3Dビジュアライゼーションです。3D表示では、目では見えない細かな部分まで高速度センサーが拾っていることが分かります。1円玉の表面には、たくさんの小さな傷が見えます。3Dビューで見たコインの質感と粗さを調査。
ペニーの輪郭を抽出し,寸法解析を行った結果,エッジの内径と外径が判明した。外側の半径は平均9.500mm±0.024、内側の半径は平均8.960mm±0.032となりました。Mountains 3Dは、2Dおよび3Dデータソースに対して、距離測定、ステップ高、平面性、角度計算などの寸法解析を行うことができます。
図5は、サーフェスサブトラクション解析の対象領域を示したものである。2007年の1円玉を基準面として、4つの古い1円玉の表面を分析した。2007年版の表面から減算することで、穴や峰のあるペニー間の差がわかる。表面体積の差は、穴や峰の体積を足したものである。RMS誤差は、ペニー表面同士がどの程度一致しているかを示すものである。
結論

Nanovea社のHigh-Speed HS2000Lは、異なる年に鋳造された5枚の硬貨をスキャンしました。3DソフトウェアMountainsは、輪郭抽出、寸法分析、表面減算を用いて各コインの表面を比較しました。この分析では、表面の特徴の違いを直接比較しながら、硬貨の内側と外側の半径を明確に定義しています。ナノメートルレベルの分解能であらゆる表面を測定できるナノベアの3Dプロフィロメーターと、マウンテンズの3D解析機能を組み合わせれば、研究および品質管理への応用は無限に広がります。
さて、次はアプリケーションについてです。
デニムの耐摩耗性の比較
はじめに
ファブリックの形態と機能は、その品質と耐久性によって決まります。生地は日々使用されることにより、毛羽立ち、毛玉、変色などの磨耗や劣化が生じます。衣料品に使用される生地の品質が悪いと、消費者の不満やブランド毀損につながることが多い。
繊維の機械的特性を定量化しようとすると、多くの課題が生じます。糸の構造、さらには生産された工場によって、試験結果の再現性が低くなることがあります。そのため、異なる試験所での試験結果を比較することは困難です。繊維の摩耗性能の測定は、繊維生産チェーンのメーカー、流通業者、小売業者にとって非常に重要です。十分に管理され、再現性のある耐摩耗性測定は、布地の信頼できる品質管理を保証するために極めて重要です。
カテゴリー
- アプリケーションノート
- ブロック・オン・リングトライボロジー
- 腐食トライボロジー
- 摩擦試験|摩擦係数
- 高温機械試験
- 高温トライボロジー
- 湿度・ガス トライボロジー
- 湿度機械試験
- 圧痕|クリープとリラクゼーション
- 圧痕|破壊靭性
- 圧痕|硬度・弾性率
- 圧痕|紛失と保管
- 圧痕|応力と歪み
- 圧痕|降伏強度と疲労の関係
- ラボラトリーテスト
- リニアトライボロジー
- 液体機械試験
- 液状トライボロジー
- 低温トライボロジー
- メカニカルテスト
- プレスリリース
- プロフィロメトリー|平坦度・反り率
- プロフィロメトリー|幾何学と形状
- プロフィロメトリー|粗さと仕上がり
- プロフィロメトリー|段差の高さと厚み
- プロフィロメトリー|テクスチャーとグレーン
- プロフィロメトリー|体積・面積
- プロフィロメトリーテスト
- リング・オン・リング トライボロジー
- 回転トライボロジー
- スクラッチテスト|接着剤の不具合について
- スクラッチテスト|コヒーシブフェール
- スクラッチテスト|マルチパス摩耗
- スクラッチテスト|スクラッチハードネス
- スクラッチテスト トライボロジー
- トライボロジー試験
- 未分類
月別アーカイブ
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月




















































