USA/GLOBAL : +1-949-461-9292
EUROPE : +39-011-3052-794
CONTACTEZ-NOUS

Déformation par fluage des polymères à l'aide de la nanoindentation

Déformation par fluage des polymères à l'aide de la nanoindentation

En savoir plus

DÉFORMATION PAR FLUAGE

DES POLYMÈRES PAR NANOINDENTATION

Préparé par

DUANJIE LIPhD

INTRODUCTION

En tant que matériaux viscoélastiques, les polymères subissent souvent une déformation en fonction du temps sous une certaine charge appliquée, également appelée fluage. Le fluage devient un facteur critique lorsque les pièces polymères sont conçues pour être exposées à une contrainte continue, comme les composants structurels, les joints et les raccords, et les récipients à pression hydrostatique.

IMPORTANCE DE LA MESURE DU FLUAGE POUR POLYMÈRES

La nature inhérente de la viscoélasticité joue un rôle essentiel dans les performances des polymères et influence directement leur fiabilité de service. Les conditions environnementales telles que la charge et la température affectent le comportement au fluage des polymères. Les ruptures de fluage se produisent souvent en raison du manque de vigilance quant au comportement au fluage en fonction du temps des matériaux polymères utilisés dans des conditions de service spécifiques. De ce fait, il est important de développer un test fiable et quantitatif des comportements mécaniques viscoélastiques des polymères. Le module Nano du NANOVEA Testeurs mécaniques applique la charge avec un piézo de haute précision et mesure directement l'évolution de la force et du déplacement in situ. La combinaison de précision et de répétabilité en fait un outil idéal pour la mesure du fluage.

OBJECTIF DE MESURE

Dans cette application, nous avons montré que
le testeur mécanique NANOVEA PB1000
en Nanoindentation est un outil idéal
pour l'étude des propriétés mécaniques viscoélastiques
y compris la dureté, le module de Young
et le fluage des matériaux polymères.

NANOVEA

PB1000

CONDITIONS DE TEST

Huit échantillons de polymères différents ont été testés par la technique de nanoindentation à l'aide du testeur mécanique NANOVEA PB1000. Comme la charge a augmenté linéairement de 0 à 40 mN, la profondeur a progressivement augmenté pendant la phase de chargement. Le fluage a ensuite été mesuré par le changement de la profondeur d'indentation à la charge maximale de 40 mN pendant 30 s.

CHARGE MAXIMALE 40 mN
TAUX DE CHARGEMENT
80 mN/min
TAUX DE DÉCHARGEMENT 80 mN/min
TEMPS DE CRÈPE
30 s

INDENTER TYPE

Berkovich

Diamant

*configuration de l'essai de nanoindentation

RÉSULTATS ET DISCUSSION

Le graphique de la charge en fonction du déplacement des essais de nanoindentation sur différents échantillons de polymère est illustré à la FIGURE 1 et les courbes de fluage sont comparées à la FIGURE 2. La dureté et le module de Young sont résumés dans la FIGURE 3, et la profondeur de fluage est illustrée dans la FIGURE 4. À titre d'exemple dans la FIGURE 1, les parties AB, BC et CD de la courbe charge-déplacement pour la mesure de nanoindentation représentent respectivement les processus de chargement, de fluage et de déchargement.

Le Delrin et le PVC présentent la dureté la plus élevée de 0,23 et 0,22 GPa, respectivement, tandis que le LDPE possède la dureté la plus faible de 0,026 GPa parmi les polymères testés. En général, les polymères les plus durs présentent des taux de fluage plus faibles. Le LDPE le plus souple présente la profondeur de fluage la plus élevée, soit 798 nm, contre ~120 nm pour le Delrin.

Les propriétés de fluage des polymères sont critiques lorsqu'ils sont utilisés dans des pièces structurelles. En mesurant précisément la dureté et le fluage des polymères, il est possible de mieux comprendre la fiabilité des polymères en fonction du temps. Le fluage, c'est-à-dire la variation du déplacement à une charge donnée, peut également être mesuré à différentes températures et humidités élevées à l'aide du testeur mécanique NANOVEA PB1000, ce qui constitue un outil idéal pour mesurer de manière quantitative et fiable les comportements mécaniques viscoélastiques des polymères.
dans l'environnement d'application réaliste simulé.

FIGURE 1: Les courbes de charge en fonction du déplacement
de différents polymères.

FIGURE 2 : Fluage à une charge maximale de 40 mN pendant 30 s.

FIGURE 3 : Dureté et module de Young des polymères.

FIGURE 4 : Profondeur de fluage des polymères.

CONCLUSION

Dans cette étude, nous avons montré que le NANOVEA PB1000
Le testeur mécanique mesure les propriétés mécaniques de différents polymères, notamment la dureté, le module de Young et le fluage. Ces propriétés mécaniques sont essentielles pour sélectionner le matériau polymère approprié pour les applications prévues. Le Derlin et le PVC présentent la dureté la plus élevée, respectivement de 0,23 et 0,22 GPa, tandis que le LDPE possède la dureté la plus faible, de 0,026 GPa, parmi les polymères testés. En général, les polymères les plus durs présentent des taux de fluage plus faibles. Le LDPE le plus souple présente la profondeur de fluage la plus élevée de 798 nm, contre ~120 nm pour le Derlin.

Les testeurs mécaniques NANOVEA offrent des modules Nano et Micro multifonctions inégalés sur une seule plate-forme. Les modules Nano et Micro comprennent tous deux un testeur de rayures, un testeur de dureté et un testeur d'usure, offrant ainsi la gamme de tests la plus large et la plus conviviale disponible sur un seul système.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Commentaire