USA/GLOBAL : +1-949-461-9292
EUROPE : +39-011-3052-794
CONTACTEZ-NOUS

Dureté à la rayure à haute température à l'aide d'un tribomètre

DURETÉ À LA RAYURE À HAUTE TEMPÉRATURE

EN UTILISANT UN TRIBOMÈTRE

Préparé par

DUANJIE, PhD

INTRODUCTION

La dureté mesure la résistance des matériaux à une déformation permanente ou plastique. Développé à l'origine par un minéralogiste allemand, Friedrich Mohs, en 1820, le test de dureté par rayure détermine la dureté d'un matériau aux rayures et à l'abrasion dues au frottement d'un objet pointu.1. L'échelle de Mohs étant un indice comparatif plutôt qu'une échelle linéaire, une mesure plus précise et qualitative de la dureté par rayure a été mise au point, comme le décrit la norme ASTM G171-03.2. Il mesure la largeur moyenne de la rayure créée par un stylet diamanté et calcule l'indice de dureté de la rayure (HSP).

IMPORTANCE DE LA MESURE DE LA DURETÉ PAR RAYURE À HAUTE TEMPÉRATURE

Les matériaux sont choisis en fonction des exigences de service. Pour les applications impliquant des changements de température importants et des gradients thermiques, il est essentiel d'étudier les propriétés mécaniques des matériaux à haute température afin de connaître parfaitement les limites mécaniques. Les matériaux, en particulier les polymères, se ramollissent généralement à haute température. De nombreuses défaillances mécaniques sont dues à la déformation par fluage et à la fatigue thermique qui ne se produisent qu'à des températures élevées. Il est donc nécessaire de disposer d'une technique fiable pour mesurer la dureté à haute température afin de garantir une sélection adéquate des matériaux pour les applications à haute température.

OBJECTIF DE MESURE

Dans cette étude, le tribomètre NANOVEA T50 mesure la dureté aux rayures d'un échantillon de téflon à différentes températures allant de la température ambiante à 300 °C. La capacité d'effectuer des mesures de dureté aux rayures à haute température rend le NANOVEA Tribomètre un système polyvalent pour les évaluations tribologiques et mécaniques des matériaux pour les applications à haute température.

NANOVEA

T50

CONDITIONS DE TEST

Le tribomètre standard à poids libre NANOVEA T50 a été utilisé pour effectuer les tests de dureté par rayure sur un échantillon de téflon à des températures allant de la température ambiante (RT) à 300°C. Le téflon a un point de fusion de 326,8°C. Un stylet conique en diamant d'un angle d'apex de 120° avec un rayon de pointe de 200 µm a été utilisé. L'échantillon de téflon a été fixé sur la platine d'échantillonnage rotative à une distance de 10 mm du centre de la platine. L'échantillon a été chauffé par un four et testé aux températures suivantes : RT, 50°C, 100°C, 150°C, 200°C, 250°C et 300°C.

PARAMÈTRES D'ESSAI

de la mesure de la dureté par rayure à haute température

FORCE NORMALE 2 N
VITESSE DE GLISSEMENT 1 mm/s
DISTANCE DE GLISSEMENT 8mm par temp
ATMOSPHÈRE Air
TEMPÉRATURE RT, 50°C, 100°C, 150°C, 200°C, 250°C, 300°C.

RÉSULTATS ET DISCUSSION

Les profils des traces de rayure de l'échantillon de téflon à différentes températures sont illustrés à la FIGURE 1 afin de comparer la dureté de la rayure à différentes températures élevées. L'amas de matériau sur les bords de la piste de rayure se forme lorsque le stylet se déplace à une charge constante de 2 N et pénètre dans l'échantillon de téflon, poussant et déformant le matériau dans la piste de rayure sur le côté.

Les traces de rayures ont été examinées au microscope optique, comme indiqué sur la FIGURE 2. La largeur des traces de rayure mesurée et les indices de dureté de la rayure (HSP) calculés sont résumés et comparés dans la FIGURE 3. La largeur des traces de rayure mesurée par le microscope est en accord avec celle mesurée à l'aide du profileur NANOVEA - l'échantillon de téflon présente une largeur de rayure plus importante à des températures plus élevées. La largeur de la trace de rayure passe de 281 à 539 µm lorsque la température passe de RT à 300oC, ce qui entraîne une diminution de la HSP de 65 à 18 MPa.

La dureté par rayure à des températures élevées peut être mesurée avec une précision et une répétabilité élevées en utilisant le tribomètre NANOVEA T50. Il offre une solution alternative aux autres mesures de dureté et fait des tribomètres NANOVEA un système plus complet pour des évaluations tribo-mécaniques complètes à haute température.

FIGURE 1: Profils des traces de rayures après les tests de dureté à la rayure à différentes températures.

FIGURE 2 : Traces de rayures sous le microscope après les mesures à différentes températures.

