미국/글로벌: +1-949-461-9292
EUROPE: +39-011-3052-794
문의하기

트라이보미터를 이용한 고온 스크래치 경도 측정

고온 스크래치 경도

트라이보미터 사용

작성자

DUANJIE, 박사

소개

경도는 영구적 또는 소성 변형에 대한 재료의 저항력을 측정합니다. 1820년 독일의 광물학자 프리드리히 모스가 처음 개발한 스크래치 경도 테스트는 날카로운 물체와의 마찰로 인한 스크래치 및 마모에 대한 재료의 경도를 결정합니다.1. 모스 척도는 선형 척도가 아닌 비교 지수이므로 ASTM 표준 G171-03에 설명된 대로 보다 정확하고 정성적인 스크래치 경도 측정이 개발되었습니다.2. 다이아몬드 스타일러스로 생성된 스크래치의 평균 너비를 측정하여 스크래치 경도 수치(HSP)를 계산합니다.

고온에서 스크래치 경도 측정의 중요성

재료는 서비스 요구 사항에 따라 선택됩니다. 온도 변화와 열 구배가 큰 응용 분야의 경우 고온에서 재료의 기계적 특성을 조사하여 기계적 한계를 완전히 파악하는 것이 중요합니다. 재료, 특히 폴리머는 일반적으로 고온에서 부드러워집니다. 많은 기계적 고장은 높은 온도에서만 발생하는 크리프 변형과 열 피로로 인해 발생합니다. 따라서 고온 응용 분야에 적합한 재료를 적절히 선택하려면 고온에서 경도를 측정할 수 있는 신뢰할 수 있는 기술이 필요합니다.

측정 목표

이 연구에서 NANOVEA T50 마찰계는 실온부터 300°C까지 다양한 온도에서 테프론 샘플의 스크래치 경도를 측정합니다. NANOVEA는 고온 스크래치 경도 측정 기능을 통해 트라이보미터 고온 응용 분야용 재료의 마찰공학 및 기계적 평가를 위한 다목적 시스템입니다.

나노베아

T50

테스트 조건

나노베아 T50 무중량 표준 트라이보미터를 사용하여 실온(RT)에서 300°C 범위의 온도에서 테프론 시료에 대한 스크래치 경도 테스트를 수행했습니다. 테프론의 녹는점은 326.8°C입니다. 팁 반경 200 µm의 정점 각도 120°의 원추형 다이아몬드 스타일러스를 사용했습니다. 테프론 샘플은 스테이지 중심까지 10mm의 거리를 두고 회전식 샘플 스테이지에 고정되었습니다. 샘플을 오븐으로 가열하고 RT, 50°C, 100°C, 150°C, 200°C, 250°C 및 300°C의 온도에서 테스트했습니다.

테스트 매개변수

고온 스크래치 경도 측정

일반 힘 2 N
슬라이딩 속도 1 mm/s
슬라이딩 거리 온도당 8mm
대기권 Air
온도 RT, 50°C, 100°C, 150°C, 200°C, 250°C, 300°C.

결과 및 토론

다양한 온도에서 테프론 샘플의 스크래치 트랙 프로파일은 서로 다른 온도에서 스크래치 경도를 비교하기 위해 그림 1에 나와 있습니다. 스크래치 트랙 가장자리에 쌓인 재료는 스타일러스가 2N의 일정한 하중으로 이동하고 테프론 샘플을 쟁기질하면서 스크래치 트랙의 재료를 옆으로 밀고 변형시키면서 형성됩니다.

그림 2와 같이 스크래치 트랙을 광학 현미경으로 검사했습니다. 측정된 스크래치 트랙 폭과 계산된 스크래치 경도 수치(HSP)는 그림 3에 요약되어 비교되어 있습니다. 현미경으로 측정한 스크래치 트랙 폭은 나노베아 프로파일러로 측정한 것과 일치하며, 테프론 샘플은 더 높은 온도에서 더 넓은 스크래치 폭을 나타냅니다. 스크래치 트랙 폭은 온도가 RT에서 300oC로 상승함에 따라 281µm에서 539µm로 증가하며, 그 결과 HSP는 65에서 18MPa로 감소합니다.

고온에서의 스크래치 경도는 나노베아 T50 트라이보미터를 사용하여 높은 정밀도와 반복성으로 측정할 수 있습니다. 이 제품은 다른 경도 측정의 대체 솔루션을 제공하며, 나노베아 트라이보미터를 포괄적인 고온 트라이보 기계 평가를 위한 보다 완벽한 시스템으로 만들어 줍니다.

그림 1: 다양한 온도에서 스크래치 경도 테스트 후 스크래치 트랙 프로파일.

그림 2: 다양한 온도에서 측정한 후 현미경으로 트랙을 스크래치합니다.

그림 3: 온도에 따른 스크래치 트랙 폭과 스크래치 경도의 변화.

결론

이 연구에서는 나노베아 트라이보미터가 ASTM G171-03에 따라 고온에서 스크래치 경도를 측정하는 방법을 소개합니다. 일정한 하중에서의 스크래치 경도 테스트는 트라이보미터를 사용하여 재료의 경도를 비교할 수 있는 간단한 대체 솔루션을 제공합니다. 고온에서 스크래치 경도 측정을 수행할 수 있는 나노베아 트라이보미터는 재료의 고온 트라이보-기계적 특성을 평가하는 데 이상적인 도구입니다.

또한 나노베아 트라이보미터는 ISO 및 ASTM을 준수하는 회전 및 선형 모드를 사용하여 정밀하고 반복 가능한 마모 및 마찰 테스트를 제공하며, 고온 마모, 윤활 및 트리보 부식 모듈을 사전 통합된 하나의 시스템에서 옵션으로 사용할 수 있습니다. 옵션으로 제공되는 3D 비접촉식 프로파일러는 거칠기와 같은 기타 표면 측정과 더불어 마모 트랙의 고해상도 3D 이미징을 위해 사용할 수 있습니다.

1 프레드릭 브레덴버그; PL 라르손 (2009). "금속 및 폴리머의 스크래치 테스트: 실험 및 수치". 착용 266 (1-2): 76
2 ASTM G171-03(2009), "다이아몬드 스타일러스를 사용한 재료의 스크래치 경도에 대한 표준 시험 방법"

이제 애플리케이션에 대해 이야기해 보겠습니다.

휴대용 3D 프로파일로미터를 이용한 용접 표면 검사

용접 표면 검사

휴대용 3D 프로파일로미터 사용

작성자

크레이그 레싱

소개

일반적으로 육안 검사로 수행되는 특정 용접을 극도로 정밀하게 조사하는 것이 중요해질 수 있습니다. 정밀 분석이 필요한 특정 영역에는 후속 검사 절차에 관계없이 표면 균열, 다공성 및 미충진 크레이터가 포함됩니다. 치수/형상, 부피, 거칠기, 크기 등과 같은 용접 특성은 모두 중요한 평가를 위해 측정할 수 있습니다.

용접 표면 검사를 위한 3D 비접촉식 프로파일로미터의 중요성

터치 프로브나 간섭계와 같은 다른 기술과 달리 NANOVEA는 3D 비접촉 프로파일로미터, 축 색수차를 사용하여 거의 모든 표면을 측정할 수 있으며, 개방형 스테이징으로 인해 샘플 크기가 크게 달라질 수 있으며 샘플 준비가 필요하지 않습니다. 나노부터 매크로까지의 범위는 샘플 반사나 흡수의 영향이 전혀 없는 표면 프로필 측정 중에 얻어지며, 높은 표면 각도를 측정하는 고급 기능을 갖추고 있으며 결과를 소프트웨어로 조작할 필요가 없습니다. 투명, 불투명, 반사성, 확산성, 광택성, 거친 재질 등 모든 재료를 쉽게 측정합니다. NANOVEA 휴대용 프로파일로미터의 2D 및 2D 기능은 실험실과 현장 모두에서 전체 용접 표면 검사에 이상적인 장비입니다.

측정 목표

이 애플리케이션에서 나노베아 JR25 휴대용 프로파일러는 용접의 표면 거칠기, 모양 및 부피뿐만 아니라 주변 영역을 측정하는 데 사용됩니다. 이 정보는 용접 및 용접 공정의 품질을 적절히 조사하는 데 중요한 정보를 제공할 수 있습니다.

나노베아

JR25

테스트 결과

아래 이미지는 용접 및 주변 영역의 전체 3D 보기와 함께 용접의 표면 매개변수만 보여줍니다. 2D 단면 프로필은 아래와 같습니다.

샘플

위의 2D 단면 프로필을 3D에서 제거하면 용접의 치수 정보가 아래에서 계산됩니다. 아래는 용접에 대해서만 계산된 재료의 표면적과 부피입니다.

 HOLEPEAK
표면1.01 mm214.0mm2
볼륨8.799e-5 mm323.27 mm3
최대 깊이/높이0.0276 mm0.6195 mm
평균 깊이/높이 0.004024 mm 0.2298 mm

결론

이 애플리케이션에서는 나노베아 3D 비접촉 프로파일러가 용접 및 주변 표면의 중요한 특성을 정밀하게 특성화할 수 있는 방법을 보여주었습니다. 거칠기, 치수 및 부피로부터 품질 및 반복성에 대한 정량적 방법을 결정하거나 추가로 조사할 수 있습니다. 이 앱 노트의 예와 같은 샘플 용접은 사내 또는 현장 테스트를 위한 표준 탁상형 또는 휴대용 나노베아 프로파일러를 사용하여 쉽게 분석할 수 있습니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.