FIGURE 3 : Évolution de la largeur de la trace de rayure et de la dureté de la rayure en fonction de la température.

CONCLUSION

Dans cette étude, nous montrons comment le tribomètre NANOVEA mesure la dureté par rayure à des températures élevées, conformément à la norme ASTM G171-03. L'essai de dureté par rayure à charge constante constitue une solution alternative simple pour comparer la dureté des matériaux à l'aide du tribomètre. La capacité à effectuer des mesures de dureté par rayure à des températures élevées fait du tribomètre NANOVEA un outil idéal pour évaluer les propriétés tribo-mécaniques des matériaux à haute température.

Le tribomètre NANOVEA offre également des tests d'usure et de friction précis et reproductibles en utilisant des modes rotatifs et linéaires conformes aux normes ISO et ASTM, avec des modules optionnels d'usure à haute température, de lubrification et de tribo-corrosion disponibles dans un système pré-intégré. Un profileur 3D sans contact est disponible en option pour l'imagerie 3D haute résolution des traces d'usure en plus d'autres mesures de surface telles que la rugosité.

1 Wredenberg, Fredrik ; PL Larsson (2009). "Essai de rayure des métaux et des polymères : Experiments and numerics". Wear 266 (1-2) : 76
2 ASTM G171-03 (2009), "Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus" (méthode d'essai standard pour la dureté des matériaux par rayure à l'aide d'un stylet en diamant).

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Inspection de la surface des soudures à l'aide d'un profilomètre 3D portable

Inspection de surface WELd

utilisation d'un profilomètre 3d portable

Préparé par

CRAIG LEISING

INTRODUCTION

Il peut devenir critique qu'une soudure particulière, généralement réalisée par inspection visuelle, soit étudiée avec un niveau de précision extrême. Les domaines d'intérêt spécifiques pour une analyse précise comprennent les fissures de surface, la porosité et les cratères non remplis, quelles que soient les procédures d'inspection ultérieures. Les caractéristiques de la soudure telles que la dimension/forme, le volume, la rugosité, la taille, etc. peuvent toutes être mesurées pour une évaluation critique.

IMPORTANCE DU PROFILOMÈTRE 3D SANS CONTACT POUR L'INSPECTION DE LA SURFACE DES SOUDURES

Contrairement à d'autres techniques telles que les palpeurs ou l'interférométrie, le NANOVEA Profilomètre 3D sans contact, utilisant le chromatisme axial, peut mesurer presque toutes les surfaces, la taille des échantillons peut varier considérablement en raison de la mise en scène ouverte et aucune préparation d'échantillon n'est nécessaire. La plage nano à macro est obtenue lors de la mesure du profil de surface sans influence de la réflectivité ou de l'absorption de l'échantillon, a une capacité avancée de mesurer des angles de surface élevés et il n'y a aucune manipulation logicielle des résultats. Mesurez facilement n'importe quel matériau : transparent, opaque, spéculaire, diffusif, poli, rugueux, etc. Les capacités 2D et 2D des profilomètres portables NANOVEA en font des instruments idéaux pour une inspection complète des surfaces de soudure en laboratoire et sur le terrain.

OBJECTIF DE MESURE

Dans cette application, le profileur portable NANOVEA JR25 est utilisé pour mesurer la rugosité de surface, la forme et le volume d'une soudure, ainsi que la zone environnante. Ces informations peuvent fournir des renseignements essentiels pour étudier correctement la qualité de la soudure et du processus de soudage.

NANOVEA

JR25

RÉSULTATS DES TESTS

L'image ci-dessous montre la vue 3D complète de la soudure et de la zone environnante, ainsi que les paramètres de surface de la soudure uniquement. Le profil de la section transversale 2D est montré ci-dessous.

l'échantillon

Avec le profil de la section transversale 2D ci-dessus retiré de la 3D, les informations dimensionnelles de la soudure sont calculées ci-dessous. La surface et le volume du matériau sont calculés pour la soudure uniquement ci-dessous.

 HOLEPEAK
SURFACE1,01 mm214,0 mm2
VOLUME8,799e-5 mm323,27 mm3
PROFONDEUR/HAUTEUR MAXIMALE0,0276 mm0,6195 mm
PROFONDEUR/HAUTEUR MOYENNE 0,004024 mm 0,2298 mm

CONCLUSION

Dans cette application, nous avons montré comment le NANOVEA 3D Non-Contact Profiler peut caractériser avec précision les caractéristiques critiques d'une soudure et de la surface environnante. À partir de la rugosité, des dimensions et du volume, une méthode quantitative de qualité et de répétabilité peut être déterminée ou étudiée de manière plus approfondie. Des échantillons de soudures, comme l'exemple présenté dans cette note d'application, peuvent être facilement analysés à l'aide d'un profileur NANOVEA standard de table ou portable, pour des essais en interne ou sur le terrain.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE